Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,860)

Search Parameters:
Keywords = soil physical properties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 565 KB  
Article
Use of Cupressus lusitanica for Afforestation in a Mediterranean Climate: Biomass Production and Wood Quality
by José Lousada, André Sandim and Maria Emília Silva
Forests 2025, 16(9), 1420; https://doi.org/10.3390/f16091420 - 4 Sep 2025
Abstract
The selection of tree species for afforestation in Mediterranean environments involves challenges related to adaptability, impact on soil properties, and overall environmental quality. Cupressus lusitanica has been recognized for its rapid growth, environmental resilience, and versatile applications, positioning it as a promising candidate [...] Read more.
The selection of tree species for afforestation in Mediterranean environments involves challenges related to adaptability, impact on soil properties, and overall environmental quality. Cupressus lusitanica has been recognized for its rapid growth, environmental resilience, and versatile applications, positioning it as a promising candidate for these regions. Although it has been used for afforestation in Northeast Portugal since the 1990s, no comprehensive studies have evaluated its performance under local conditions. To address this knowledge gap, this study assessed a 14-year-old C. lusitanica stand in Northeast Portugal. The wood’s anatomical, physical, chemical, and mechanical properties, as well as biomass production, were evaluated. The species showed superior radial growth and adaptability compared with other species under similar environmental conditions. Despite exhibiting lower fiber length (1.6 mm) and basic wood density (404 kg/m3), shrinkage values fell within the typical range for softwoods. Nevertheless, a marked tendency for warping was observed. The extractive content was relatively high (5.1%), with the ethanol-soluble fraction being predominant (3.6%). Mechanical tests revealed low values for both Modulus of Elasticity (MOE) (3592.5–3617.1 MPa) and Modulus of Rupture (MOR) (57.7–68.9 MPa), with both properties significantly influenced by knot presence. Given the results obtained, the species C. lusitanica, despite its low wood density and potential limitations in use, exhibits remarkable growth and adaptability, which confer a high potential for biomass production and carbon sequestration, as well as potential applications of its wood in reconstituted panels and fiber- or particle-based boards. Full article
(This article belongs to the Section Wood Science and Forest Products)
19 pages, 7781 KB  
Article
Spatial Variability and Geostatistical Modeling of Soil Physical Properties Under Eucalyptus globulus Plantations
by Javier Giovanni Álvarez-Herrera, Marilcen Jaime-Guerrero and Carlos Julio Fernández-Pérez
Geomatics 2025, 5(3), 41; https://doi.org/10.3390/geomatics5030041 - 4 Sep 2025
Abstract
Agricultural productivity is closely linked to the spatial variability of soil physical properties. However, high variability makes it difficult to implement effective management strategies, and the constant expansion of eucalyptus plantations in certain areas alters the soil’s physical properties. This study conducted a [...] Read more.
Agricultural productivity is closely linked to the spatial variability of soil physical properties. However, high variability makes it difficult to implement effective management strategies, and the constant expansion of eucalyptus plantations in certain areas alters the soil’s physical properties. This study conducted a geostatistical analysis of the physical properties of a soil in Sogamoso, Boyacá (Colombia), which contains areas with different management practices and vegetation cover, among which the presence of Eucalyptus globulus stands out. Ninety-seven points were sampled in an area of 29.1 ha, with multiple land uses. The data were analyzed using descriptive statistics and geostatistical analysis, which determined the semivariogram parameters, the degree of spatial dependence, and the best-fitting interpolation model for mapping. A correlation analysis between variables was also performed. Analysis of variance showed no significant differences among vegetation covers (dense forest, grass-crop mosaic, weedy grassland, and crop mosaic), indicating structural homogeneity. The hydraulic conductivity (Ksat) had the highest coefficient of variation (CV), at 141.9%, while particle density had the lowest CV, at 9.25%. Ksat (exponential model, range = 207 m) and porosity (spherical model, range = 98 m) showed a strong spatial dependence. Ksat was lower in areas with eucalyptus (0.01 to 0.2 m day−1), attributed to hydrophobicity induced by organic compounds emitted by these plantations. Soil moisture contents showed lower values in areas with eucalyptus, corroborating their high water consumption. Soil aggregates were lower when eucalyptus plantations were on slopes greater than 15%. Porosity showed an inverse correlation with apparent density (r2 = −0.86). Full article
Show Figures

