Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (448)

Search Parameters:
Keywords = soft tissue engineering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2528 KB  
Article
Potential Modulatory Effects of β-Hydroxy-β-Methylbutyrate on Type I Collagen Fibrillogenesis: Preliminary Study
by Izabela Świetlicka, Eliza Janek, Krzysztof Gołacki, Dominika Krakowiak, Michał Świetlicki and Marta Arczewska
Int. J. Mol. Sci. 2025, 26(19), 9621; https://doi.org/10.3390/ijms26199621 - 2 Oct 2025
Abstract
β-Hydroxy-β-methylbutyrate (HMB), a natural metabolite derived from the essential amino acid leucine, is primarily recognised for its anabolic and anti-catabolic effects on skeletal muscle tissue. Recent studies indicate that HMB may also play a role in influencing the structural organisation of extracellular matrix [...] Read more.
β-Hydroxy-β-methylbutyrate (HMB), a natural metabolite derived from the essential amino acid leucine, is primarily recognised for its anabolic and anti-catabolic effects on skeletal muscle tissue. Recent studies indicate that HMB may also play a role in influencing the structural organisation of extracellular matrix (ECM) components, particularly collagen, which is crucial for maintaining the mechanical integrity of connective tissues. In this investigation, bovine type I collagen was polymerised in the presence of two concentrations of HMB (0.025 M and 0.25 M) to explore its potential function as a molecular modulator of fibrillogenesis. The morphology of the resulting collagen fibres and their molecular architecture were examined using atomic force microscopy (AFM) and Fourier-transform infrared (FTIR) spectroscopy. The findings demonstrated that lower levels of HMB facilitated the formation of more regular and well-organised fibrillar structures, exhibiting increased D-band periodicity and enhanced stabilisation of the native collagen triple helix, as indicated by Amide I and III band profiles. Conversely, higher concentrations of HMB led to significant disruption of fibril morphology and alterations in secondary structure, suggesting that HMB interferes with the self-assembly of collagen monomers. These structural changes are consistent with a non-covalent influence on interchain interactions and fibril organisation, to which hydrogen bonding and short-range electrostatics may contribute. Collectively, the results highlight the potential of HMB as a small-molecule regulator for soft-tissue matrix engineering, extending its consideration beyond metabolic supplementation towards controllable, materials-oriented modulation of ECM structure. Full article
(This article belongs to the Special Issue Advanced Spectroscopy Research: New Findings and Perspectives)
Show Figures

Graphical abstract

46 pages, 3900 KB  
Review
Beyond Packaging: A Perspective on the Emerging Applications of Biodegradable Polymers in Electronics, Sensors, Actuators, and Healthcare
by Reshma Kailas Kumar, Chaoying Wan and Paresh Kumar Samantaray
Materials 2025, 18(19), 4485; https://doi.org/10.3390/ma18194485 - 26 Sep 2025
Abstract
Biopolymers have emerged as a transformative class of materials that reconcile high-performance functionality with environmental stewardship. Their inherent capacity for controlled degradation and biocompatibility has driven rapid advancements across electronics, sensing, actuation, and healthcare. In flexible electronics, these polymers serve as substrates, dielectrics, [...] Read more.
Biopolymers have emerged as a transformative class of materials that reconcile high-performance functionality with environmental stewardship. Their inherent capacity for controlled degradation and biocompatibility has driven rapid advancements across electronics, sensing, actuation, and healthcare. In flexible electronics, these polymers serve as substrates, dielectrics, and conductive composites that enable transient devices, reducing electronic waste without compromising electrical performance. Within sensing and actuation, biodegradable polymer matrices facilitate the development of fully resorbable biosensors and soft actuators. These systems harness tailored degradation kinetics to achieve temporal control over signal transduction and mechanical response, unlocking applications in in vivo monitoring and on-demand drug delivery. In healthcare, biodegradable polymers underpin novel approaches in tissue engineering, wound healing, and bioresorbable implants. Their tunable chemical architectures and processing versatility allow for precise regulation of mechanical properties, degradation rates, and therapeutic payloads, fostering seamless integration with biological environments. The convergence of these emerging applications underscores the pivotal role of biodegradable polymers in advancing sustainable technology and personalized medicine. Continued interdisciplinary research into polymer design, processing strategies, and integration techniques will accelerate commercialization and broaden the impact of these lower eCO2 value materials across diverse sectors. This perspective article comments on the innovation in these sectors that go beyond the applications of biodegradable materials in packaging applications. Full article
(This article belongs to the Special Issue Recent Developments in Bio-Based and Biodegradable Plastics)
Show Figures

