Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (596)

Search Parameters:
Keywords = sodium induced inflammation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 4424 KB  
Article
The Flavonoid Extract of Polygonum viviparum L. Alleviates Dextran Sulfate Sodium-Induced Ulcerative Colitis by Regulating Intestinal Flora Homeostasis and Uric Acid Levels Through Inhibition of PI3K/AKT/NF-κB/IL-17 Signaling Pathway
by Haoyu Liu, Zhen Yang, Qian Chen, Hongjuan Zhang, Yu Liu, Di Wu, Dan Shao, Shengyi Wang and Baocheng Hao
Antioxidants 2025, 14(10), 1206; https://doi.org/10.3390/antiox14101206 - 5 Oct 2025
Abstract
Chronic inflammatory bowel disease, ulcerative colitis (UC), currently lacks specific drugs for clinical treatment, and screening effective therapeutic agents from natural plants represents a critical research strategy. This study aimed to investigate the therapeutic potential of the flavonoid extract of Polygonum viviparum L. [...] Read more.
Chronic inflammatory bowel disease, ulcerative colitis (UC), currently lacks specific drugs for clinical treatment, and screening effective therapeutic agents from natural plants represents a critical research strategy. This study aimed to investigate the therapeutic potential of the flavonoid extract of Polygonum viviparum L. (TFPV) against UC. Liquid chromatography-mass spectrometry (LC-MS) was used to identify the chemical components of TFPV, while cell and animal models were employed to evaluate its anti-inflammatory effects on lipopolysaccharide (LPS)-induced inflammation. The mechanism of anti-inflammatory action was further investigated using a mouse model of UC induced by dextran sulfate sodium (DSS). The results revealed the identification of 32 bioactive components in TFPV, with major compounds such as kaempferol, luteolin, galangin, and quercetin. TFPV effectively mitigated inflammatory damage induced by LPS in IPEC-J2 cells and C57BL/6 mice. In the UC modeled by DSS, TFPV attenuated intestinal inflammation by reducing pro-inflammatory cytokines IL-1β, IL-6, and TNF-α; increasing the anti-inflammatory cytokine IL-10; up-regulating tight junction protein expression such as Claudin-1, Occludin, and ZO-1; and inhibiting the expression of PI3K, AKT, NF-κB, and IL-17 proteins. Analysis of mice fecal samples through 16S rRNA gene sequencing demonstrated that TFPV adjusted the equilibrium of gut microbiota by boosting the abundance of Dubosiella and diminishing that of Enterococcus, Romboutsia, and Enterobacter. Untargeted metabolomics analysis further revealed that TFPV reduced inosine and ADP levels while increasing dGMP levels by the regulation of purine metabolism, ultimately resulting in decreased uric acid levels and thereby alleviating intestinal inflammation. Additionally, TFPV safeguarded the intestinal mucosal barrier by enhancing the expression of tight junctions. In conclusion, TFPV alleviates UC by blocking the PI3K/AKT/NF-κB and IL-17 signaling pathways, lessening intestinal inflammation and injury, safeguarding intestinal barrier integrity, balancing gut microbiota, and lowering uric acid levels, suggesting its promise as a therapeutic agent for UC. Full article
21 pages, 4018 KB  
Article
The Synergistic Role of Sargassum horneri Fucoidan and Lactobacillus plantarum: Microbiome and Gut Barrier Restoration in Zebrafish Colitis
by N. M. Liyanage, D. P. Nagahawatta, H. H. A. C. K. Jayawardhana, Jun-Geon Je, Li Yiqiao, Fengqi Yang, Young-Sang Kim, Kyung Yuk Ko and You-Jin Jeon
Mar. Drugs 2025, 23(10), 372; https://doi.org/10.3390/md23100372 - 25 Sep 2025
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease marked by disruption of the intestinal barrier and gut microbiota imbalance, leading to significant impairment in patient quality of life. This study investigated the therapeutic efficacy of a synbiotic formulation composed of purified fucoidan [...] Read more.
Ulcerative colitis (UC) is a chronic inflammatory bowel disease marked by disruption of the intestinal barrier and gut microbiota imbalance, leading to significant impairment in patient quality of life. This study investigated the therapeutic efficacy of a synbiotic formulation composed of purified fucoidan from bloom-forming Sargassum horneri and the probiotic Lactobacillus plantarum in a dextran sulfate sodium (DSS)-induced zebrafish model of UC. Polysaccharides from S. horneri were extracted using Celluclast-assisted extraction and fractionated via DEAE anion-exchange chromatography, resulting in six fucoidan fractions. The sixth fraction (SH-F), with a molecular weight of 254 kDa, showed the highest fucose, sulfate contents, and demonstrated the highest effect on promoting L. plantarum growth. Structural analysis revealed that SH-F contained α-L-Fucp-(1→3), α-L-Fucp-(1→4), β-D-Galp-(1→2,3,4), α-L-Fucp-(1→3,4), and terminal α-L-Fucp residues where Fuc1(SO3)1, Gal1Fuc1(SO3)1, and Fuc2(SO3)2 were the most common glycans. Synbiotic administration significantly attenuated DSS-induced colonic shrinkage, inhibited pro-inflammatory cytokines (IL-6, TNF-ɑ, and IL-1β), restored tight junction proteins (ZO-1, occludin), and downregulated the iNOS, COX2, and NF-κB signaling pathway in adult zebrafish. 16S rRNA gene sequencing revealed restoration of gut microbial diversity and increased abundance of beneficial bacterial taxa to improve DSS-induced UC. These findings highlight the potential synergistic effects of SH-F and L. plantarum as a combinatorial strategy to regulate gut inflammation and enhance epithelial barrier function, potentially offering new insights and therapeutic opportunities for UC intervention. Full article
(This article belongs to the Special Issue Marine Natural Products with Immunomodulatory Activity)
Show Figures

