Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (15,271)

Search Parameters:
Keywords = smoothness

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6587 KB  
Article
Challenges in Nanofiber Formation From NADES-Based Anthocyanin Extracts: A Physicochemical Perspective
by Paulina Wróbel, Katarzyna Latacz, Jacek Chęcmanowski and Anna Witek-Krowiak
Materials 2025, 18(19), 4502; https://doi.org/10.3390/ma18194502 (registering DOI) - 27 Sep 2025
Abstract
This study explores the challenge of using anthocyanin-rich natural deep eutectic solvent (NADES) extracts to produce electrospun nanofibers for biodegradable freshness indicators. Red cabbage was extracted with two choline chloride-based NADESs (with citric or lactic acid), modified with 10–50% ethanol to lower viscosity, [...] Read more.
This study explores the challenge of using anthocyanin-rich natural deep eutectic solvent (NADES) extracts to produce electrospun nanofibers for biodegradable freshness indicators. Red cabbage was extracted with two choline chloride-based NADESs (with citric or lactic acid), modified with 10–50% ethanol to lower viscosity, and compared with a standard 50% ethanol-water solvent. The citric acid NADES with 30% ethanol gave the highest anthocyanin yield (approx. 0.312 mg/mL, more than 20 times higher than the ethanol extract at approx. 0.014 mg/mL). For fiber fabrication, a polymer carrier blend of poly(ethylene oxide) (PEO) and sodium alginate (Alg) was employed, known to form hydrogen-bonded networks that promote chain entanglement and facilitate electrospinning. Despite this, the NADES extracts could not be electrospun into nanofibers, while the ethanol extract produced continuous, smooth fibers with diameters of approximately 100 nm. This highlights a clear trade-off; NADESs improve anthocyanin recovery, but their high viscosity and low volatility prevent fiber formation under standard electrospinning conditions. To leverage the benefits of NADES extracts, future work could focus on hybrid systems, such as multilayer films, core-shell fibers, or microcapsules, where the extracts are stabilized without relying solely on direct electrospinning. In storage tests, ethanol-extract nanofibers acted as effective pH-responsive indicators, showing visible color change from day 4 of meat storage. At the same time, alginate films with NADES extract remained unchanged after 12 days. These results highlight the importance of striking a balance between chemical stability and sensing sensitivity when designing anthocyanin-based smart packaging. Full article
14 pages, 3831 KB  
Article
An Adaptive Absolute Phase Correction Method with Row–Column Constraints for Projected Fringe Profilometry
by Yuyang Yu, Qin Zhang, Pengfei Feng, Lei Qian and Chucheng Li
Photonics 2025, 12(10), 956; https://doi.org/10.3390/photonics12100956 (registering DOI) - 27 Sep 2025
Abstract
The accuracy of phase unwrapping is a decisive factor in achieving high-precision dimensional measurement using the projected fringe profilometry. However, discontinuities at truncation points inevitably lead to phase jumps, especially when measuring objects with complex hollow features, resulting in significantly increased errors. To [...] Read more.
The accuracy of phase unwrapping is a decisive factor in achieving high-precision dimensional measurement using the projected fringe profilometry. However, discontinuities at truncation points inevitably lead to phase jumps, especially when measuring objects with complex hollow features, resulting in significantly increased errors. To address this issue, this paper proposes an adaptive phase correction algorithm based on row and column constraints. First, the algorithm identifies the main normal phase distribution region in each column and interpolates abnormal values deviating from this region, ensuring smooth phase distribution in the column direction. Then, it detects each continuous non-zero segment in every row, locates phase jump positions, and performs local corrections. This approach enhances the overall continuity of the phase map and effectively compensates for phase jump errors. Experimental results demonstrate that the proposed method can effectively suppress phase jumps caused by object edges and hollow regions, achieving an absolute error of less than 0.05 mm in measured step height differences in standard blocks. This provides a reliable phase preprocessing solution for the optical measurement of complex-shaped objects. Full article
Show Figures