Graphical abstract

34 pages, 8883 KB  
Review
Next-Generation Natural Hydrogels in Oral Tissue Engineering
by Mariana Chelu, Monica Popa and José María Calderón Moreno
Pharmaceutics 2025, 17(10), 1256; https://doi.org/10.3390/pharmaceutics17101256 - 25 Sep 2025
Abstract
Hydrogels have emerged as promising biomaterials for oral tissue regeneration thanks to their high-water content, excellent biocompatibility, and ability to mimic native tissue environments. These versatile materials can be tailored to support cell adhesion, proliferation, and differentiation, making them suitable for repairing both [...] Read more.
Hydrogels have emerged as promising biomaterials for oral tissue regeneration thanks to their high-water content, excellent biocompatibility, and ability to mimic native tissue environments. These versatile materials can be tailored to support cell adhesion, proliferation, and differentiation, making them suitable for repairing both soft and hard oral tissues. When engineered from natural polymers and enriched with bioactive agents, hydrogels offer enhanced regenerative potential. Biopolymer-based hydrogels, derived from materials such as chitosan, alginate, collagen, hyaluronic acid, and gelatin, are particularly attractive due to their biodegradability, bioactivity, and structural similarity to the extracellular matrix, creating an optimal microenvironment for cell growth and tissue remodeling. Recent innovations have transformed these systems into multifunctional platforms capable of supporting targeted regeneration of periodontal tissues, alveolar bone, oral mucosa, dental pulp, and dentin. Integration of bioactive molecules, particularly essential oils, bio-derived constituents, cells, or growth factors, has introduced intrinsic antimicrobial, anti-inflammatory, and antioxidant functionalities, addressing the dual challenge of promoting tissue regeneration while at the same time attenuating microbial contamination in the oral environment. This review explores the design strategies, material selection, functional properties, and biomedical applications in periodontal therapy, guided tissue regeneration, and implant integration of natural polymer-based hydrogels enriched with bioactive factors, highlighting their role in promoting oral tissue regeneration. In addition, we discuss current challenges related to mechanical stability, degradation rates, and clinical translation, while highlighting future directions for optimizing these next-generation bioactive hydrogel systems in regenerative dentistry. Full article
Show Figures

Graphical abstract

18 pages, 3234 KB  
Article
Fabrication of Protein–Polysaccharide-Based Hydrogel Composites Incorporated with Magnetite Nanoparticles as Acellular Matrices
by Anet Vadakken Gigimon, Hatim Machrafi, Claire Perfetti, Patrick Hendrick and Carlo S. Iorio
Int. J. Mol. Sci. 2025, 26(19), 9338; https://doi.org/10.3390/ijms26199338 - 24 Sep 2025
Viewed by 25
Abstract
Hydrogels with protein–polysaccharide combinations are widely used in the field of tissue engineering, as they can mimic the in vivo environments of native tissues, specifically the extracellular matrix (ECM). However, achieving stability and mechanical properties comparable to those of tissues by employing natural [...] Read more.
Hydrogels with protein–polysaccharide combinations are widely used in the field of tissue engineering, as they can mimic the in vivo environments of native tissues, specifically the extracellular matrix (ECM). However, achieving stability and mechanical properties comparable to those of tissues by employing natural polymers remains a challenge due to their weak structural characteristics. In this work, we optimized the fabrication strategy of a hydrogel composite, comprising gelatin and sodium alginate (Gel-SA), by varying reaction parameters. Magnetite (Fe3O4) nanoparticles were incorporated to enhance the mechanical stability and structural integrity of the scaffold. The changes in hydrogel stiffness and viscoelastic properties due to variations in polymer mixing ratio, crosslinking time, and heating cycle, both before and after nanoparticle incorporation, were compared. FTIR spectra of crosslinked hydrogels confirmed physical interactions of Gel-SA, metal coordination bonds of alginate with Ca2+, and magnetite nanoparticles. Tensile and rheology tests confirmed that even at low magnetite concentration, the Gel-SA-Fe3O4 hydrogel exhibits mechanical properties comparable to soft tissues. This work has demonstrated enhanced resilience of magnetite-incorporated Gel-SA hydrogels during the heating cycle, compared to Gel-SA gel, as thermal stability is a significant concern for hydrogels containing gelatin. The interactions of thermoreversible gelatin, anionic alginate, and nanoparticles result in dynamic hydrogels, facilitating their use as viscoelastic acellular matrices. Full article
(This article belongs to the Special Issue Rational Design and Application of Functional Hydrogels)
Show Figures