Graphical abstract

13 pages, 2190 KB  
Article
Foodborne Titanium Dioxide Nanoparticles Aggravated Secondary Liver Injury in DSS-Induced Colitis: Role of the NLRP3 Inflammasome
by Xiaoyan Feng, Hongbin Yuan, Tao You and Hengyi Xu
Foods 2025, 14(18), 3279; https://doi.org/10.3390/foods14183279 - 22 Sep 2025
Viewed by 220
Abstract
Secondary liver injury (SLI) is the most common complication in the development of inflammatory bowel disease (IBD), and it is susceptible to environmental factors, including diet patterns. As a food-brightening agent, titanium dioxide nanoparticles (TiO2 NPs) are inevitably consumed by IBD patients. [...] Read more.
Secondary liver injury (SLI) is the most common complication in the development of inflammatory bowel disease (IBD), and it is susceptible to environmental factors, including diet patterns. As a food-brightening agent, titanium dioxide nanoparticles (TiO2 NPs) are inevitably consumed by IBD patients. Currently, there are a few studies on TiO2 NPs exposure to SLI in colitis mice. In this study, a SLI model was built using dextran sodium sulfate (DSS) free-drinking for 7 days after pre-exposure to TiO2 NPs. The changes in the pathological results and liver function indicators suggested that high-dose TiO2 NPs only exhibited a slight injury in the liver. With further analysis, we found that pre-exposure to high-dose TiO2 NPs in mice with SLI led to an increase in intestinal permeability and hepatic LPS content, along with increased inflammatory cytokines and an anti-oxidative system imbalance. Subsequently, accumulated LPS and ROS overproduction activated the NOD-like receptor family pyrin-containing 3 (NLRP3) inflammasome, inducing hepatic cell pyroptosis. To provide compelling evidence, NLRP3 gene-deficient mice were used, and the results showed that the absence of NLRP3 improved liver function, alleviated hepatic inflammation, and reduced hepatic oxidative injury in SLI mice with TiO2 NPs exposure. In summary, these results confirmed the critical role of the NLRP3 inflammasome in the TiO2 NP-aggravated progression of SLI. Our study provided a comprehensive evaluation of foodborne nanoparticles on IBD complications, hoping that more studies can focus on IBD complications affected by environmental factors. Full article
(This article belongs to the Special Issue Research on Food Chemical Safety)
Show Figures

Figure 1

23 pages, 8073 KB  
Article
Alfalfa Polysaccharide Alleviates Colitis by Regulating Intestinal Microbiota and the Intestinal Barrier Against the TLR4/MyD88/NF-κB Pathway
by Shaokai La, Muhammad Abaidullah, Hao Li, Yalei Cui, Boshuai Liu and Yinghua Shi
Nutrients 2025, 17(18), 3001; https://doi.org/10.3390/nu17183001 - 19 Sep 2025
Viewed by 305
Abstract
Background/Objectives: Ulcerative colitis (UC) pathogenesis involves gut barrier dysfunction, dysregulated immune responses, and gut microbiota imbalance. Alfalfa polysaccharide (APS), a bioactive compound with immunomodulatory potential, remains underexplored in intestinal inflammation. While APS exhibits anti-inflammatory properties in vitro, its in vivo efficacy, mechanisms, [...] Read more.
Background/Objectives: Ulcerative colitis (UC) pathogenesis involves gut barrier dysfunction, dysregulated immune responses, and gut microbiota imbalance. Alfalfa polysaccharide (APS), a bioactive compound with immunomodulatory potential, remains underexplored in intestinal inflammation. While APS exhibits anti-inflammatory properties in vitro, its in vivo efficacy, mechanisms, and ability to restore gut microbiota and barrier integrity in UC are unclear. This study aims to investigate the treatment effect of APS on dextran sulfate sodium (DSS)-induced colitis in mice and confirm its prebiotic potential. Methods: A mouse model of ulcerative colitis was induced by DSS. RNA sequencing, Western blotting, the terminal deoxynucleotidyl transferase dUTP nick end labeling technique, and an immuno-histochemical technique were used to study the mechanism of action by which APS at different dosages relieves DSS-induced colitis. Results: The findings show that APS alleviated the symptoms of colitis in mice given DSS, improved the gut morphology, heightened goblet cells production, increased the levels of IL-10 and IL-22, decreased the levels of TNF-α, IL-1β, and IL-6, and prevented the activation of the TLR4/MyD88/NF-κB pathways. Additionally, they maintained the integrity of the intestine by enhancing the expression of the mucins MUC2 and MUC5AC and by increasing the amounts of ZO-1, Occludin, and Claudin-1 proteins. Moreover, APS supported the growth of probiotic bacteria, including unclassified_f_lachnospiraceae, Parabacteroides, Alistipes, and Mucispirillum, and in particular, Parabacteroides distasonis, which is strongly associated with decreased pro-inflammatory cytokine through the inhibition of the TLR4-MyD88-NFκB pathways. Conclusions: APS can be used as a new type of prebiotic to improve UC by regulating intestinal flora and enhancing intestinal barrier function against the TLR4-MyD88-NFκB pathway. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