Figure 1

19 pages, 3039 KB  
Article
A Sulfated Polysaccharide from Gelidium crinale Suppresses Oxidative Stress and Epithelial–Mesenchymal Transition in Cultured Retinal Pigment Epithelial Cells
by Yurong Fang, Haiyan Zheng, Yizhu Chen, Bomi Ryu and Zhong-Ji Qian
Mar. Drugs 2025, 23(10), 381; https://doi.org/10.3390/md23100381 - 26 Sep 2025
Abstract
Age-related macular degeneration (AMD) progresses to vision-threatening dry and wet forms, with no effective dry AMD treatments available. The sulfated polysaccharide (GNP, 25.8 kDa) derived from Gelidium crinale exhibits diverse biological activities and represents a potential source of novel therapeutic agents. This study [...] Read more.
Age-related macular degeneration (AMD) progresses to vision-threatening dry and wet forms, with no effective dry AMD treatments available. The sulfated polysaccharide (GNP, 25.8 kDa) derived from Gelidium crinale exhibits diverse biological activities and represents a potential source of novel therapeutic agents. This study employed a hydrogen peroxide (H2O2)-induced oxidative stress and epithelial–mesenchymal transition (EMT) model in retinal pigment epithelial (RPE) cells to investigate GNP’s protective mechanisms against both oxidative damage and EMT. The results demonstrated that GNP effectively suppressed oxidative stress, with the 600 μg/mL dose significantly inhibiting excessive reactive oxygen species (ROS) generation to levels comparable to untreated controls. Concurrently, at concentrations of 200–600 μg/mL, GNP inhibited NF-κB signaling and increased the Bax/Bcl-2 ratio, effectively counteracting H2O2-induced oxidative damage and cell apoptosis. Furthermore, in H2O2-treated ARPE-19 cells, 600 μg/mL GNP significantly reduced the secretion of N-cadherin (N-cad), Vimentin (Vim), and α-smooth muscle actin (α-SMA), while increasing E-cadherin (E-cad) expression, consequently inhibiting cell migration. Mechanistically, GNP activated the Nrf2/HO-1 pathway, thereby mitigating oxidative stress. These findings suggest that GNP may serve as a potential therapeutic agent for dry AMD. Full article
Show Figures