Figure 1

28 pages, 5359 KB  
Article
Biochar Enhances Nutrient Uptake, Yield, and NHX Gene Expression in Chinese Cabbage Under Salinity Stress
by Periyasamy Rathinapriya, Theivanayagam Maharajan, Tae-Jun Lim, Byeongeun Kang and Seung Tak Jeong
Plants 2025, 14(17), 2743; https://doi.org/10.3390/plants14172743 - 2 Sep 2025
Abstract
Salinity is a major limiting factor for all food crops, mainly Chinese cabbage. This study aimed to investigate the effects of biochar (BC) on physiological, biochemical, and molecular responses of Chinese cabbage grown under salinity stress in an open field. We supplied three [...] Read more.
Salinity is a major limiting factor for all food crops, mainly Chinese cabbage. This study aimed to investigate the effects of biochar (BC) on physiological, biochemical, and molecular responses of Chinese cabbage grown under salinity stress in an open field. We supplied three concentrations of BC (5, 10, and 15 t/ha) to the 200 mM NaCl salinity-stress-induced field, which enhanced physical and chemical properties of the soil. Under salinity stress, BC increased photosynthetic pigments and reduced proline and H2O2 contents. Notably, 5 t/ha BC boosted plant growth, biomass, and yield by >40% and inhibited ROS accumulation under salinity stress. BC also promoted the concentrations of various key micronutrients, particularly Fe and Zn, in Chinese cabbage under salinity stress, which may contribute to improving the nutrient content. BC under salinity stress significantly induced the expression of NHX family genes (BoNHX1 and BoNHX2). Among these, the BoNHX1 gene was found to be highly expressed in shoot and root tissues of Chinese cabbage grown under salinity stress with BC. Identification of this key candidate gene will lay the groundwork for further functional characterization studies to elucidate its role under salinity stress with BC. This study comprehensively analyzes the physiological, biochemical, and molecular impacts of BC application in Chinese cabbage under salinity stress. This study found that the application of 5 t/ha significantly improved various physiological and biochemical traits of Chinese cabbage under salinity stress compared to the other treatments. The outcome of this study provides novel insights into the bioprotective role of BC, offering a valuable foundation of organic supplements for farmers while also highlighting potential research directions for enhancing crop resilience and productivity in economically important crops. Full article
Show Figures

Figure 1

20 pages, 3090 KB  
Article
Exploring the Effects of Biochar and Compost on Ameliorating Coastal Saline Soil
by Wenzhi Zhou, Shuo Xing, Yaqi Wu, Rongsong Zou, Suyan Li, Xiangyang Sun and Huaxin Zhang
Agronomy 2025, 15(9), 2093; https://doi.org/10.3390/agronomy15092093 - 30 Aug 2025
Viewed by 204
Abstract
In this study, the effects of biochar and compost on the amelioration of coastal saline soil were investigated through indoor leaching experiments and soil culture experiments. The results revealed that the multivoid structure of biochar and compost, when applied to soil, effectively improved [...] Read more.
In this study, the effects of biochar and compost on the amelioration of coastal saline soil were investigated through indoor leaching experiments and soil culture experiments. The results revealed that the multivoid structure of biochar and compost, when applied to soil, effectively improved soil hydraulic conductivity, promoted the leaching of salt ions, and reduced soil electrical conductivity. Owing to the high pH value of biochar and the lower pH value of compost, the combined application of the two has a complementary effect on improving the pH value of coastal saline soils. The calcium (Ca2+) and magnesium (Mg2+) contained in biochar and compost are exchanged with Na+ adsorbed by soil colloids, which reduces the sodium (Na+) adsorption ratio (SAR) value of the soil. Biochar and compost improve the physical properties of the soil, and the organic matter they contain helps soil particles aggregate with each other and form stable clusters, thus promoting the formation of soil agglomerates, which are conducive to the formation of clusters with a diameter of ≤0.25 mm. Biochar and compost are rich in nutrients, and their application significantly increased the contents of available nutrients and organic matter as well as the activities of urease, phosphatase, and dehydrogenase in saline soils. However, too high of an application rate of biochar increases the soil pH value, and excessive application of compost can lead to greater soil conductivity, which inhibits the activities of soil urease, phosphatase and dehydrogenase. Therefore, rational control of application rates is essential for improving coastal saline soils. Future research should further explore the synergistic effects of biochar and compost in improving soil structure, nutrient effectiveness, and microbial activity to promote their effective application in coastal saline–alkaline soil improvement. Full article
Show Figures