22 pages, 3221 KB  
Article
Pharmacokinetic Profiling Using 3H-Labeled Eggshell Membrane and Effects of Eggshell Membrane and Lysozyme Oral Supplementation on DSS-Induced Colitis and Human Gut Microbiota
by Miho Shimizu, Wataru Sugai, Eri Ohto-Fujita, Aya Atomi, Norio Nogawa, Koichi Takamiya, Hisao Yoshinaga, Yoshihide Asano, Takashi Yamashita, Shinichi Sato, Atsushi Enomoto, Nozomi Hatakeyama, Shunsuke Yasuda, Kazuya Tanaka, Tomoaki Atomi, Kenji Harada, Yukio Hasebe, Toshiyuki Watanabe and Yoriko Atomi
Int. J. Mol. Sci. 2025, 26(18), 9102; https://doi.org/10.3390/ijms26189102 - 18 Sep 2025
Viewed by 382
Abstract
Eggshell membrane (ESM) is composed of approximately 90% protein. Our previous studies in healthy adults demonstrated that two months of daily ESM intake improved respiratory function, zigzag walking speed, and skin elasticity. The present study aims to address the knowledge gap regarding the [...] Read more.
Eggshell membrane (ESM) is composed of approximately 90% protein. Our previous studies in healthy adults demonstrated that two months of daily ESM intake improved respiratory function, zigzag walking speed, and skin elasticity. The present study aims to address the knowledge gap regarding the in vivo effects of ESM in the context of inflammatory bowel disease (IBD). Proteomic analysis was performed on powdered ESM used as a dietary supplement. To investigate its pharmacokinetics in mice, tritium (3H)-labeled ESM was prepared using the 6Li(n,α)3H nuclear reaction. The therapeutic potential of ESM was further examined in a 2.0% dextran sulfate sodium (DSS)-induced murine model of IBD. In addition, fecal samples from both mice and healthy human subjects were analyzed using a modified terminal restriction fragment length polymorphism (T-RFLP) method. Lysozyme C (LYZ) was the most abundant protein (47%), followed by lysyl oxidase (12%) in ESM used in this study. 3H-ESM was mixed with MediGel, and orally administered to mice. Radioactivity levels were measured in blood, organs (duodenum, small intestine, large intestine, liver, kidney, lung, skin), and rectal feces at 0.5, 2, 5, 24, 48, and 72 h post-administration. Radioactivity in feces indicated excretion of undigested components, while systemic distribution suggested potential whole-body effects of ESM. Oral ESM and LYZ significantly alleviated body weight loss, diarrhea, and hematochezia in a DSS-induced murine model of IBD, leading to a significantly lower disease activity index on day 3 and showing a similar trend on day 5. Gut microbiota analysis showed increased Bacteroidales in the DSS group, while the ESM + DSS group maintained levels similar to the control. In humans, a double-blind, randomized controlled trial was conducted to evaluate the effects of ESM on gut microbiota in healthy adults. Participants received either ESM or placebo for 8 weeks. revealed a significant increase in alpha diversity at weeks 1 and 8 in the ESM group (p < 0.05), with between-group differences evident from week 1 (p < 0.01). ESM intake reduced Bacteroides and significantly increased Bifidobacterium and Lactobacillales at weeks 4 and 8. These findings suggest ESM supplementation promotes beneficial modulation of gut microbiota. These findings suggest that ESM, through its major protein components such as LYZ, may serve as a promising dietary intervention for maintaining intestinal health and mitigating inflammation in the context of IBD. Full article
Show Figures