Figure 1

21 pages, 27802 KB  
Article
Improving Rover Path Planning in Challenging Terrains: A Comparative Study of RRT-Based Algorithms
by Sarah Swinton, Euan McGookin and Douglas Thomson
Robotics 2025, 14(10), 135; https://doi.org/10.3390/robotics14100135 - 26 Sep 2025
Abstract
Autonomous planetary rovers require robust path planning over rough 3D terrains, where traditional metrics such as path length, number of nodes, and planning time do not adequately capture path quality. Rapidly Exploring Random Trees (RRT) and its asymptotically optimal variant, RRT*, are widely [...] Read more.
Autonomous planetary rovers require robust path planning over rough 3D terrains, where traditional metrics such as path length, number of nodes, and planning time do not adequately capture path quality. Rapidly Exploring Random Trees (RRT) and its asymptotically optimal variant, RRT*, are widely used sampling-based algorithms for non-holonomic mobile robots but are limited when traversing uneven 3D terrain. This study proposes 3D-RRT*, a simplified, terrain-aware extension of Traversability-Based RRT*, designed to maintain high path quality while reducing planning time. The performance of 3D-RRT* is evaluated using metrics that are both practical and meaningful in the context of planetary rover path planning: path smoothness, path flatness, path length, and planning time. Exploration of a simulated Martian surface demonstrates that 3D-RRT* significantly improves path quality compared to standard RRT and RRT*, achieving smoother, safer, and more efficient routes for planetary rover missions. Full article
(This article belongs to the Section Aerospace Robotics and Autonomous Systems)
14 pages, 263 KB  
Article
PT-Symmetric Dirac Inverse Spectral Problem with Discontinuity Conditions on the Whole Axis
by Rakib Feyruz Efendiev, Davron Aslonqulovich Juraev and Ebrahim E. Elsayed
Symmetry 2025, 17(10), 1603; https://doi.org/10.3390/sym17101603 - 26 Sep 2025
Abstract
We address the inverse spectral problem for a PT-symmetric Dirac operator with discontinuity conditions imposed along the entire real axis—a configuration that has not been explicitly solved in prior literature. Our approach constructs fundamental solutions via convergent recursive series expansions and establishes their [...] Read more.
We address the inverse spectral problem for a PT-symmetric Dirac operator with discontinuity conditions imposed along the entire real axis—a configuration that has not been explicitly solved in prior literature. Our approach constructs fundamental solutions via convergent recursive series expansions and establishes their linear independence through a constant Wronskian. We derive explicit formulas for transmission and reflection coefficients, assemble them into a PT-symmetric scattering matrix, and demonstrate how both spectral and scattering data uniquely determine the underlying complex-valued, discontinuous potentials. Unlike classical treatments, which assume smoothness or limited discontinuities, our framework handles full-axis discontinuities within a non-Hermitian setting, proving uniqueness and providing a constructive recovery algorithm. This method not only generalizes existing inverse scattering theory to PT-symmetric discontinuous operators but also offers direct applicability to optical waveguides, metamaterials, and quantum field models where gain–loss mechanisms and zero-width resonances are critical. Full article
(This article belongs to the Special Issue Mathematics: Feature Papers 2025)
21 pages, 5385 KB  
Article
Research on the Mechanism and Process of Water-Jet-Guided Laser Annular Cutting for Hole Making in Inconel 718
by Qian Liu, Guoyong Zhao, Yugang Zhao, Shuo Yu and Guiguan Zhang
Micromachines 2025, 16(10), 1090; https://doi.org/10.3390/mi16101090 - 26 Sep 2025
Abstract
Nickel-based superalloys, serving as the preferred materials for hot-end structural components in aerospace engines, pose considerable challenges for the fabrication of high-quality gas film holes on their surfaces due to their inherent high hardness and strength. Water-jet-guided laser processing technology has exhibited notable [...] Read more.
Nickel-based superalloys, serving as the preferred materials for hot-end structural components in aerospace engines, pose considerable challenges for the fabrication of high-quality gas film holes on their surfaces due to their inherent high hardness and strength. Water-jet-guided laser processing technology has exhibited notable potential in the realm of gas film hole fabrication; however, its engineering application is hindered by the lack of synergy between processing quality and efficiency. To tackle this issue, this study achieves efficient coupling between a 1064 nm high-power laser and a stable water jet, leveraging a multi-focal water–light coupling mode. Furthermore, an “inside-to-outside” multi-pass ring-cutting drilling strategy is introduced, and the controlled variable method is employed to investigate the influence of laser single-pulse energy, scanning speed, and pulse frequency on the surface morphology and geometric accuracy of micro-holes. Building upon this foundation, micro-holes fabricated using optimized process parameters are analyzed and validated using scanning electron microscopy and energy-dispersive spectroscopy. The findings reveal that single-pulse energy is a pivotal parameter for achieving micro-hole penetration. By moderately increasing the scanning speed and pulse frequency, melt deposition and thermal accumulation effects can be effectively mitigated, thereby enhancing the surface morphology and machining precision of micro-holes. Specifically, when the single-pulse energy is set at 0.8 mJ, the scanning speed at 25 mm/s, and the pulse frequency at 300 kHz, high-quality micro-holes with an entrance diameter of 820 μm and a taper angle of 0.32° can be fabricated in approximately 60 s. The micro-morphology and element distribution of the micro-holes affirm that water-jet-guided laser processing exhibits exceptional performance in minimizing recast layers, narrowing the heat-affected zone, and preserving the smoothness of the hole wall. Full article
(This article belongs to the Special Issue Ultra-Precision Micro Cutting and Micro Polishing)
Show Figures

