Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,862)

Search Parameters:
Keywords = soil water availability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1316 KB  
Article
Effects of Alternate Wetting and Drying (AWD) Irrigation on Rice Growth and Soil Available Nutrients on Black Soil in Northeast China
by Chaoyin Dou, Chen Qian, Yuping Lv and Yidi Sun
Agronomy 2025, 15(10), 2372; https://doi.org/10.3390/agronomy15102372 (registering DOI) - 10 Oct 2025
Abstract
Extensive practice has demonstrated that the continuous pursuit of high yields in the black soil region of Northeast China resulted in imbalances in soil nutrients and declines in both soil quality and water use efficiency. Alternate wetting and drying (AWD) irrigation offers a [...] Read more.
Extensive practice has demonstrated that the continuous pursuit of high yields in the black soil region of Northeast China resulted in imbalances in soil nutrients and declines in both soil quality and water use efficiency. Alternate wetting and drying (AWD) irrigation offers a promising solution for increasing rice yield and maintaining soil fertility. However, the success of this irrigation method largely depends on its scheduling. This study examined the threshold effects of AWD on rice growth, yield, and soil nutrient availability in the Sanjiang Plain, a representative black soil region in Northeast China. A two-year trial was conducted from 2023 to 2024 at the Qixing National Agricultural Science and Technology Park. “Longjing 31”, a local cultivar, was selected as the experimental material. The lower limit of soil water content under AWD was set as the experimental factor, with three levels: −10 kPa (LA), −20 kPa (MA), and −30 kPa (SA). The local traditional irrigation practice, continuous flooding, served as the control treatment (CK). Indicators of rice growth and soil nutrient content were measured and analyzed at five growth stages: tillering, jointing, heading, milk ripening, and yellow ripening. The results showed that, compared to CK, AWD had minimal impact on rice plant height and tiller number, with no significant differences (p > 0.05). However, AWD affected leaf area index (LAI), shoot dry matter (SDM), yield, and soil nutrient availability. In 2023, control had little effect on rice plant height and tiller number among the different irrigation treatments. The LAI of LA was 11.1% and 22.5% higher than that of MA and SA, respectively, while SDM in LA was 10.5% and 17.2% higher than in MA and SA. Significant differences were found between LA and MA, as well as between LA and SA, whereas no significant differences were observed between MA and SA. The light treatment is beneficial to the growth and development of rice, while the harsh growth environment caused by the moderate and severe treatments is unfavorable to rice growth. The average contents of nitrate nitrogen (NO3-N), available phosphorus (AP), and available potassium (AK) in LA were 11.4%, 8.4%, and 9.3% higher than in MA, and 16.7%, 11.5%, and 15.0% higher than in SA, respectively. Significant differences were observed between LA and SA. This is because the light treatment facilitates the release of available nutrients in the soil, while the moderate and severe treatments hinder this process. Although panicle number per unit area and grain number per panicle in LA were 7.5% and 2.3% higher than in MA, and 10.8% and 2.2% higher than in SA, these differences were not statistically significant. Seed setting rate and thousand-grain weight showed little variation across irrigation treatments. The yield of LA was 10,233.3 kg hm−2, 9.1% and 14.1% higher than that of MA and SA, respectively, with significant differences observed. Compared with the moderate and severe treatments, the light treatment increases indicators such as the number of panicles per unit area, grains per panicle, thousand-grain weight, and seed setting rate, resulting in significant differences among the treatments. Water use efficiency (WUE) decreased as the control level increased. The WUE of all AWD irrigation treatments was significantly higher than that of the control treatment (CK). Compared with CK, AWD reduces evaporation, percolation, and other water losses, leading to a significant decrease in water consumption. Meanwhile, the yield remains basically unchanged or even slightly increases, thus resulting in a higher WUE than CK. The trends in rice growth, soil nutrient indicators, and WUE in 2024 were generally consistent with those observed in 2023. In 2024, the yield of LA was 9832.7 kg hm−2, 14.9% and 17.3% higher than that of MA and SA, respectively, with significant differences observed. Based on the results, the following conclusions are drawn: (1) AWD irrigation can affect the growth of rice, alter the status of available nutrients in the soil, and thereby cause changes in yield and WUE; (2) LA is the optimal treatment for increasing rice yield, improving the availability of soil available nutrients, and improving WUE; (3) Both MA and SA enhanced WUE; however, these practices negatively impacted rice growth and the concentration of soil available nutrients, leading to a concurrent decline in yield. To increase rice yield and maintain soil fertility, LA, with an irrigation upper limit of 30 mm and a soil water potential threshold of −10 kPa, is recommended for the Sanjiang Plain region. Full article
Show Figures