Graphical abstract

18 pages, 2531 KB  
Article
CUD003, a Novel Curcumin Derivative, Ameliorates LPS-Induced Impairment of Endothelium-Dependent Relaxation and Vascular Inflammation in Mice
by Hirokazu Matsuzaki, Anna Arai, Meiyan Xuan, Bo Yuan, Jun Takayama, Takeshi Sakamoto and Mari Okazaki
Int. J. Mol. Sci. 2025, 26(18), 8850; https://doi.org/10.3390/ijms26188850 - 11 Sep 2025
Viewed by 225
Abstract
Endothelial dysfunction is closely linked to inflammation and oxidative stress and ultimately contributes to the development of cardiovascular diseases. Lipopolysaccharide (LPS), a major component of Gram-negative bacteria, induces vascular inflammation and oxidative damage in experimental models. Curcumin (Cur), a polyphenol from Curcuma longa [...] Read more.
Endothelial dysfunction is closely linked to inflammation and oxidative stress and ultimately contributes to the development of cardiovascular diseases. Lipopolysaccharide (LPS), a major component of Gram-negative bacteria, induces vascular inflammation and oxidative damage in experimental models. Curcumin (Cur), a polyphenol from Curcuma longa, is well known for its anti-inflammatory and antioxidant properties. In this study, we examined the protective effects of CUD003, a novel synthetic Cur derivative, on the LPS-induced impairment of endothelium-dependent relaxation in the thoracic aorta of mice. Male ICR mice were pretreated with CUD003 or Cur (3 or 10 mg/kg, p.o.) 30 min prior to LPS injection (10 mg/kg, i.p.). Twenty-four hours after LPS injection, vascular reactivity was assessed in isolated aortic rings by evaluating vasorelaxation and vasoconstriction responses. LPS markedly impaired acetylcholine-induced vasorelaxation in the phenylephrine (PE)-precontracted aortic rings, while PE-induced contraction and sodium nitroprusside-induced relaxation were preserved, indicating that LPS impaired endothelium-dependent relaxation without affecting smooth muscle function. Immunohistochemical analysis revealed a reduction in eNOS expression and elevated levels of TNF-α, COX-2, O2, and malondialdehyde, indicating enhanced inflammation and oxidative stress in the aorta. Pretreatment with CUD003 (10 mg/kg) significantly ameliorated these changes and showed superior protective effects compared to the same dose of Cur. These findings suggest that CUD003 protects against LPS-induced vascular dysfunction and suppresses inflammation and oxidative stress, supporting its potential as a preventive candidate against vascular inflammation and dysfunction. Full article
Show Figures

Figure 1

25 pages, 9121 KB  
Article
Integrative Multi-Omics Reveals the Anti-Colitis Mechanisms of Polygonatum kingianum Collett & Hemsl Polysaccharides in a Mouse DSS Model
by Siyu Li, Xingrui Xu, Yuezhi Pan, Yu Chen, Zihuan Wu and Shengbao Cai
Nutrients 2025, 17(17), 2895; https://doi.org/10.3390/nu17172895 - 8 Sep 2025
Viewed by 869
Abstract
Background/Objectives: Ulcerative colitis (UC) incidence has risen alarmingly worldwide, posing significant clinical challenges due to limitations of therapeutic efficacy and side effects of current drugs. While Polygonatum kingianum polysaccharides (PKPs) exhibit anti-inflammatory and antioxidant properties, their anti-colitis potential remains unexplored. This study [...] Read more.
Background/Objectives: Ulcerative colitis (UC) incidence has risen alarmingly worldwide, posing significant clinical challenges due to limitations of therapeutic efficacy and side effects of current drugs. While Polygonatum kingianum polysaccharides (PKPs) exhibit anti-inflammatory and antioxidant properties, their anti-colitis potential remains unexplored. This study aimed to validate the protective effects of PKPs against dextran sulfate sodium (DSS)-induced colitis and elucidate its mechanisms. Methods: Acute UC was induced in C57BL/6J mice by 3% DSS. PKPs (125 mg/kg) were administered via gavage for 10 days. Integrated approaches included histopathology, tight junction protein (ZO-1/Occludin/Claudin-1) immunohistochemistry, inflammatory/oxidative markers (ELISA), Nrf2 pathway proteins (Western blot), 16S rRNA gut microbiota sequencing, fecal untargeted metabolomics (UHPLC-MS), short-chain fatty acids (SCFAs) analysis and combined analysis. Results: PKPs significantly alleviated colitis phenotypes: reduced weight loss, lowered disease activity index (DAI), and attenuated colon shortening. They restored intestinal barrier integrity by upregulating tight junction proteins and reducing plasma Diamine Oxidase (DAO)/D-lactate (D-Lac)/Endotoxin (ET). PKPs suppressed pro-inflammatory cytokines (TNF-α/IL-1β/IL-6) while elevating IL-10, activated the Nrf2/HO-1/NQO1 antioxidant pathway, and reduced oxidative stress (MDA decreased, SOD/GSH increased). Multi-omics revealed PKPs enriched beneficial bacteria (Blautia, Odoribacter, Rikenellaceae_RC9_gut_group), restored SCFAs (acetate/propionate/butyrate), and modulated metabolic pathways (sphingolipid/linoleic acid metabolism). Conclusions: PKPs ameliorate DSS-induced colitis through multi-target mechanisms: (1) preserving intestinal barrier function, (2) suppressing inflammation and oxidative stress via Nrf2 activation, (3) restoring gut microbiota balance and SCFA production, and (4) regulating host-microbiota metabolic interactions. These findings support PKPs as a promising dietary supplement for UC management. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Graphical abstract