Figure 1

13 pages, 1548 KB  
Review
Properties and Functions of Myochondrocytes and Myochondroblasts in Different Human Cartilage Tissues—An Overview
by Ctibor Povýšil, Radim Kaňa, Martin Horák and Martin Kaňa
Cells 2025, 14(19), 1504; https://doi.org/10.3390/cells14191504 - 26 Sep 2025
Abstract
A subset of chondrocytes in various human cartilage tissues, including neoplastic, regenerative, and normal cartilage, expresses α-smooth muscle actin (α-SMA), a protein typically found in smooth muscle cells. These α-SMA-containing chondrocytes, termed myochondrocytes and myochondroblasts, may play important roles in cartilage physiology, regeneration, [...] Read more.
A subset of chondrocytes in various human cartilage tissues, including neoplastic, regenerative, and normal cartilage, expresses α-smooth muscle actin (α-SMA), a protein typically found in smooth muscle cells. These α-SMA-containing chondrocytes, termed myochondrocytes and myochondroblasts, may play important roles in cartilage physiology, regeneration, and structural integrity, particularly in auricular and articular cartilage. This review synthesizes current knowledge regarding the terminology, distribution, and biological significance of these cells across normal, osteoarthritic, transplanted, and neoplastic cartilage. We summarize key findings from immunohistochemical studies using markers such as S-100, α-SMA, and SOX9, along with ultrastructural confirmation of myofilament bundles via electron microscopy. Current evidence suggests that myochondrocytes exhibit enhanced regenerative potential and contribute to matrix remodeling. Furthermore, their presence reflects the inherent cellular heterogeneity of cartilage, potentially arising from transdifferentiation processes involving fibroblasts, mesenchymal stem cells, or chondroblasts. Finally, TGF-β1 and PDGF-BB are identified as a critical modulator of α-SMA expression and chondrocyte phenotype. A deeper understanding of nature and function of myochondrocytes and myochondroblasts may improve interpretations of cartilage pathology and inform strategies for tissue engineering and cartilage repair. This review highlights the need for further investigation into the molecular regulation and functional roles of these cells in both physiological and pathological contexts. Full article
(This article belongs to the Section Cellular Pathology)
Show Figures

Figure 1

14 pages, 1009 KB  
Article
A Bayesian ARMA Probability Density Estimator
by Jeffrey D. Hart
Entropy 2025, 27(10), 1001; https://doi.org/10.3390/e27101001 - 26 Sep 2025
Abstract
A Bayesian approach for constructing ARMA probability density estimators is proposed. Such estimators are ratios of trigonometric polynomials and have a number of advantages over Fourier series estimators, including parsimony and greater efficiency under common conditions. The Bayesian approach is carried out via [...] Read more.
A Bayesian approach for constructing ARMA probability density estimators is proposed. Such estimators are ratios of trigonometric polynomials and have a number of advantages over Fourier series estimators, including parsimony and greater efficiency under common conditions. The Bayesian approach is carried out via MCMC, the output of which can be used to obtain probability intervals for unknown parameters and the underlying density. Finite sample efficiency and methods for choosing the estimator’s smoothing parameter are considered in a simulation study, and the ideas are illustrated with data on a wine attribute. Full article
(This article belongs to the Section Signal and Data Analysis)
Show Figures

Figure 1

22 pages, 8401 KB  
Article
Multi-Camera Machine Vision for Detecting and Analyzing Vehicle–Pedestrian Conflicts at Signalized Intersections: Deep Neural-Based Pose Estimation Algorithms
by Ahmed Mohamed and Mohamed M. Ahmed
Appl. Sci. 2025, 15(19), 10413; https://doi.org/10.3390/app151910413 - 25 Sep 2025
Abstract
Over the past decade, researchers have advanced traffic monitoring using surveillance cameras, unmanned aerial vehicles (UAVs), loop detectors, LiDAR, microwave sensors, and sensor fusion. These technologies effectively detect and track vehicles, enabling robust safety assessments. However, pedestrian detection remains challenging due to diverse [...] Read more.
Over the past decade, researchers have advanced traffic monitoring using surveillance cameras, unmanned aerial vehicles (UAVs), loop detectors, LiDAR, microwave sensors, and sensor fusion. These technologies effectively detect and track vehicles, enabling robust safety assessments. However, pedestrian detection remains challenging due to diverse motion patterns, varying clothing colors, occlusions, and positional differences. This study introduces an innovative approach that integrates multiple surveillance cameras at signalized intersections, regardless of their types or resolutions. Two distinct convolutional neural network (CNN)-based detection algorithms accurately track road users across multiple views. The resulting trajectories undergo analysis, smoothing, and integration, enabling detailed traffic scene reconstruction and precise identification of vehicle–pedestrian conflicts. The proposed framework achieved 97.73% detection precision and an average intersection over union (IoU) of 0.912 for pedestrians, compared to 68.36% and 0.743 with a single camera. For vehicles, it achieved 98.2% detection precision and an average IoU of 0.955, versus 58.78% and 0.516 with a single camera. These findings highlight significant improvements in detecting and analyzing traffic conflicts, enhancing the identification and mitigation of potential hazards. Full article
Show Figures