Figure 1

22 pages, 1205 KB  
Article
Evaluating the Effects of Irrigation Water Quality and Compost Amendment on Soil Health and Crop Productivity
by Subanky Suvendran, Miguel F. Acevedo, Breana Smithers, Stephanie J. Walker and Pei Xu
Water 2025, 17(20), 2927; https://doi.org/10.3390/w17202927 - 10 Oct 2025
Abstract
Brackish water is becoming an increasingly important resource for agricultural irrigation due to limited freshwater availability; however, concerns persist regarding its potential to degrade soil quality and reduce crop yields. This study evaluated the combined effects of irrigation water quality (brackish water, electrical [...] Read more.
Brackish water is becoming an increasingly important resource for agricultural irrigation due to limited freshwater availability; however, concerns persist regarding its potential to degrade soil quality and reduce crop yields. This study evaluated the combined effects of irrigation water quality (brackish water, electrical conductivity (EC) of 2958 µS/cm; agricultural water, EC 796 µS/cm), soil type (agricultural soil and reclaimed desert soil), and compost treatments (no compost, mulch compost, Johnson-Su compost, and mulch compost incorporation) on soil health and chili pepper (Capsicum annuum) growth under greenhouse conditions. Compost amendments significantly improved plant height by 58–213%, root length by 35–166%, and wet biomass by 154–1400% compared to control treatments. Agricultural water maintained lower soil EC (0.553–0.870 mS/cm) than brackish water (0.751–1.104 mS/cm), while Johnson-Su compost most effectively reduced salinity impact on plant growth. Leached water analysis showed higher Na+, Cl, and SO42− mobility under brackish irrigation, with compost treatments enhancing nutrient retention and soil moisture by buffering salinity stress with carboxylic group and cation exchange capacity. Johnson-Su compost incorporation consistently mitigated the negative effects of brackish irrigation by reducing sodium accumulation, improving chloride mobility, and enhancing soil nitrogen dynamics. These results highlight that combining high-quality irrigation water and biologically active composts improves soil health and plant productivity, while brackish water use requires soil amendments to mitigate salinity risks. Full article
(This article belongs to the Special Issue Soil Water Use and Irrigation Management)
Show Figures

Figure 1

20 pages, 3146 KB  
Article
Identification of Driving Factors of Long-Term Terrestrial Water Storage Anomaly Trend Changes in the Yangtze River Basin Based on Multisource Data and Geographical Detector Method
by Qin Li, Song Ye, Ying Wang, Yingjie Qu, Zhengli Yao, Bocheng Liao and Junke Wang
Water 2025, 17(19), 2914; https://doi.org/10.3390/w17192914 - 9 Oct 2025
Abstract
Terrestrial water storage anomaly (TWSA) plays a vital role in regulating the global water cycle and freshwater availability. Understanding the drivers behind long-term TWSA changes is critical, yet disentangling natural and anthropogenic influences remains challenging. This study employs the Geographical Detector method and [...] Read more.
Terrestrial water storage anomaly (TWSA) plays a vital role in regulating the global water cycle and freshwater availability. Understanding the drivers behind long-term TWSA changes is critical, yet disentangling natural and anthropogenic influences remains challenging. This study employs the Geographical Detector method and multisource data to quantify the individual and interactive effects of multiple drivers on TWSA trends across the upper, middle, and lower reaches of the Yangtze River Basin (YRB). In the upper YRB, temperature, snow water equivalent, vegetation, precipitation, and reservoir storage are the primary contributors. In the middle YRB, precipitation, temperature, and soil moisture dominate. Although nighttime light (a proxy for urbanization) alone explains only 1.94% of the variation in this region, its interaction with precipitation increases explanatory power to 56.3%, highlighting a strong nonlinear effect. In the lower YRB, precipitation and runoff are the leading factors, while nighttime light again exhibits enhanced influence through interactions. These findings reveal the spatial heterogeneity and synergistic nature of TWSA drivers and underscore the need to consider both natural variability and human-induced processes when assessing long-term water storage dynamics. The results offer valuable insights for sustainable water resource management in the context of climate change and rapid urban development. Full article
Show Figures