28 pages, 5350 KB  
Article
Galactooligosaccharides Promote Gut Barrier Integrity and Exert Anti-Inflammatory Effects in DSS-Induced Colitis Through Microbiota Modulation
by Lucila A. Godínez-Méndez, Alejandra Natali Vega-Magaña, Marcela Peña-Rodríguez, Gisela Anay Valencia-Hernández, Germán Muñoz-Sánchez, Liliana Iñiguez-Gutiérrez, Rocío López-Roa, Martha Eloisa Ramos-Márquez, Mary Fafutis-Morris and Vidal Delgado-Rizo
Int. J. Mol. Sci. 2025, 26(16), 7968; https://doi.org/10.3390/ijms26167968 - 18 Aug 2025
Viewed by 728
Abstract
Ulcerative colitis is a chronic inflammatory bowel disease characterized by persistent inflammation, immune dysregulation, gut microbiota alterations, and impaired epithelial barrier function. Lupinus albus is a legume rich in galactooligosaccharides (GOS) that functions as a prebiotic capable of modulating the gut microbiota and [...] Read more.
Ulcerative colitis is a chronic inflammatory bowel disease characterized by persistent inflammation, immune dysregulation, gut microbiota alterations, and impaired epithelial barrier function. Lupinus albus is a legume rich in galactooligosaccharides (GOS) that functions as a prebiotic capable of modulating the gut microbiota and mitigating ulcerative colitis-related damage. This study aimed to elucidate the effect of GOS on gut microbiota modulation and the molecular mechanisms involved in epithelial restoration and inflammation reduction. Fifteen C57BL/6 mice were randomly assigned to three groups (n = 5 per group): control (CTL), ulcerative colitis (UC), and ulcerative colitis + GOS (UC + GOS). UC was induced by administering 2% dextran sulfate sodium (DSS) in drinking water for seven days. The UC + GOS group received 2.5 g/kg BW of GOS via gavage for 14 days. GOS administration improved mucus layer thickness, regulated the expression of tight junction proteins, reduced pro-inflammatory cytokine levels, and modulated the gut microbiota, preventing the loss of richness and diversity. Additionally, the expression of monocarboxylate transporters (MCTs) MCT1 and MCT4 was evaluated, and significant differences were observed between the groups across colon and cecum tissues. These findings suggest that GOS supplementation may play a potential role in attenuating ulcerative colitis by regulating the gut microbiota and the metabolic state of intestinal cells. Full article
Show Figures

Figure 1

31 pages, 4867 KB  
Article
Cannabidiol Enhances the Therapeutic Efficacy of Olsalazine and Cyclosporine in a Murine Model of Colitis
by Dinesh Thapa, Mohan Patil, Leon N. Warne, Rodrigo Carlessi and Marco Falasca
Int. J. Mol. Sci. 2025, 26(16), 7913; https://doi.org/10.3390/ijms26167913 - 16 Aug 2025
Viewed by 656
Abstract
Current therapies for inflammatory bowel disease (IBD), such as olsalazine and cyclosporine, often exhibit limited long-term efficacy and are associated with adverse effects. Cannabidiol (CBD), a non-psychoactive phytocannabinoid, shows promise for its anti-inflammatory properties, though its effectiveness as a monotherapy remains inconclusive. This [...] Read more.
Current therapies for inflammatory bowel disease (IBD), such as olsalazine and cyclosporine, often exhibit limited long-term efficacy and are associated with adverse effects. Cannabidiol (CBD), a non-psychoactive phytocannabinoid, shows promise for its anti-inflammatory properties, though its effectiveness as a monotherapy remains inconclusive. This study investigates the therapeutic potential of combining low-dose CBD (10 mg/kg) with olsalazine (50 mg/kg) or cyclosporine (2.5, 5 mg/kg) in dextran sulphate sodium (DSS)-induced acute and chronic colitis models in mice. Disease severity was assessed via disease activity index (DAI), colon morphology, cytokine and chemokine expression, myeloperoxidase (MPO) activity, systemic inflammatory markers, and glucagon-like peptide-1 (GLP-1) regulation. Safety evaluations included haematology and plasma biochemistry. DSS-treated mice showed elevated DAI scores, colon shortening, heightened inflammation, and organ enlargement. Combination therapies significantly ameliorated colitis, reducing DAI, MPO activity, and inflammatory cytokines, while restoring colon length and GLP-1 levels—without inducing liver or kidney toxicity. These findings demonstrate that combining a low dose of CBD with standard IBD drugs enhances therapeutic efficacy while minimizing side effects, supporting its integration into future combination strategies for more effective and safer IBD management. Full article
Show Figures