Figure 1

25 pages, 2114 KB  
Review
Functional Hydrogels: A Promising Platform for Biomedical and Environmental Applications
by Mohzibudin Z. Quazi, Aaquib Saeed Quazi, Youngseo Song and Nokyoung Park
Int. J. Mol. Sci. 2025, 26(18), 9066; https://doi.org/10.3390/ijms26189066 - 17 Sep 2025
Viewed by 356
Abstract
Functional hydrogels are a growing class of soft materials. Functional hydrogels are characterized by their three-dimensional (3D) polymeric network and high water-retention capacity. Functional hydrogels are deliberately engineered with specific chemical groups, stimuli-responsive motifs, or crosslinking strategies that impart targeted biomedical or environmental [...] Read more.
Functional hydrogels are a growing class of soft materials. Functional hydrogels are characterized by their three-dimensional (3D) polymeric network and high water-retention capacity. Functional hydrogels are deliberately engineered with specific chemical groups, stimuli-responsive motifs, or crosslinking strategies that impart targeted biomedical or environmental roles (e.g., drug delivery, pollutant removal). Their capacity to imitate the extracellular matrix, and their biocompatibility and customizable physicochemical properties make them highly suitable for biomedical and environmental applications. In contrast, non-functional hydrogels are defined as passive polymer networks that primarily serve as water-swollen matrices without such application-oriented modifications. Recent progress includes stimuli-responsive hydrogel designs. Stimuli such as pH, temperature, enzymes, light, etc., enable controlled drug delivery and targeted therapy. Moreover, hydrogels have shown great potential in tissue engineering and regenerative medicine. The flexibility and biofunctionality of hydrogels improve cell adhesion and tissue integration. Functional hydrogels are being explored for water purification by heavy metal ion removal and pollutant detection. The surface functionalities of hydrogels have shown selective binding and adsorption, along with porous structures that make them effective for environmental remediation. However, hydrogels have long been postulated as potential candidates to be used in clinical advancements. The first reported clinical trial was in the 1980s; however, their exploration in the last two decades has still struggled to achieve positive results. In this review, we discuss the rational hydrogel designs, synthesis techniques, application-specific performance, and the hydrogel-based materials being used in ongoing clinical trials (FDA–approved) and their mechanism of action. We also elaborate on the key challenges remaining, such as biocompatibility, mechanical stability, scalability, and future directions, to unlocking their multifunctionality and responsiveness. Full article
(This article belongs to the Special Issue Rational Design and Application of Functional Hydrogels)
Show Figures

Figure 1

14 pages, 2551 KB  
Article
Tissue-like Fracture Toughness and Stress–Relaxation Ability in PVA-Agar-Based Hydrogels for Biomedical Applications
by Ismael Lamas, Bhuvana L. Chandrashekar, Claudia C. Biguetti and Mohammad R. Islam
Gels 2025, 11(9), 747; https://doi.org/10.3390/gels11090747 - 17 Sep 2025
Viewed by 289
Abstract
Soft tissues exhibit remarkable stretchability, fracture toughness, and stress–relaxation ability. They possess a large water content to support cellular processes. Mimicking such a combination of mechanical and physical properties in hydrogels is important for tissue engineering applications but remains challenging. This work aims [...] Read more.
Soft tissues exhibit remarkable stretchability, fracture toughness, and stress–relaxation ability. They possess a large water content to support cellular processes. Mimicking such a combination of mechanical and physical properties in hydrogels is important for tissue engineering applications but remains challenging. This work aims to develop a hydrogel that can combine excellent mechanical properties with cellular viability. The research focused on polyvinyl alcohol (PVA)/agar double-network (DN) hydrogels, fabricated by thermal gelation and freeze–thawing methods. Their mechanical properties were characterized through tension, compression, fracture, and stress–relaxation tests, and their cellular viability was measured through cytotoxicity tests. The results show that the PVA/agar DN gels are highly stretchable (>200%) and compressible (>30%) while containing high water content. The incorporation of agar by 6 wt% improved the fracture toughness of hydrogels from 1 to 1.76 kJ/m2. The degree of stress–relaxation, a key indicator of gel viscoelastic properties, improved by roughly 170% with an increase in agar content from 0 to 6 wt%. Cytotoxicity analysis showed that the gels, being physically cross-linked, were able to promote cellular proliferation. This work shows that tough and viscoelastic PVA/agar DN gels are suitable for soft tissue engineering applications, especially cartilage repair. Full article
(This article belongs to the Section Gel Analysis and Characterization)
Show Figures