Figure 1

13 pages, 1338 KB  
Article
Response of Depth-Stratified Soil Quality to Land-Use Conversion and Its Limiting Factors in Tropical Ecosystems
by Yanmin Li, Tianqi Zhang and Shihang Wang
Land 2025, 14(10), 2010; https://doi.org/10.3390/land14102010 - 7 Oct 2025
Viewed by 135
Abstract
Land degradation is known to alter soil properties and quality; however, its depth-dependent effects across contrasting land-use types and the key factors limiting soil recovery remain poorly quantified in tropical ecosystems. This study established a forest degradation gradient on Hainan Island, China, encompassing [...] Read more.
Land degradation is known to alter soil properties and quality; however, its depth-dependent effects across contrasting land-use types and the key factors limiting soil recovery remain poorly quantified in tropical ecosystems. This study established a forest degradation gradient on Hainan Island, China, encompassing mature forest, secondary forest, rubber plantation, and areca plantation. Soil physical (e.g., bulk density, porosity, water content, field capacity) and chemical (e.g., organic matter, nitrogen, phosphorus, and potassium fractions) properties were measured at three depths (0–20 cm, 20–40 cm, and 40–60 cm). A soil quality index (SQI) was constructed using principal component analysis, and obstacle degree modeling was applied to identify major limiting factors. The results showed that degradation of mature forests significantly reduced topsoil (0–20 cm) quality regardless of subsequent land-use type. In contrast, changes in medium (20–40 cm) and deep (40–60 cm) soil quality were land-use dependent. Conversion to secondary forests and areca plantations resulted in negligible effects, whereas transformation into rubber plantations significantly enhanced soil quality at medium and deep depths. Obstacle degree analysis identified available phosphorus, rather than nitrogen, as the primary limiting factor for soil quality in the region, accounting for 39.7% of all limitations across land-use types. This study demonstrates that the effects of tropical forest degradation on soil quality exhibit dual dependence on both soil depth and land-use type in tropical settings. Furthermore, it highlights the essential role of available phosphorus management in guiding soil restoration and sustainable land-use strategies in these vulnerable ecosystems. Full article
(This article belongs to the Special Issue Land Resource Use Efficiency and Sustainable Land Use)
Show Figures

Figure 1

19 pages, 8342 KB  
Article
Soil Carbon–Water Trade-Off Relationships and Driving Mechanisms in Different Forest Types on the Yunnan Plateau, China
by Zhiqiang Ding, Ping Wang, Lei Fu and Shidong Chen
Forests 2025, 16(10), 1548; https://doi.org/10.3390/f16101548 - 7 Oct 2025
Viewed by 237
Abstract
Semi-humid subtropical montane regions face the dual pressures of climate change and water scarcity, making it essential to understand how soil carbon–water coupling varies among forest types. Focusing on seven representative forest types in the central Yunnan Plateau, this study analyzes the spatial [...] Read more.
Semi-humid subtropical montane regions face the dual pressures of climate change and water scarcity, making it essential to understand how soil carbon–water coupling varies among forest types. Focusing on seven representative forest types in the central Yunnan Plateau, this study analyzes the spatial distribution, trade-offs, and drivers of soil organic carbon storage (SOCS) and soil water storage (SWS) within the 0–60 cm soil layer, using sloping rainfed farmland (SRF) as a reference. We hypothesize that, relative to SRF, both SOCS and SWS increase across forest types; however, the direction and strength of the SOCS–SWS trade-off differ among plant communities and are regulated by litter traits and soil structural properties. The results show that SOCS in all forest types exceeded that in SRF, whereas a significant increase in SWS occurred only in ACF. Broadleaf stands were particularly prominent: SOCS rose most in the 23 yr SF and the 20 yr ACF (274.44% and 256.48%, respectively), far exceeding the 9–60 yr P. yunnanensis stands (44.01%–105.32%). Carbon–water trade-offs varied by forest type and depth. In conifer stands, SWS gains outweighed SOCS and trade-off intensity increased with stand age (RMSD from 0.48 to 0.53). In broadleaf stands, SOCS gains were larger, with RMSD ranging from 0.21 to 0.45 and the weakest trade-off in SF. Across depths, SOCS gains exceeded SWS in 0–20 cm, whereas SWS gains dominated in 40–60 cm. Regression analyses indicated a significant negative SOCS–SWS relationship in conifer stands and a significant positive relationship in 0–20 cm soils (both p < 0.05), with no significant correlations in other forest types or depths (p > 0.05). Correlation results further suggest that organic matter inputs, N availability, and soil physical structure jointly regulate carbon–water trade-off intensity across forest types and soil depths. We therefore recommend prioritizing native zonal broadleaf species, as well as protecting SF and establishing mixed conifer–broadleaf stands, to achieve synergistic improvements in SOCS and SWS. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