Figure 1

18 pages, 5489 KB  
Article
Development and Validation of a Low-Cost DAQ for the Detection of Soil Bulk Electrical Conductivity and Encoding of Visual Data
by Fatma Hamouda, Lorenzo Bonzi, Marco Carrara, Àngela Puig-Sirera and Giovanni Rallo
AgriEngineering 2025, 7(9), 279; https://doi.org/10.3390/agriengineering7090279 - 29 Aug 2025
Viewed by 226
Abstract
Electromagnetic induction (EMI) devices have become increasingly popular for their soil bulk properties, soil nutrient status, and use in taking non-invasive soil salinity measurements. However, the high cost of data acquisition (DAQ) systems has been a significant barrier to the widespread adoption of [...] Read more.
Electromagnetic induction (EMI) devices have become increasingly popular for their soil bulk properties, soil nutrient status, and use in taking non-invasive soil salinity measurements. However, the high cost of data acquisition (DAQ) systems has been a significant barrier to the widespread adoption of these devices. In this study, we addressed this challenge by developing a cost-effective, easy-to-use, open-source DAQ system, transferable to the end user. This system employs a Raspberry Pi 4 model, paired with various components, to monitor the speed and position of the EM38 (Geonics Ltd, Mississauga, ON, Canada) and compare these with a proprietary CR1000 system. Through our results, we demonstrate that the low-cost DAQ system can successfully extract the analogical signal from the device, which is strongly responsive to the variation in the soil’s physical properties. This cost-effective system is characterized by increased flexibility in software processes and provides performance comparable to the proprietary system in terms of its geospatial data and ECb measurements. This was validated by the strong correlation (R2 = 0.98) observed between the data collected from both systems. With our zoning analysis, performed using the Kriging technique, we revealed not only similar patterns in the ECb data but also similar patterns to the Normalized Difference Vegetation Index (NDVI) map, suggesting that soil physical characteristics contribute to variability in crop vigor. Furthermore, the developed web application enabled real-time data monitoring and visualization. These findings highlight that the open-source DAQ system is a viable, cost-effective alternative for soil property monitoring in precision farming. Future enhancements will focus on integrating additional sensors for plant vigor and soil temperature, as well as refining the web application, supporting zone classification based on the use of multiple parameters. Full article
(This article belongs to the Section Agricultural Irrigation Systems)
Show Figures