Figure 1

25 pages, 2019 KB  
Article
Statistical Convergence for Grünwald–Letnikov Fractional Differences: Stability, Approximation, and Diagnostics in Fuzzy Normed Spaces
by Hasan Öğünmez and Muhammed Recai Türkmen
Axioms 2025, 14(10), 725; https://doi.org/10.3390/axioms14100725 - 25 Sep 2025
Abstract
We present a unified framework for fuzzy statistical convergence of Grünwald–Letnikov (GL) fractional differences in Bag–Samanta fuzzy normed linear spaces, addressing memory effects and nonlocality inherent to fractional-order models. Theoretically, we establish the uniqueness, linearity, and invariance of fuzzy statistical limits and prove [...] Read more.
We present a unified framework for fuzzy statistical convergence of Grünwald–Letnikov (GL) fractional differences in Bag–Samanta fuzzy normed linear spaces, addressing memory effects and nonlocality inherent to fractional-order models. Theoretically, we establish the uniqueness, linearity, and invariance of fuzzy statistical limits and prove a Cauchy characterization: fuzzy statistical convergence implies fuzzy statistical Cauchyness, while the converse holds in fuzzy-complete spaces (and in the completion, otherwise). We further develop an inclusion theory linking fuzzy strong Cesàro summability—including weighted means—to fuzzy statistical convergence. Via the discrete Q-operator, all statements transfer verbatim between nabla-left and delta-right GL forms, clarifying the binomial GL↔discrete Riemann–Liouville correspondence. Beyond structure, we propose density-based residual diagnostics for GL discretizations of fractional initial-value problems: when GL residuals are fuzzy statistically negligible, trajectories exhibit Ulam–Hyers-type robustness in the fuzzy topology. We also formulate a fuzzy Korovkin-type approximation principle under GL smoothing: Cesàro control on the test set {1,x,x2} propagates to arbitrary targets, yielding fuzzy statistical convergence for positive-operator sequences. Worked examples and an engineering-style case study (thermal balance with memory and bursty disturbances) illustrate how the diagnostics certify robustness of GL numerical schemes under sparse spikes and imprecise data. Full article
(This article belongs to the Special Issue Advances in Fractional-Order Difference and Differential Equations)
Show Figures

Figure 1

25 pages, 1426 KB  
Article
Advanced Probabilistic Roadmap Path Planning with Adaptive Sampling and Smoothing
by Mateusz Ambrożkiewicz, Bartłomiej Bonar, Tomasz Buratowski and Piotr Małka
Electronics 2025, 14(19), 3804; https://doi.org/10.3390/electronics14193804 - 25 Sep 2025
Abstract
Probabilistic roadmap (PRM) methods are widely used for robot navigation in both 2D and 3D environments; however, a major drawback is that the raw paths tend to be jagged. Executing a trajectory along such paths can lead to significant overshoots and tight turns, [...] Read more.
Probabilistic roadmap (PRM) methods are widely used for robot navigation in both 2D and 3D environments; however, a major drawback is that the raw paths tend to be jagged. Executing a trajectory along such paths can lead to significant overshoots and tight turns, making it difficult to achieve a near-optimal solution under motion constraints. This paper presents an enhanced PRM-based path planning approach designed to improve path quality and computational efficiency. The method integrates advanced sampling strategies, adaptive neighbor selection with spatial data structures, and multi-stage path post-processing. In particular, shortcut smoothing and polynomial fitting are used to generate smoother trajectories suitable for motion-constrained robots. The proposed hybrid sampling scheme biases sample generation toward critical regions—near obstacles, in narrow passages, and between the start and goal—to improve graph connectivity in challenging areas. An adaptive k-d tree-based connection strategy then efficiently builds a roadmap using variable connection radii guided by PRM* theory. Once a path is found using an any-angle graph search, post-processing is applied to refine it. Unnecessary waypoints are removed via line-of-sight shortcuts, and the final trajectory is smoothed using a fitted polynomial curve. The resulting paths are shorter and exhibit gentler turns, making them more feasible for execution. In simulated complex scenarios, including narrow corridors and cluttered environments, the advanced PRM achieved a 100% success rate where standard PRM frequently failed. It also reduced calculation time to 30% and peak turning angle by up to 50% compared to conventional methods. The approach supports dynamic re-planning: when the environment changes, the roadmap is efficiently updated rather than rebuilt from scratch. Furthermore, the use of an adaptive k-d tree structure and incremental roadmap updates leads to an order-of-magnitude speedup in the connection phase. These improvements significantly increase the planner’s path quality, runtime performance, and reliability. Quantitative results are provided to substantiate the performance gains of the proposed method. Full article
(This article belongs to the Special Issue Artificial Intelligence in Vision Modelling)
Show Figures