Figure 1

27 pages, 17846 KB  
Review
Emerging Biomedical Applications of Sustainable Cellulose Nanocrystal-Incorporated Hydrogels: A Scoping Review
by Dinuki M. Seneviratne, Eliza J. Whiteside, Louisa C. E. Windus, Paulomi (Polly) Burey, Raelene Ward and Pratheep K. Annamalai
Gels 2025, 11(9), 740; https://doi.org/10.3390/gels11090740 - 15 Sep 2025
Viewed by 382
Abstract
Cellulose nanocrystals (CNCs), derived from renewable cellulose sources, have emerged as a versatile class of nanomaterial with exceptional mechanical strength, tuneable surface chemistry and inherent biocompatibility. In the scenario of contemporary commercial hydrogel products, which are expensive and rely on synthetic materials, the [...] Read more.
Cellulose nanocrystals (CNCs), derived from renewable cellulose sources, have emerged as a versatile class of nanomaterial with exceptional mechanical strength, tuneable surface chemistry and inherent biocompatibility. In the scenario of contemporary commercial hydrogel products, which are expensive and rely on synthetic materials, the sustainable origin and unique physicochemical properties have positioned CNCs as promising sustainable functional building blocks for next-generation hydrogels in biomedical applications. Over the past decade, CNC-based hydrogels have gained momentum as soft biomaterials capable of interacting with diverse tissue types, predominantly demonstrated through in vitro cell line studies. This review critically examines the current landscape of research on biomedical applications of CNC-based hydrogels, focusing on their biomedical utility across 22 systematically screened studies. It revealed applications spanning around bone and cartilage tissue engineering, wound healing, medical implants and sensors, and drug delivery. We highlight the predominance of microcrystalline cellulose as the CNC source and sulfuric acid hydrolysis as the preferred extraction method, with several studies incorporating surface modifications to enhance functionality. Despite growing interest, there remains a lack of data for transitioning towards human clinical studies and commercialisation. Hence, this review highlights the pressing need for scalable, sustainable, and affordable CNC-based hydrogel systems that can democratise access to advanced biomedical technologies. Full article
(This article belongs to the Special Issue Gel Film and Its Wide Range of Applications)
Show Figures

Graphical abstract

7 pages, 187 KB  
Editorial
Converging Architectures: Precision Biomanufacturing and Soft Robotics Rewiring Tissue Engineering
by Miriam Filippi
Micromachines 2025, 16(9), 1052; https://doi.org/10.3390/mi16091052 - 15 Sep 2025
Viewed by 274
Abstract
Biomedicine is moving from sculpting tissues to engineering systems [...] Full article
(This article belongs to the Section B2: Biofabrication and Tissue Engineering)
44 pages, 14233 KB  
Review
Janus Hydrogels: Design, Properties, and Applications
by Wei Guo, Mahta Mirzaei and Lei Nie
Gels 2025, 11(9), 717; https://doi.org/10.3390/gels11090717 - 8 Sep 2025
Viewed by 592
Abstract
Janus hydrogels have attracted significant attention in materials science and biomedicine owing to their anisotropic dual-faced architecture. Unlike conventional homogeneous hydrogels, these heterogeneous systems exhibit structural and functional asymmetry, endowing them with remarkable adaptability to dynamic environmental stimuli. Their inherent biocompatibility, biodegradability, and [...] Read more.
Janus hydrogels have attracted significant attention in materials science and biomedicine owing to their anisotropic dual-faced architecture. Unlike conventional homogeneous hydrogels, these heterogeneous systems exhibit structural and functional asymmetry, endowing them with remarkable adaptability to dynamic environmental stimuli. Their inherent biocompatibility, biodegradability, and unique “adhesion–antiadhesion” duality have demonstrated exceptional potential in biomedical applications ranging from advanced wound healing and internal tissue adhesion prevention to cardiac tissue regeneration. Furthermore, “hydrophilic–hydrophobic” Janus configurations, synergistically integrated with tunable conductivity and stimuli-responsiveness, showcase the great potential in emerging domains, including wearable biosensing, high-efficiency desalination, and humidity regulation systems. This review systematically examines contemporary synthesis strategies for Janus hydrogels using various technologies, including layer-by-layer, self-assembly, and one-pot methods. We elucidate the properties and applications of Janus hydrogels in biomedicine, environmental engineering, and soft robotics, and we emphasize recent developments in this field while projecting future trajectories and challenges. Full article
(This article belongs to the Special Issue Structure and Properties of Functional Hydrogels (2nd Edition))
Show Figures