Figure 1

15 pages, 2691 KB  
Review
SGLT2 Inhibitors: Multifaceted Therapeutic Agents in Cardiometabolic and Renal Diseases
by Ana Checa-Ros, Owahabanun-Joshua Okojie and Luis D’Marco
Metabolites 2025, 15(8), 536; https://doi.org/10.3390/metabo15080536 - 7 Aug 2025
Viewed by 1349
Abstract
Background: Sodium–glucose cotransporter-2 inhibitors (SGLT2is), initially developed as antihyperglycemic agents, have emerged as multifunctional therapeutics with profound cardiorenal and metabolic benefits. Their unique insulin-independent mechanism, targeting renal glucose reabsorption, distinguishes them from conventional antidiabetic drugs. Mechanisms and Clinical Evidence: SGLT2is induce [...] Read more.
Background: Sodium–glucose cotransporter-2 inhibitors (SGLT2is), initially developed as antihyperglycemic agents, have emerged as multifunctional therapeutics with profound cardiorenal and metabolic benefits. Their unique insulin-independent mechanism, targeting renal glucose reabsorption, distinguishes them from conventional antidiabetic drugs. Mechanisms and Clinical Evidence: SGLT2is induce glycosuria, reduce hyperglycemia, and promote weight loss through increased caloric excretion. Beyond glycemic control, they modulate tubuloglomerular feedback, attenuate glomerular hyperfiltration, and exert systemic effects via natriuresis, ketone utilization, and anti-inflammatory pathways. Landmark trials (DAPA-HF, EMPEROR-Reduced, CREDENCE, DAPA-CKD) demonstrate robust reductions in heart failure (HF) hospitalizations, cardiovascular mortality, and chronic kidney disease (CKD) progression, irrespective of diabetes status. Adipose Tissue and Metabolic Effects: SGLT2is mitigate obesity-associated adiposopathy by shifting macrophage polarization (M1 to M2), reducing proinflammatory cytokines (TNF-α, IL-6), and enhancing adipose tissue browning (UCP1 upregulation) and mitochondrial biogenesis (via PGC-1α/PPARα). Modest weight loss (~2–4 kg) occurs, though compensatory hyperphagia may limit long-term effects. Emerging Applications: Potential roles in non-alcoholic fatty liver disease (NAFLD), polycystic ovary syndrome (PCOS), and neurodegenerative disorders are under investigation, driven by pleiotropic effects on metabolism and inflammation. Conclusions: SGLT2is represent a paradigm shift in managing T2DM, HF, and CKD, with expanding implications for metabolic syndrome. Future research should address interindividual variability, combination therapies, and non-glycemic indications to optimize their therapeutic potential. Full article
(This article belongs to the Special Issue Metabolic Modulators in Cardiovascular Disease Management)
Show Figures

Figure 1

23 pages, 11168 KB  
Article
Persistent Inflammation, Maladaptive Remodeling, and Fibrosis in the Kidney Following Long COVID-like MHV-1 Mouse Model
by Rajalakshmi Ramamoorthy, Anna Rosa Speciale, Emily M. West, Hussain Hussain, Nila Elumalai, Klaus Erich Schmitz Abe, Madesh Chinnathevar Ramesh, Pankaj B. Agrawal, Arumugam R. Jayakumar and Michael J. Paidas
Diseases 2025, 13(8), 246; https://doi.org/10.3390/diseases13080246 - 5 Aug 2025
Viewed by 2749
Abstract
Background: Accumulating evidence indicates that SARS-CoV-2 infection results in long-term multiorgan complications, with the kidney being a primary target. This study aimed to characterize the long-term transcriptomic changes in the kidney following coronavirus infection using a murine model of MHV-1-induced SARS-like illness and [...] Read more.
Background: Accumulating evidence indicates that SARS-CoV-2 infection results in long-term multiorgan complications, with the kidney being a primary target. This study aimed to characterize the long-term transcriptomic changes in the kidney following coronavirus infection using a murine model of MHV-1-induced SARS-like illness and to evaluate the therapeutic efficacy of SPIKENET (SPK). Methods: A/J mice were infected with MHV-1. Renal tissues were collected and subjected to immunofluorescence analysis and Next Generation RNA Sequencing to identify differentially expressed genes associated with acute and chronic infection. Bioinformatic analyses, including PCA, volcano plots, and GO/KEGG pathway enrichment, were performed. A separate cohort received SPK treatment, and comparative transcriptomic profiling was conducted. Gene expression profile was further confirmed using real-time PCR. Results: Acute infection showed the upregulation of genes involved in inflammation and fibrosis. Long-term MHV-1 infection led to the sustained upregulation of genes involved in muscle regeneration, cytoskeletal remodeling, and fibrotic responses. Notably, both expression and variability of SLC22 and SLC22A8, key proximal tubule transporters, were reduced, suggesting a loss of segment-specific identity. Further, SLC12A1, a critical regulator of sodium reabsorption and blood pressure, was downregulated and is associated with the onset of polyuria and hydronephrosis. SLC transporters exhibited expression patterns consistent with tubular dysfunction and inflammation. These findings suggest aberrant activation of myogenic pathways and structural proteins in renal tissues, consistent with a pro-fibrotic phenotype. In contrast, SPK treatment reversed the expression of most genes, thereby restoring the gene profiles to those observed in control mice. Conclusions: MHV-1-induced long COVID is associated with persistent transcriptional reprogramming in the kidney, indicative of chronic inflammation, cytoskeletal dysregulation, and fibrogenesis. SPK demonstrates robust therapeutic potential by normalizing these molecular signatures and preventing long-term renal damage. These findings underscore the relevance of the MHV-1 model and support further investigation of SPK as a candidate therapy for COVID-19-associated renal sequelae. Full article
(This article belongs to the Special Issue COVID-19 and Global Chronic Disease 2025: New Challenges)
Show Figures