Figure 1

14 pages, 2195 KB  
Article
On Relation Between Fatigue Limit ΔσFL and Threshold ΔKth
by Daniel Kujawski and Asuri K. Vasudevan
Appl. Sci. 2025, 15(19), 10405; https://doi.org/10.3390/app151910405 - 25 Sep 2025
Abstract
Under cyclic loading, fatigue limits ΔσFL and fatigue crack growth (FCG) thresholds ΔΚth are usually examined using the S-N (or ε-N) and FCG da/dN-ΔK approaches, respectively. Historically, these two approaches are treated as a separate domain. This separation was due to [...] Read more.
Under cyclic loading, fatigue limits ΔσFL and fatigue crack growth (FCG) thresholds ΔΚth are usually examined using the S-N (or ε-N) and FCG da/dN-ΔK approaches, respectively. Historically, these two approaches are treated as a separate domain. This separation was due to the recognition that the nonuniform local stress field ahead of a crack differs significantly from the uniform stress field in a smooth specimen under axial fatigue loading. At present, there are no reliable approaches to analyzing these two regions in a unified way. In this paper, we first attempt to relate the experimental results of a cracked sample in the near-threshold region to the S-N fatigue limit of a smooth pull-push specimen. Then establish analytically the local stress intensity factor range ΔK at the process/damage zone ahead of the crack utilizing the local stress equal to ΔσFL in a smooth specimen. Doing such an analysis, we can account the variations between the applied and the local stress ratios R (=min stress/max stress) for both cracked and smooth samples. The proposed relationship between ΔKth and ΔσFL would enable the development of a unified framework for fatigue analysis methods to predict damage evolution under low-stress in-service loading conditions. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

19 pages, 3459 KB  
Article
Influence of Sealing Surface Microstructure Characteristics on Flow Resistance and Leakage Between Contact Surfaces
by Przemysław Jaszak, Anna Piwowar and Marcin Bieganowski
Materials 2025, 18(19), 4474; https://doi.org/10.3390/ma18194474 - 25 Sep 2025
Abstract
This paper presents the results of preliminary numerical and experimental studies concerning the sealing performance of static seals (gaskets) with geometrically designed sealing surface microstructures. The concept of the microstructure, inspired by the operating principle of Tesla’s one-way valve, relies on the generation [...] Read more.
This paper presents the results of preliminary numerical and experimental studies concerning the sealing performance of static seals (gaskets) with geometrically designed sealing surface microstructures. The concept of the microstructure, inspired by the operating principle of Tesla’s one-way valve, relies on the generation of localized flow circulation within the microchannels formed between the contact surfaces, which increases flow resistance and reduces leakage. CFD simulations were performed to assess the influence of the geometric parameters of the microstructure on the leakage rate. The numerical calculations demonstrated that introducing microstructures into the gap formed between the contact interfaces can significantly reduce leakage, with the most critical geometric parameters being the gap width between the microprotrusions, their packing density, and their height. Experimental studies confirmed the higher sealing performance of structured gaskets compared to quasi-smooth gaskets, particularly at lower contact pressures. An analysis of the effective contact surface revealed that the improvement in tightness is a result of both the local intensification of the contact pressure and the flow effects induced by the microprotrusions. The results obtained confirm that an appropriately designed surface microstructure can substantially enhance the sealing performance of flange-bolted joints, even under relatively low clamping loads. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