Figure 1

30 pages, 6075 KB  
Article
Enhancing Cellular Interactions Through Bioactivation and Local Nanomechanical Reinforcement in Nanodiamond-Loaded 3D-Printed Gellan Gum Scaffolds
by Carmen-Valentina Nicolae, Masoumeh Jahani Kadousaraei, Elena Olăreț, Andrada Serafim, Mehmet Serhat Aydin, Ioana-Teodora Bogdan, Adriana Elena Bratu, Raluca-Elena Ginghină, Alexandra Dobranici, Sorina Dinescu, Kamal Mustafa and Izabela-Cristina Stancu
Materials 2025, 18(17), 4131; https://doi.org/10.3390/ma18174131 - 3 Sep 2025
Viewed by 873
Abstract
The integration of nanomaterials within hydrogel scaffolds offers significant promise in bone tissue engineering by improving mechanical performance and modulating cellular responses through mechanotransductive and biochemical signaling. Previous studies have demonstrated that nanodiamonds (NDs) incorporated in electrospun microfibrillar meshes enhance cellular adhesion, spreading, [...] Read more.
The integration of nanomaterials within hydrogel scaffolds offers significant promise in bone tissue engineering by improving mechanical performance and modulating cellular responses through mechanotransductive and biochemical signaling. Previous studies have demonstrated that nanodiamonds (NDs) incorporated in electrospun microfibrillar meshes enhance cellular adhesion, spreading, and cytoskeletal organization through localized mechanical reinforcement. However, the effects of ND loading into soft, bioinert three-dimensional hydrogel matrices remain underexplored. Here, we developed nanostructured 3D printing inks composed of gellan gum (GG) supplemented with a low content of ND nanoadditive (0–3% w/v). ND integration improved the shear-thinning properties of the formulation, enabling consistent filament formation and reliable extrusion-based 3D printing. Structural and mechanical assessments confirmed enhanced scaffold morphology, reduced deformation, and improved morphostructural integrity under compression and increased local stiffness at 2% ND loading (GG_ND2%). Biological assessments revealed that increasing ND content enhanced murine preosteoblast viability, proliferation, and attachment, particularly in GG_ND2%. Furthermore, bioactivation of the GG_ND2% formulation with icariin (ICA), a bioflavonoid known for its osteogenic and angiogenic activity, amplified the beneficial cellular responses of MG-63 cells to ND loading, promoting enhanced surface mineralization and improved cell–matrix interactions. Collectively, these findings highlight the potential of ND-reinforced GG scaffolds bioactivated with ICA, integrating structural reinforcement and biological functionalities that may support osteogenic responses. Full article
Show Figures