Figure 1

14 pages, 2959 KB  
Article
Research on Polyurethane-Stabilized Soils and Development of Quantitative Indicators for Integration into BIM-Based Project Planning
by Alina Zvierieva, Olga Borziak, Oleksii Dudin, Sergii Panchenko and Teresa Rucińska
Sustainability 2025, 17(17), 7781; https://doi.org/10.3390/su17177781 - 29 Aug 2025
Viewed by 225
Abstract
This research presents the results of studies on the physical and mechanical properties of the soil–polymer composites developed by the Scientific and Production Company “Special Polymer Technologies” SPT® by injecting polyurethane material into clay soils to strengthen the foundations of erected structures. [...] Read more.
This research presents the results of studies on the physical and mechanical properties of the soil–polymer composites developed by the Scientific and Production Company “Special Polymer Technologies” SPT® by injecting polyurethane material into clay soils to strengthen the foundations of erected structures. A novel method is proposed to determine the strain characteristics of these composites, embracing the preparation of model specimens in cylindrical containers with subsequent static and dynamic load testing. The results of static tests showed a significant increase in the strain modulus in comparison to that of the soil, resulting in soil stabilization due to a decrease in the initial content of moisture squeezed out of the modified soil. A coefficient of increase in the deformation modulus (KE) is introduced to quantitatively assess the soil stabilization efficiency. An original technique is also proposed for assessing composite durability, and it is based on analyzing the mass loss after cyclic wetting and drying. The proposed soil stabilization approach promotes and improves digital construction technologies such as Building Information Modeling (BIM) by enabling the accurate simulation and prediction of the behavior of loaded soil in foundation systems. The introduced quantifiable metrics can be integrated into Digital Twin- or BIM-based project planning tools, contributing to sustainability, safety, and reliability in modern construction practices. Full article
Show Figures

Figure 1

20 pages, 3159 KB  
Review
Greenhouse Gas Emissions and Arsenic Mobilization in Rice Paddy Fields: Coupling Mechanisms, Influencing Factors, and Simultaneous Mitigation Measures
by Gaoxiang Qi, Hongyuan Liu, Hongyun Dong, Yan Zhang, Xinhua Li, Ying Li, Nana Wang, Hongcheng Wang, Han Lu and Yanjun Wang
Agronomy 2025, 15(9), 2081; https://doi.org/10.3390/agronomy15092081 - 29 Aug 2025
Viewed by 297
Abstract
As an important agricultural ecosystem, greenhouse gas (GHG) emissions and arsenic (As) mobilization in rice paddy fields have gained significant attention on climate change and food safety. There is a certain correlation between the GHG and As migration in rice paddy fields. The [...] Read more.
As an important agricultural ecosystem, greenhouse gas (GHG) emissions and arsenic (As) mobilization in rice paddy fields have gained significant attention on climate change and food safety. There is a certain correlation between the GHG and As migration in rice paddy fields. The oxidation of methane in paddy fields can provide electrons for the reduction and release of arsenate. Nitrate in rice paddy soil can promote the fixation of As by oxidizing Fe (II) to form iron oxide–As complexes or directly oxidize As (III) to As (V) to reduce the toxicity of As. However, incomplete denitrification of nitrate can lead to the emission of N2O. This review systematically expounds the research advances, influencing factors and simultaneous mitigation measures of GHG emissions and As mobilization in rice paddy fields. It focuses on discussing the influence mechanisms of soil physical and chemical properties, water management measures, fertilization methods, and the addition of soil conditioner on As migration and GHG emission, and it looks forward to future research directions. It aims to provide a theoretical basis and practical guidance for reducing the risk of As contamination in rice fields, reducing GHG emission, and achieving sustainable development of rice production. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