15 pages, 1767 KB  
Article
The Imatinib–miR-335-5p–ARHGAP18 Axis Attenuates PDGF-Driven Pathological Responses in Pulmonary Artery Smooth Muscle Cells
by Yunyeong Lee and Hara Kang
Int. J. Mol. Sci. 2025, 26(19), 9368; https://doi.org/10.3390/ijms26199368 - 25 Sep 2025
Abstract
The proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) are key pathological features of vascular remodeling during pulmonary hypertension. Platelet-derived growth factor (PDGF) signaling is a major contributor to these processes. Given the importance of microRNA (miRNA) regulation in the PDGF [...] Read more.
The proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) are key pathological features of vascular remodeling during pulmonary hypertension. Platelet-derived growth factor (PDGF) signaling is a major contributor to these processes. Given the importance of microRNA (miRNA) regulation in the PDGF signaling pathway in PASMCs, we hypothesized that imatinib, a tyrosine kinase inhibitor, modulates the expression levels of miRNAs responsive to PDGF signaling to ameliorate the PDGF signaling-induced PASMC phenotype. In this study, we investigated the role of miR-335-5p in PDGF signaling-induced PASMC proliferation and migration, as well as the involvement of imatinib in the regulatory network of miR-335-5p. miR-335-5p was identified as a critical negative regulator of PDGF signaling. Functional assays revealed that miR-335-5p significantly inhibits PASMC proliferation and migration. Through target prediction and validation, Rho GTPase Activating Protein 18 (ARHGAP18) was identified as a novel direct target of miR-335-5p. In addition, ARHGAP18 was found to play an essential role in regulating PASMC proliferation and migration. Although miR-335-5p was downregulated upon PDGF-BB stimulation, its expression was restored by imatinib. These findings highlight the important role of the imatinib–miR-335-5p–ARHGAP18 axis as a potential therapeutic target for pathological vascular remodeling. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

12 pages, 3201 KB  
Article
Reliability of Prediction Models for the Functional Classification of a Sinusoidal Intraocular Lens Depending on Pupil Diameter
by Diego Montagud-Martínez, Walter D. Furlan, Vicente Ferrando, Manuel Rodríguez-Vallejo and Joaquín Fernández
Diagnostics 2025, 15(19), 2446; https://doi.org/10.3390/diagnostics15192446 - 25 Sep 2025
Abstract
Background: To assess the agreement among prediction models for the functional classification of intraocular lenses (IOLs) and discuss their limitations in evaluating pupil dependency of a sinusoidal IOL. Methods: An ISO-compliant optical bench setup with modifications to characterize the modulation transfer function area [...] Read more.
Background: To assess the agreement among prediction models for the functional classification of intraocular lenses (IOLs) and discuss their limitations in evaluating pupil dependency of a sinusoidal IOL. Methods: An ISO-compliant optical bench setup with modifications to characterize the modulation transfer function area (MTFa) across pupil diameters from 1.5 to 5.5 mm was used to measure the Acriva Trinova Pro C Pupil Adaptive IOL. Six prediction models (Vega et al., 2018, Fernández et al., 2019, Alarcón et al., 2016, Armengol et al., 2020 were applied to estimate visual acuity defocus curves from MTFa and functional classification based on the depth-of-field (DOFi) and the increase in visual acuity (ΔVA) from intermediate to near. Results: Defocus curves for all prediction models consistently demonstrated a Full-DOFi response (>2.3 D at 0.2 logMAR), with differences in ΔVA emerging across pupil diameters. Continuous decreases (ΔVA < 0.05 logMAR) were observed at pupil diameters <2.5 mm, while Smooth transitions (ΔVA from 0.05 to 0.14 logMAR) occurred between 2.5–3.0 mm for all models except for Vega. At pupil diameters >3.5 mm, most models transitioned to a Steep classification (ΔVA ≥ 0.14 logMAR), except Fernández, which remained Smooth, and Armengol 2020a, which shifted to Steep at 4.0 mm. Conclusions: Visual acuity prediction models provide useful means of reporting optical bench data in clinically familiar metrics. However, outcomes should be interpreted with caution as functional classifications can vary depending on the optical bench setup and prediction model used. Full article
(This article belongs to the Special Issue Diagnosing, Treating, and Preventing Eye Diseases)
Show Figures

Figure 1

Back to TopTop