Graphical abstract

25 pages, 4378 KB  
Article
Mechanical Properties and Microstructure of Decellularized Brown Seaweed Scaffold for Tissue Engineering
by Svava Kristinsdottir, Ottar Rolfsson, Olafur Eysteinn Sigurjonsson, Sigurður Brynjolfsson and Sigrun Nanna Karlsdottir
Bioengineering 2025, 12(9), 943; https://doi.org/10.3390/bioengineering12090943 - 31 Aug 2025
Viewed by 824
Abstract
In response to the growing demand for sustainable biomaterials in tissue engineering, we investigated the potential of structurally intact brown seaweed scaffolds derived from Laminaria digitata (L.D.) and Laminaria saccharina (L.S.), produced by a detergent-free, visible-light decellularization process aimed [...] Read more.
In response to the growing demand for sustainable biomaterials in tissue engineering, we investigated the potential of structurally intact brown seaweed scaffolds derived from Laminaria digitata (L.D.) and Laminaria saccharina (L.S.), produced by a detergent-free, visible-light decellularization process aimed at preserving structural integrity. Blades were submerged in cold flow-through and aerated water with red (620 nm) and blue (470 nm) light exposure for 4 weeks. Histology, scanning electron microscopy (SEM), and micro-computed tomography (micro-CT) analyses demonstrated that the light decellularization process removed cells/debris, maintained essential structural features, and significantly increased scaffold porosity. Mechanical property analysis through tensile testing revealed a substantial increase in tensile strength post decellularization, with L.D. scaffolds increasing from 3.4 MPa to 8.7 MPa and L.S. scaffolds from 2.1 MPa to 6.6 MPa. Chemical analysis indicated notable alterations in polysaccharide and protein composition following decellularization. Additionally, scaffolds retained high swelling and fluid absorption capacities, critical for biomedical uses. These findings underscore that the decellularized L.D. and L.S. scaffolds preserved structural integrity and exhibited enhanced mechanical properties, interconnected porous structures, and significant liquid retention capabilities, establishing them as promising biomaterial candidates for soft-tissue reinforcement, wound care, and broader applications in regenerative medicine. Full article
Show Figures

Figure 1

20 pages, 4459 KB  
Article
Substrate Stiffness Modulates Hypertrophic Chondrocyte Reversion and Chondrogenic Phenotype Restoration
by Da-Long Dong and Guang-Zhen Jin
Cells 2025, 14(16), 1291; https://doi.org/10.3390/cells14161291 - 20 Aug 2025
Viewed by 708
Abstract
The stiffness of the extracellular matrix (ECM) plays a pivotal role in the progression of osteoarthritis (OA), particularly by promoting hypertrophic differentiation of chondrocytes, which hinders cartilage regeneration and accelerates pathological ossification. This study aimed to investigate how substrate stiffness modulates hypertrophic chondrocyte [...] Read more.
The stiffness of the extracellular matrix (ECM) plays a pivotal role in the progression of osteoarthritis (OA), particularly by promoting hypertrophic differentiation of chondrocytes, which hinders cartilage regeneration and accelerates pathological ossification. This study aimed to investigate how substrate stiffness modulates hypertrophic chondrocyte behavior and whether it can reverse their phenotype towards a more stable, chondrogenic state. A series of tunable polydimethylsiloxane (PDMS) substrates with stiffnesses ranging from 78 to 508 kPa were fabricated to simulate varying mechanical microenvironments. Hypertrophic chondrocytes were cultured on these substrates, and their morphology, nuclear architecture, gene/protein expression, and mechanotransductive signaling pathways were systematically evaluated. After 7 to 21 days of culture, the chondrocytes on stiffer matrices exhibited enlarged nuclei, increased cytoskeletal tension, and enhanced focal adhesion signaling. This corresponded with the upregulation of osteogenic and hypertrophic markers such as RUNX2, COL10A1, and COL1A1. In contrast, cells on softer substrates (78 kPa) displayed reduced nuclear YAP localization, higher levels of phosphorylated YAP, and significantly increased expression of COL2A1 and SOX9, indicating reversion to a chondrogenic phenotype. Furthermore, differential activation of Smad1/5/8 and Smad2/3 pathways was observed depending on matrix stiffness, contributing to the phenotype shift. Matrix stiffness exerts a significant regulatory effect on hypertrophic chondrocytes via YAP-mediated mechanotransduction. Soft substrates promote phenotype reversion and cartilage-specific gene expression, offering a promising biomechanical strategy for cartilage tissue engineering and OA intervention. Full article
(This article belongs to the Special Issue Targeting Cellular Microenvironment in Aging and Disease)
Show Figures