26 pages, 4175 KB  
Article
Rhizosphere Engineering in Saline Soils: Role of PGPR and Organic Manures in Root–Soil Biochemical Interactions for Allium Crops
by Tarek Alshaal, Nevien Elhawat and Szilvia Veres
Plants 2025, 14(19), 3075; https://doi.org/10.3390/plants14193075 - 4 Oct 2025
Viewed by 361
Abstract
Soil salinity disrupts rhizosphere interactions, impairing root–microbe symbioses, nutrient uptake, and water relations in onion (Allium cepa L.) and garlic (Allium sativum L.). This study evaluated the efficacy of biofertilizers (Azotobacter chroococcum SARS 10 and Azospirillum lipoferum SP2) and organic [...] Read more.
Soil salinity disrupts rhizosphere interactions, impairing root–microbe symbioses, nutrient uptake, and water relations in onion (Allium cepa L.) and garlic (Allium sativum L.). This study evaluated the efficacy of biofertilizers (Azotobacter chroococcum SARS 10 and Azospirillum lipoferum SP2) and organic amendments (sewage sludge and poultry manure) in salt-affected soils in Kafr El-Sheikh, Egypt. Five treatments were applied: (T1) control (no amendments); (T2) biofertilizer (3 L/ha for onion, 12 L/ha for garlic) + inorganic P (150 kg/ha P2O5 for onion, 180 kg/ha for garlic) and K (115 kg/ha K2SO4 for onion, 150 kg/ha for garlic); (T3) 50% inorganic N (160 kg/ha for onion, 127.5 kg/ha for garlic) + 50% organic manure (6000 kg/ha for onion, 8438 kg/ha for garlic) + P and K; (T4) biofertilizer + T3; and (T5) conventional inorganic NPK (320 kg/ha N for onion, 255 kg/ha N for garlic + P and K). Soil nutrients (N, P, K), microbial biomass carbon (MBC), dehydrogenase activity, and microbial populations were analyzed using standard protocols. Plant growth (chlorophyll, photosynthetic rate), stress indicators (malondialdehyde, proline), and yield (bulb diameter, fresh yield) were measured. Treatment T4 increased MBC by 30–40%, dehydrogenase activity by 25–35%, available N (39.7 mg/kg for onion, 35.7 mg/kg for garlic), P (17.9 mg/kg for onion), and K (108 mg/kg for garlic). Soil organic matter rose by 8–12%, and cation exchange capacity by 26–36%. Chlorophyll content improved by 25%, malondialdehyde decreased by 20–30%, and fresh yields increased by 20–30% (12.17 tons/ha for garlic). A soybean bioassay confirmed sustained fertility with 20–25% higher dry weight and 30% greater N uptake in T4 plots. These findings highlight biofertilizers and organic amendments as sustainable solutions for Allium productivity in saline rhizospheres. Full article
(This article belongs to the Topic Plant-Soil Interactions, 2nd Volume)
Show Figures