17 pages, 1822 KB  
Article
Mechanical Behavior of Geopolymers Containing Soil and Red Mud Stabilized by Alkali Activation
by Ana Carolina Pereira da Silva, Klaus Henrique de Paula Rodrigues, Gustavo Henrique Nalon, Heraldo Nunes Pitanga, Natália Assunção Brasil Silva, Taciano Oliveira da Silva, Emerson Cordeiro Lopes and Mateus Henrique Ribeiro Rodrigues
Buildings 2025, 15(17), 3105; https://doi.org/10.3390/buildings15173105 - 29 Aug 2025
Viewed by 387
Abstract
The urgent demand for environmentally responsible construction practices has intensified interest in geopolymer concrete mixtures, which offer low-carbon alternatives to conventional Portland cement by enabling the valorization of industrial by-products. Since the large volume of waste generated by mining activities represents a significant [...] Read more.
The urgent demand for environmentally responsible construction practices has intensified interest in geopolymer concrete mixtures, which offer low-carbon alternatives to conventional Portland cement by enabling the valorization of industrial by-products. Since the large volume of waste generated by mining activities represents a significant environmental liability, this research aimed to utilize the alkali activation technique in mixtures of soil and bauxite residue, commonly known as red mud (RM), for application in green construction. All raw materials were characterized based on their physical and chemical properties. To evaluate the influence of waste content on the mechanical behavior of the geopolymers, specimens were prepared with soil contents ranging from 70% to 100% and RM dosages ranging from 0% to 30%. These mixtures underwent compaction tests using the standard Proctor energy method to determine maximum dry density and optimum moisture content. Using the optimal mixture compositions, specimens were prepared for unconfined compressive strength (UCS) tests, with NaOH at a concentration of 6 mol/L added as an activator. The experimental tests provided UCS results ranging from 2.23 MPa to 3.05 MPa. X-ray diffraction (XRD) analyses were performed on raw materials and mixtures containing 70% soil and 30% waste to assess changes in mineralogical compositions due to waste incorporation. The results confirmed the potential of alkali activation for stabilizing mixtures of soil and RM for sustainable construction. Full article
Show Figures

Figure 1

24 pages, 6559 KB  
Article
Study on Physical Properties and Bearing Capacity of Quaternary Residual Sand for Building Foundations: A Case Study of Beaches in Quanzhou, China
by Lin Su, Feng Zhang, Chuan Peng, Guohua Zhang, Liming Qin, Xiao Wang, Shuqi Yang and Wenyao Peng
Buildings 2025, 15(17), 3104; https://doi.org/10.3390/buildings15173104 - 29 Aug 2025
Viewed by 228
Abstract
This study addresses engineering challenges associated with sandy residual deposits in the coastal zone of Quanzhou, China, characterized by high void ratios (e > 0.8), low cohesion (c < 10 kPa), and strong liquefaction tendencies induced by marine dynamic forces. Focusing [...] Read more.
This study addresses engineering challenges associated with sandy residual deposits in the coastal zone of Quanzhou, China, characterized by high void ratios (e > 0.8), low cohesion (c < 10 kPa), and strong liquefaction tendencies induced by marine dynamic forces. Focusing on the beach sands of Shenhu Bay and Qingshan Bay, 123 in situ dynamic penetration tests and 12 laboratory physical–mechanical tests (including water content, particle gradation, relative density, and triaxial shear strength) were conducted. The correlations between the physical and mechanical properties of these coastal sandy soils and their foundation bearing capacity were systematically analyzed. Results reveal that the sands, predominantly medium-to-fine grains with 8–15% biogenic debris, are generally in a loose-to-medium dense state (relative density ~34%), with negligible cohesion. Shear strength depends primarily on the internal friction angle (28.89–37.43°). Correlation analyses show that water content (17.8–31.92%) and particle gradation parameters (uniformity coefficient Cu and curvature coefficient Cc) significantly influence bearing capacity, with bearing capacity increasing by 12.15% per 14.12% rise in water content and 35% per 0.518 increase in Cc. An improved foundation bearing capacity model based on the Prandtl–Reissner theory is proposed by integrating particle gradation and water content, tailored for beach foundations in Quanzhou. Model validation demonstrates an average error of approximately 15%, outperforming traditional models. These findings provide valuable theoretical support for assessing foundation stability in building construction projects in Quanzhou and similar coastal regions. Full article
(This article belongs to the Topic Resilient Civil Infrastructure, 2nd Edition)
Show Figures