Figure 1

29 pages, 6122 KB  
Article
Lacticaseibacillus paracasei L21 and Its Postbiotics Ameliorate Ulcerative Colitis Through Gut Microbiota Modulation, Intestinal Barrier Restoration, and HIF1α/AhR-IL-22 Axis Activation: Combined In Vitro and In Vivo Evidence
by Jingru Chen, Linfang Zhang, Yuehua Jiao, Xuan Lu, Ning Zhang, Xinyi Li, Suo Zheng, Bailiang Li, Fei Liu and Peng Zuo
Nutrients 2025, 17(15), 2537; https://doi.org/10.3390/nu17152537 - 1 Aug 2025
Cited by 1 | Viewed by 1294
Abstract
Background: Ulcerative colitis (UC), characterized by chronic intestinal inflammation, epithelial barrier dysfunction, and immune imbalance demands novel ameliorative strategies beyond conventional approaches. Methods: In this study, the probiotic properties of Lactobacillus paracaseiL21 (L. paracaseiL21) and its ability to ameliorate [...] Read more.
Background: Ulcerative colitis (UC), characterized by chronic intestinal inflammation, epithelial barrier dysfunction, and immune imbalance demands novel ameliorative strategies beyond conventional approaches. Methods: In this study, the probiotic properties of Lactobacillus paracaseiL21 (L. paracaseiL21) and its ability to ameliorate colitis were evaluated using an in vitro lipopolysaccharide (LPS)-induced intestinal crypt epithelial cell (IEC-6) model and an in vivo dextran sulfate sodium (DSS)-induced UC mouse model. Results: In vitro, L. paracaseiL21 decreased levels of pro-inflammatory cytokines (TNF-α, IL-1β, IL-8) while increasing anti-inflammatory IL-10 levels (p < 0.05) in LPS-induced IEC-6 cells, significantly enhancing the expression of tight junction proteins (ZO-1, occludin, claudin-1), thereby restoring the intestinal barrier. In vivo, both viable L. paracaseiL21 and its heat-inactivated postbiotic (H-L21) mitigated weight loss, colon shortening, and disease activity indices, concurrently reducing serum LPS and proinflammatory mediators. Interventions inhibited NF-κB signaling while activating HIF1α/AhR pathways, increasing IL-22 and mucin MUC2 to restore goblet cell populations. Gut microbiota analysis showed that both interventions increased the abundance of beneficial gut bacteria (Lactobacillus, Dubococcus, and Akkermansia) and improved faecal propanoic acid and butyric acid levels. H-L21 uniquely exerted an anti-inflammatory effect, marked by the regulation of Dubosiella, while L. paracaseiL21 marked by the Akkermansia. Conclusions: These results highlight the potential of L. paracaseiL21 as a candidate for the development of both probiotic and postbiotic formulations. It is expected to provide a theoretical basis for the management of UC and to drive the development of the next generation of UC therapies. Full article
(This article belongs to the Special Issue Probiotics, Postbiotics, Gut Microbiota and Gastrointestinal Health)
Show Figures

Figure 1

20 pages, 6929 KB  
Article
Protective Effects of Sodium Copper Chlorophyllin and/or Ascorbic Acid Against Barium Chloride-Induced Oxidative Stress in Mouse Brain and Liver
by Salma Benayad, Basma Es-Sai, Yassir Laaziouez, Soufiane Rabbaa, Hicham Wahnou, Habiba Bouchab, Hicham El Attar, Bouchra Benabdelkhalek, Loubna Amahdar, Oualid Abboussi, Raphaël Emmanuel Duval, Riad El Kebbaj and Youness Limami
Molecules 2025, 30(15), 3231; https://doi.org/10.3390/molecules30153231 - 1 Aug 2025
Cited by 1 | Viewed by 681
Abstract
Barium chloride (BaCl2), a known environmental pollutant, induces organ-specific oxidative stress through disruption of redox homeostasis. This study evaluated the protective effects and safety profile of sodium copper chlorophyllin (SCC) and ascorbic acid (ASC) against BaCl2-induced oxidative damage in [...] Read more.
Barium chloride (BaCl2), a known environmental pollutant, induces organ-specific oxidative stress through disruption of redox homeostasis. This study evaluated the protective effects and safety profile of sodium copper chlorophyllin (SCC) and ascorbic acid (ASC) against BaCl2-induced oxidative damage in the liver and brain of mice using a two-phase experimental protocol. Animals received either SCC (40 mg/kg), ASC (160 mg/kg), or their combination for 14 days prior to BaCl2 exposure (150 mg/L in drinking water for 7 days), allowing evaluation of both preventive and therapeutic effects. Toxicological and behavioral assessments confirmed the absence of systemic toxicity or neurobehavioral alterations following supplementation. Body weight, liver and kidney indices, and biochemical markers (Aspartate Aminotransferase (ASAT), Alanine Aminotransferase (ALAT), creatinine) remained within physiological ranges, and no anxiogenic or locomotor effects were observed. In the brain, BaCl2 exposure significantly increased SOD (+49%), CAT (+66%), GPx (+24%), and GSH (+26%) compared to controls, reflecting a robust compensatory antioxidant response. Although lipid peroxidation (MDA) showed a non-significant increase, SCC, ASC, and their combination reduced MDA levels by 42%, 37%, and 55%, respectively. These treatments normalized antioxidant enzyme activities and GSH, indicating an effective neuroprotective effect. In contrast, the liver exhibited a different oxidative profile. BaCl2 exposure increased MDA levels by 80% and GSH by 34%, with no activation of SOD, CAT, or GPx. Histological analysis revealed extensive hepatocellular necrosis, vacuolization, and inflammatory infiltration. SCC significantly reduced hepatic MDA by 39% and preserved tissue architecture, while ASC alone or combined with SCC exacerbated inflammation and depleted hepatic GSH by 71% and 78%, respectively, relative to BaCl2-exposed controls. Collectively, these results highlight a differential, organ-specific response to BaCl2-induced oxidative stress and the therapeutic potential of SCC and ASC. SCC emerged as a safer and more effective agent, particularly in hepatic protection, while both antioxidants demonstrated neuroprotective effects when used individually or in combination. Full article
Show Figures