Figure 1

18 pages, 2457 KB  
Article
The Potential for Reusing Superabsorbent Polymer from Baby Diapers for Water Retention in Agriculture
by Kamilla B. Shishkhanova, Vyacheslav S. Molchanov, Ilya V. Prokopiv, Alexei R. Khokhlov and Olga E. Philippova
Gels 2025, 11(10), 795; https://doi.org/10.3390/gels11100795 - 2 Oct 2025
Viewed by 291
Abstract
Annually, about 2.4 million tons of superabsorbent polymers (SAPs) used in disposable diapers are thrown away, polluting our planet. This study aims to explore the potential for reusing SAPs removed from diapers to enhance soil water retention. To this end, the swelling and [...] Read more.
Annually, about 2.4 million tons of superabsorbent polymers (SAPs) used in disposable diapers are thrown away, polluting our planet. This study aims to explore the potential for reusing SAPs removed from diapers to enhance soil water retention. To this end, the swelling and water retention properties of SAP gels from three different types of diapers were compared to those of an agricultural gel, Aquasorb. Sand was used as a model for soil. When mixed with sand, diaper gels have a swelling degree of ca. 100 g per gram of dried polymer, and a swelling pressure of 12–26 kPa, which are similar to those of Aquasorb gel. Using a synthesized poly(acrylamide-co-sodium acrylate) gel as an example, the correlation between the swelling pressure and the compression modulus of the swollen gel was demonstrated. Soil-hydrological constants were estimated from water retention curves obtained by equilibrium centrifugation of gel/sand mixtures. It was observed that adding 0.3 vol% of diaper gels to sand leads to a 3–4-fold increase in water range available to plants, which is close to that provided by agricultural gel Aquasorb. The water-holding properties were shown to be maintained during several swelling/deswelling cycles in the sand medium. The addition of diaper gels to soil had a significant positive impact on mustard (Brassica juncea L.) seed germination and seedling growth, similar to the agricultural gel Aquasorb. This suggests high potential for the reuse of SAPs from diaper waste to improve soil water retention and water accessibility to plants. This would provide both economic and environmental benefits, conserving energy and raw materials to produce new agricultural gels and limiting the amount of waste. Full article
(This article belongs to the Special Issue Polymer Hydrogels and Networks)
Show Figures

Figure 1

15 pages, 9569 KB  
Article
Cold–Temperate Betula platyphylla Sukaczev Forest Can Provide More Soil Nutrients to Increase Microbial Alpha Diversity and Microbial Necromass Carbon
by Yunbing Jiang, Mingliang Gao, Libin Yang, Zhichao Cheng, Siyuan Liu and Yongzhi Liu
Microorganisms 2025, 13(10), 2291; https://doi.org/10.3390/microorganisms13102291 - 1 Oct 2025
Viewed by 320
Abstract
Changes in vegetation type shape the soil microenvironment, thereby regulating the changes in the organic carbon pool by influencing microbial communities and the accumulation of microbial necromass carbon (MNC). This study investigated microbial biomass—via phospholipid fatty acids (PLFAs) analysis—and MNC accumulation across three [...] Read more.
Changes in vegetation type shape the soil microenvironment, thereby regulating the changes in the organic carbon pool by influencing microbial communities and the accumulation of microbial necromass carbon (MNC). This study investigated microbial biomass—via phospholipid fatty acids (PLFAs) analysis—and MNC accumulation across three cold–temperate forest types: Larix gmelinii forest (L), Larix gmeliniiBetula platyphylla Sukaczev mixed forest (LB), and Betula platyphylla Sukaczev forest (B). The results showed that the L had the lowest contents of pH, water content (WC), soil organic carbon (SOC), total nitrogen (TN), available nitrogen (AN), and total phosphorus (TP), but the highest contents of dissolved organic carbon (DOC), available phosphorus (AP), and carbon to nitrogen ratio (C/N) (p < 0.05). LB had the lowest PLFAs content and the highest ratio of Gram-positive bacteria/Gram-negative bacteria (G+/G−), and total fungi/total bacteriai (F/B) of L was the highest. B had the highest alpha diversity index, and significantly positively correlated with pH, SOC, TN, AN, and TP. TP and C/N were the primary elements for significant differences in microbial community structure. The order of MNC content and its contribution to SOC was B > LB > L. MNC was significantly negatively correlated with PLFAs, DOC, and AP, and significantly positively correlated with pH, SOC, TN, AN, TP, Shannon–Wiener and Pielou indices. In conclusion, this study demonstrates that Betula platyphylla Sukaczev forest retains more carbon, nitrogen, and phosphorus, microbial alpha diversity, and acquires more MNC, which can provide a basis for subsequent forest management and carbon sequestration projects. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