Figure 1

42 pages, 7458 KB  
Review
Novel Nanomaterials for Developing Bone Scaffolds and Tissue Regeneration
by Nazim Uddin Emon, Lu Zhang, Shelby Dawn Osborne, Mark Allen Lanoue, Yan Huang and Z. Ryan Tian
Nanomaterials 2025, 15(15), 1198; https://doi.org/10.3390/nano15151198 - 5 Aug 2025
Viewed by 1692
Abstract
Nanotechnologies bring a rapid paradigm shift in hard and soft bone tissue regeneration (BTR) through unprecedented control over the nanoscale structures and chemistry of biocompatible materials to regenerate the intricate architecture and functional adaptability of bone. This review focuses on the transformative analyses [...] Read more.
Nanotechnologies bring a rapid paradigm shift in hard and soft bone tissue regeneration (BTR) through unprecedented control over the nanoscale structures and chemistry of biocompatible materials to regenerate the intricate architecture and functional adaptability of bone. This review focuses on the transformative analyses and prospects of current and next-generation nanomaterials in designing bioactive bone scaffolds, emphasizing hierarchical architecture, mechanical resilience, and regenerative precision. Mainly, this review elucidated the innovative findings, new capabilities, unmet challenges, and possible future opportunities associated with biocompatible inorganic ceramics (e.g., phosphates, metallic oxides) and the United States Food and Drug Administration (USFDA) approved synthetic polymers, including their nanoscale structures. Furthermore, this review demonstrates the newly available approaches for achieving customized standard porosity, mechanical strengths, and accelerated bioactivity to construct an optimized nanomaterial-oriented scaffold. Numerous strategies including three-dimensional bioprinting, electro-spinning techniques and meticulous nanomaterials (NMs) fabrication are well established to achieve radical scientific precision in BTR engineering. The contemporary research is unceasingly decoding the pathways for spatial and temporal release of osteoinductive agents to enhance targeted therapy and prompt healing processes. Additionally, successful material design and integration of an osteoinductive and osteoconductive agents with the blend of contemporary technologies will bring radical success in this field. Furthermore, machine learning (ML) and artificial intelligence (AI) can further decode the current complexities of material design for BTR, notwithstanding the fact that these methods call for an in-depth understanding of bone composition, relationships and impacts on biochemical processes, distribution of stem cells on the matrix, and functionalization strategies of NMs for better scaffold development. Overall, this review integrated important technological progress with ethical considerations, aiming for a future where nanotechnology-facilitated bone regeneration is boosted by enhanced functionality, safety, inclusivity, and long-term environmental responsibility. Therefore, the assimilation of a specialized research design, while upholding ethical standards, will elucidate the challenge and questions we are presently encountering. Full article
(This article belongs to the Special Issue Applications of Functional Nanomaterials in Biomedical Science)
Show Figures

Graphical abstract

3 pages, 194 KB  
Editorial
Editorial for a New Section: Launching the “Hand Surgery and Research” Section—Beyond the Scalpel, Toward Innovation and Translational Science
by Francesco De Francesco and Michele Riccio
Surgeries 2025, 6(3), 64; https://doi.org/10.3390/surgeries6030064 - 30 Jul 2025
Viewed by 530
Abstract
The human hand is a marvel of evolutionary engineering—an intricate system of bones, tendons, nerves, vessels, and soft tissues that enables precision, strength, sensation, and expression [...] Full article
(This article belongs to the Section Hand Surgery and Research)
28 pages, 6648 KB  
Review
Machine Learning in Gel-Based Additive Manufacturing: From Material Design to Process Optimization
by Zhizhou Zhang, Yaxin Wang and Weiguang Wang
Gels 2025, 11(8), 582; https://doi.org/10.3390/gels11080582 - 28 Jul 2025
Cited by 2 | Viewed by 1550
Abstract
Machine learning is reshaping gel-based additive manufacturing by enabling accelerated material design and predictive process optimization. This review provides a comprehensive overview of recent progress in applying machine learning across gel formulation development, printability prediction, and real-time process control. The integration of algorithms [...] Read more.
Machine learning is reshaping gel-based additive manufacturing by enabling accelerated material design and predictive process optimization. This review provides a comprehensive overview of recent progress in applying machine learning across gel formulation development, printability prediction, and real-time process control. The integration of algorithms such as neural networks, random forests, and support vector machines allows accurate modeling of gel properties, including rheology, elasticity, swelling, and viscoelasticity, from compositional and processing data. Advances in data-driven formulation and closed-loop robotics are moving gel printing from trial and error toward autonomous and efficient material discovery. Despite these advances, challenges remain regarding data sparsity, model robustness, and integration with commercial printing systems. The review results highlight the value of open-source datasets, standardized protocols, and robust validation practices to ensure reproducibility and reliability in both research and clinical environments. Looking ahead, combining multimodal sensing, generative design, and automated experimentation will further accelerate discoveries and enable new possibilities in tissue engineering, biomedical devices, soft robotics, and sustainable materials manufacturing. Full article
(This article belongs to the Section Gel Processing and Engineering)
Show Figures

Figure 1

Back to TopTop