Graphical abstract

11 pages, 1692 KB  
Communication
Nanogel Loaded with Perilla frutescens Leaf-Derived Exosome-like Nanovesicles and Indomethacin for the Treatment of Inflammatory Arthritis
by Xianqiang Li, Fei Wang, Rui Wang, Yanjie Cheng, Jinhuan Liu and Wanhe Luo
Biology 2025, 14(8), 970; https://doi.org/10.3390/biology14080970 - 1 Aug 2025
Viewed by 686
Abstract
Inflammatory arthritis (IA) is a chronic condition marked by joint dysfunction and pain, posing significant challenges for effective drug delivery. This study separated Perilla frutescens leaf-derived exosome-like nanovesicles (PFE) to effectively penetrate the stratum corneum barrier. These nanovesicles and indomethacin (IND) were subsequently [...] Read more.
Inflammatory arthritis (IA) is a chronic condition marked by joint dysfunction and pain, posing significant challenges for effective drug delivery. This study separated Perilla frutescens leaf-derived exosome-like nanovesicles (PFE) to effectively penetrate the stratum corneum barrier. These nanovesicles and indomethacin (IND) were subsequently developed into a nanogel designed for topical drug delivery systems (PFE-IND-GEL). PFE exhibited a typical vesicular structure with a mean diameter of 98.4 ± 1.3 nm. The hydrodynamic size and zeta potential of PFE-IND-GEL were 129.6 ± 5.9 nm and −17.4 ± 1.9 mV, respectively. Mechanistic investigations in HaCaT keratinocytes showed that PFE significantly downregulated tight junction proteins (ZO-1 and Occludin, p < 0.01) via modulation of the IL-17 signaling pathway, as evidenced by transcriptomic analysis. In a sodium urea crystal-induced rat IA model, the topical application of PFE-IND-GEL significantly reduced joint swelling (p < 0.05) and serum levels of inflammatory cytokines (IL-6, IL-1α, TNF-α) compared to control groups. Histopathological analysis confirmed the marked attenuation of synovial inflammation and cartilage preservation in treated animals. These findings underscore the dual role of PFE as both a topical permeation enhancer and an anti-inflammatory agent, presenting a promising strategy for managing IA. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Figure 1

19 pages, 2360 KB  
Article
Lepisanthes alata Attenuates Carrageenan-Induced Inflammation and Pain in Rats: A Phytochemical-Based Approach
by Elvy Suhana Mohd Ramli, Nadia Mohamed Tarmizi, Nur Aqilah Kamaruddin and Mohd Amir Kamaruzzaman
Pharmaceuticals 2025, 18(8), 1142; https://doi.org/10.3390/ph18081142 - 31 Jul 2025
Viewed by 834
Abstract
Background: Inflammation abrogates cellular organization and tissue homoeostasis, resulting in redness, swelling, heat, pain, and loss of function. A model of carrageenan-induced paw edema (CIE) is commonly utilized to test anti-inflammatory substances. Based on the ability of Lepisanthes alata (LA), a tropical [...] Read more.
Background: Inflammation abrogates cellular organization and tissue homoeostasis, resulting in redness, swelling, heat, pain, and loss of function. A model of carrageenan-induced paw edema (CIE) is commonly utilized to test anti-inflammatory substances. Based on the ability of Lepisanthes alata (LA), a tropical plant that is rich in phytochemicals like polyphenols, this study assessed the optimal dose and the health benefits of LA in rats that had been induced with carrageenan to develop paw swelling. Methods: Twenty-four male Wistar rats were divided into four groups to which carrageenan was administered, after which, distilled water at oral dose (C + DW), sodium diclofenac 25 mg/kg (C + DS), LA extract in 250 mg/kg (C + LA250), and 500 mg/kg (C + LA500) was given, respectively. Paw edema was assessed in 24 h. Pain was assessed using the Rat Grimace Scale (RGS), cytokines, antioxidant activity, and tissue changes. Results: LA at 250 and 500 mg/kg significantly decreased paw edema and inflammatory markers in the results of both studies. Remarkably, LA 250 mg/kg significantly decreased RGS scores as well as IL-1β, TNF-α, and histological inflammation but had a positive effect on T-SOD levels. Conclusions: LA extract, especially at 250 mg/kg, shows potent anti-inflammatory, analgesic, and antioxidant properties in CIE rats. Full article
Show Figures

Graphical abstract

Back to TopTop