Figure 1

15 pages, 687 KB  
Article
Responses of Soil Quality and Microbial Community Composition to Vegetation Restoration in Tropical Coastal Forests
by Yuanqi Chen, Feifeng Zhang, Jianbo Cao, Tong Liu and Yu Zhang
Biology 2025, 14(9), 1120; https://doi.org/10.3390/biology14091120 - 24 Aug 2025
Viewed by 422
Abstract
Afforestation substantially promotes vegetation restoration and modifies soil physical, chemical, and biological properties. The integrated effects of soil properties on soil quality, expressed via a composite soil quality index (SQI), remain unclear despite variations among individual properties. Here, five vegetation restoration treatments were [...] Read more.
Afforestation substantially promotes vegetation restoration and modifies soil physical, chemical, and biological properties. The integrated effects of soil properties on soil quality, expressed via a composite soil quality index (SQI), remain unclear despite variations among individual properties. Here, five vegetation restoration treatments were selected as follows: (1) barren land (BL, control), (2) disturbed short-rotation Eucalyptus plantation (REP); (3) undisturbed long-term Eucalyptus plantation (UEP); (4) mixed native-species plantation (MF); and (5) natural forest (NF) following >50 years of restoration. Soil physicochemical properties and microbial community compositions were investigated, and soil quality was evaluated by an integrated SQI. Our results showed that vegetation restoration had strong effects on soil physicochemical properties, soil quality, and microbial communities. Most of the soil physicochemical properties exhibited significant differences among treatments. Soil dissolved organic carbon, total nitrogen, and ammonium nitrogen were the three key soil quality indicators. The SQI increased significantly with vegetation recovery intensity. In both UEP and MF, it reached levels comparable to NF, and was higher in UEP than in REP, implying that short-rotation practices impede soil restoration. In addition, microbial biomass (bacteria, fungi, arbuscular mycorrhizal fungi, actinomycetes, and total microbe PLFAs) increased from BL to NF. All plantations exhibited lower microbial biomass than NF, revealing incomplete recovery and a greater sensitivity to soil physicochemical properties. Conversely, the fungi-to-bacteria biomass ratio decreased sequentially (REP > BL > UEP > MF > NF). Strong positive correlations between microbial biomass and the SQI were observed. These results collectively indicate that afforestation with mixed tree species is optimal for rapid soil restoration, and undisturbed long-term monocultures can achieve similar outcomes. These findings highlight that tree species mixtures and reducing disturbance should be taken into consideration when restoring degraded ecosystems in the tropics. Full article
Show Figures

Figure 1

23 pages, 11077 KB  
Article
Synergistic Effects of Lignin Fiber and Sodium Sulfate on Mechanical Properties and Micro-Structure of Cement-Stabilized Soil
by Liang Wang, Binbin Na and Wenhua Chen
Materials 2025, 18(17), 3929; https://doi.org/10.3390/ma18173929 - 22 Aug 2025
Viewed by 441
Abstract
This study aims to develop environmentally friendly soil-stabilization materials by investigating the synergistic enhancement mechanism of industrial by-product lignin fibers (LFs) and sodium sulfate (Na2SO4) on the mechanical and micro-structural properties of cement-stabilized soil. A systematic evaluation was conducted [...] Read more.
This study aims to develop environmentally friendly soil-stabilization materials by investigating the synergistic enhancement mechanism of industrial by-product lignin fibers (LFs) and sodium sulfate (Na2SO4) on the mechanical and micro-structural properties of cement-stabilized soil. A systematic evaluation was conducted through unconfined compressive strength (UCS), splitting tensile strength, and capillary water absorption tests, supplemented by microscopic analyses including XRD and SEM. The results indicate that the optimal synergistic effect occurs at 1.0% LF and 0.10% Na2SO4, which increases UCS and splitting tensile strength by 9.23% and 18.37%, respectively, compared to cement-stabilized soil. Meanwhile, early strength development is accelerated. Microscopically, LF physically bridges soil particles, forming aggregates, reducing porosity, and enhancing cohesion. Chemically, Na2SO4 acts as an activator, accelerating cement hydration and stimulating pozzolanic reactions to form calcium aluminosilicate hydrate and gypsum, which fill pores and densify the matrix. The synergistic mechanism lies in Na2SO4 enhancing the interaction between the LFs and clay minerals through ion exchange, facilitating the formation of a stable spatial network structure that inhibits particle sliding and crack propagation. This technology offers substantial sustainability benefits by utilizing paper-making waste LF and low-cost Na2SO4 to improve soil strength, toughness, and impermeability. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

19 pages, 2523 KB  
Review
The Effect of Boron on Fruit Quality: A Review
by Javier Giovanni Álvarez-Herrera, Marilcen Jaime-Guerrero and Gerhard Fischer
Horticulturae 2025, 11(8), 992; https://doi.org/10.3390/horticulturae11080992 - 21 Aug 2025
Viewed by 573
Abstract
Boron (B) is a crucial micronutrient for the initial formation, development, and final quality of fruits, as it affects their physical and chemical properties and helps prevent various functional disorders. Recently, numerous physiological disorders in fruits have been reported, which have been linked [...] Read more.
Boron (B) is a crucial micronutrient for the initial formation, development, and final quality of fruits, as it affects their physical and chemical properties and helps prevent various functional disorders. Recently, numerous physiological disorders in fruits have been reported, which have been linked to B deficiency. However, there is still uncertainty about whether these issues are directly related to B, other nutrients, their combinations, or environmental conditions. This review aims to compile current and accurate information on how B is absorbed by plants, its role in the cell wall and membrane, its impact on flowering and fruit set, and its influence on physical and chemical properties, as well as its role in preventing physiological disorders. This review examines the latest studies on B published in major scientific journals (Elsevier, Springer, MDPI, Frontiers, Hindawi, Wiley, and SciELO). Boron is mobile in the xylem and slightly mobile in the phloem, and it plays a crucial role in pollination and fruit set. It reduces mass loss, maintains firmness, improves color, and results in larger, heavier fruits. Also, boron increases soluble solids, regulates total titratable acidity and pH, decreases respiration rate, and stabilizes ascorbic acid by delaying its breakdown. It also helps prevent disorders such as splitting, cork spots, internal rot, shot berry in grapes, blossom end rot, and segment drying in citrus. Foliar or soil application of B enhances fruit yield and post-harvest quality. Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
Show Figures

Figure 1

16 pages, 22913 KB  
Article
Study on the Adsorption Characteristics of Loess Influenced by Temperature Effects
by Yubo Zhu, Ruijun Jiang, Zhijie Jia, Qiangbing Huang, Zhenjiang Meng, Penghui Ma, Zhiyuan He, Bingyao Huo and Jianbing Peng
Water 2025, 17(16), 2441; https://doi.org/10.3390/w17162441 - 18 Aug 2025
Viewed by 492
Abstract
Loess, a typical unsaturated soil, is a Quaternary sedimentary deposit widely distributed across arid and semi-arid regions worldwide. In recent years, global climate change has led to significant temperature fluctuations in Northwest China, impacting loess properties and soil–water characteristic curves (SWCCs). This study [...] Read more.
Loess, a typical unsaturated soil, is a Quaternary sedimentary deposit widely distributed across arid and semi-arid regions worldwide. In recent years, global climate change has led to significant temperature fluctuations in Northwest China, impacting loess properties and soil–water characteristic curves (SWCCs). This study investigated typical loess deposits in Mizhi County, Shaanxi Province, systematically analyzing their basic physical properties and microstructure. The SWCCs of the loess were measured at three temperature gradients (15 °C, 20 °C, and 25 °C) using the dynamic dew-point isotherm method to investigate the impact of temperature on SWCC hysteresis. The results showed that with increasing temperature, the SWCC exhibited increasing divergence. The magnitude of the water content change and the corresponding suction forces along the wetting and drying paths increased, leading to an enlargement of the hysteresis loop area. These findings indicate that temperature significantly affects the hysteresis behavior of loess, providing a certain basis and ideas for the study of the soil–water characteristic curves of unsaturated soils such as loess under the influence of temperature. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

17 pages, 3507 KB  
Article
Machine Learning Estimation of the Unit Weight of Organic Soils
by Artur Borowiec, Grzegorz Straż and Maria Jolanta Sulewska
Appl. Sci. 2025, 15(16), 9079; https://doi.org/10.3390/app15169079 - 18 Aug 2025
Viewed by 241
Abstract
The aim of this study is to search for and verify regression models of selected geotechnical parameters of organic soils that are useful in engineering practices. Various machine learning methodologies were employed, including decision tree, ensembles of trees, support vector regression, Gaussian process, [...] Read more.
The aim of this study is to search for and verify regression models of selected geotechnical parameters of organic soils that are useful in engineering practices. Various machine learning methodologies were employed, including decision tree, ensembles of trees, support vector regression, Gaussian process, and neural networks. The work was based on two qualitatively different examples of estimating the unit weight of soil (γt). In the first example, the results of cone penetration test (CPT) probing (cone resistance qc and friction resistance fs) were used. In the second example, the results of laboratory tests of other physical properties of these soils (content of organic parts LOIT and moisture content w) were used. The task was completed for 135 sets of test results, which were carried out at the Rzeszów training ground in Poland with in situ tests using the CPT probe and laboratory tests. A statistical analysis was carried out to initially determine the relationships between the variables. This work presents the results of a comparison of multiple linear regression models with regression models obtained using the machine learning (ML) method. The studies obtained ML models with mean absolute percentage errors (MAPE) that were smaller than those of statistical models. Consequently, for the CPT sounding data, the MAPE changed from 13.57% to 7.37%, and, for the second data set, from 7.87% to 1.25%. Software STATISTICA version 13.3 and the Regression Learner TM library from MATLAB R2024b were used to analyze the soil data. Full article
Show Figures

Graphical abstract

15 pages, 4270 KB  
Article
Subsoiling-Induced Shifts in Nitrogen Dynamics and Microbial Community Structure in Semi-Arid Rainfed Maize Agroecosystems
by Jian Gu, Hao Sun, Xu Zhou, Yongqi Liu, Mingwei Zhou, Ningning Ma, Guanghua Yin and Shijun Sun
Microorganisms 2025, 13(8), 1897; https://doi.org/10.3390/microorganisms13081897 - 14 Aug 2025
Viewed by 351
Abstract
Global agricultural intensification has exacerbated soil compaction and nitrogen (N) inefficiency, thereby threatening sustainable crop production. Sub-soiling, a tillage technique that fractures subsurface layers while preserving surface structure, offers potential solutions by modifying soil physical properties and enhancing microbial-mediated N cycling. This study [...] Read more.
Global agricultural intensification has exacerbated soil compaction and nitrogen (N) inefficiency, thereby threatening sustainable crop production. Sub-soiling, a tillage technique that fractures subsurface layers while preserving surface structure, offers potential solutions by modifying soil physical properties and enhancing microbial-mediated N cycling. This study investigated the effects of subsoiling depth (0, 20, and 40 cm) on soil microbial communities and N transformations in a semi-arid maize system in China. The results demonstrated that subsoiling to a depth of 40 cm (D2) significantly enhanced the retention of nitrate-N and ammonium-N, which correlated with improved soil porosity and microbial activity. High-throughput 16S rDNA sequencing revealed subsoiling depth-driven reorganization of microbial communities, with D2 increasing the abundance of Proteobacteria (+11%) and ammonia-oxidizing archaea (Nitrososphaeraceae, +19.9%) while suppressing denitrifiers (nosZ gene: −41.4%). Co-occurrence networks indicated greater complexity in microbial interactions under subsoiling, driven by altered aeration and carbon redistribution. Functional gene analysis highlighted a shift from denitrification to nitrification-mineralization coupling, with D2 boosting maize yield by 9.8%. These findings elucidate how subsoiling depth modulates microbiome assembly to enhance N retention, providing a mechanistic basis for optimizing tillage practices in semi-arid agroecosystems. Full article
(This article belongs to the Special Issue Microbial Communities and Nitrogen Cycling)
Show Figures

Figure 1

Back to TopTop