26 pages, 7079 KB  
Article
Hydrological Response Analysis Using Remote Sensing and Cloud Computing: Insights from the Chalakudy River Basin, Kerala
by Gudihalli Munivenkatappa Rajesh, Sajeena Shaharudeen, Fahdah Falah Ben Hasher and Mohamed Zhran
Water 2025, 17(19), 2869; https://doi.org/10.3390/w17192869 - 1 Oct 2025
Viewed by 375
Abstract
Hydrological modeling is critical for assessing water availability and guiding sustainable resource management, particularly in monsoon-dependent, data-scarce basins such as the Chalakudy River Basin (CRB) in Kerala, India. This study integrated the Soil Conservation Service Curve Number (SCS-CN) method within the Google Earth [...] Read more.
Hydrological modeling is critical for assessing water availability and guiding sustainable resource management, particularly in monsoon-dependent, data-scarce basins such as the Chalakudy River Basin (CRB) in Kerala, India. This study integrated the Soil Conservation Service Curve Number (SCS-CN) method within the Google Earth Engine (GEE) platform, making novel use of multi-source, open access datasets (CHIRPS precipitation, MODIS land cover and evapotranspiration, and OpenLand soil data) to estimate spatially distributed long-term runoff (2001–2023). Model calibration against observed runoff showed strong performance (NSE = 0.86, KGE = 0.81, R2 = 0.83, RMSE = 29.37 mm and ME = 13.48 mm), validating the approach. Over 75% of annual runoff occurs during the southwest monsoon (June–September), with July alone contributing 220.7 mm. Seasonal assessments highlighted monsoonal excesses and dry-season deficits, while water balance correlated strongly with rainfall (r = 0.93) and runoff (r = 0.94) but negatively with evapotranspiration (r = –0.87). Time-series analysis indicated a slight rise in rainfall, a decline in evapotranspiration, and a marginal improvement in water balance, implying gradual enhancement of regional water availability. Spatial analysis revealed a west–east gradient in precipitation, evapotranspiration, and water balance, producing surpluses in lowlands and deficits in highlands. These findings underscore the potential of cloud-based hydrological modeling to capture spatiotemporal dynamics of hydrological variables and support climate-resilient water management in monsoon-driven and data-scarce river basins. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

26 pages, 2752 KB  
Article
Response Mechanism of Litter to Soil Water Conservation Functions Under the Density Gradient of Robinia pseudoacacia L. Forests in the Loess Plateau of the Western Shanxi Province
by Yunchen Zhang, Jianying Yang, Jianjun Zhang and Ben Zhang
Plants 2025, 14(19), 3042; https://doi.org/10.3390/plants14193042 - 1 Oct 2025
Viewed by 300
Abstract
In the ecologically fragile western Shanxi Loess region, stand density regulation of artificial Robinia pseudoacacia L. forests plays a crucial role in sustaining the water regulation functions of the litter-soil system, yet multi-scale mechanistic analyses remain scarce. To address this gap, we established [...] Read more.
In the ecologically fragile western Shanxi Loess region, stand density regulation of artificial Robinia pseudoacacia L. forests plays a crucial role in sustaining the water regulation functions of the litter-soil system, yet multi-scale mechanistic analyses remain scarce. To address this gap, we established six stand density classes (ranging from 1200 to 3200 stems/ha) and quantified litter water-holding traits and soil physicochemical properties. We then applied principal component analysis (PCA) and structural equation modeling (SEM) to examine density-litter-soil relationships. Low-density stands (≤2000 stems/ha) exhibited significantly higher litter accumulation (6.08–6.37 t/ha) and greater litter water-holding capacity (maximum 20.58 t/ha) than the high-density stands (p < 0.05). Soil capillary water-holding capacity decreased with increasing density (4702.63–4863.28 t/ha overall), while non-capillary porosity (5.26–6.21%) and soil organic carbon (~12.5 g/kg) were higher in high-density stands (≥2800 stems/ha), reflecting a structural-carbon optimization trade-off. PCA revealed a primary hydrological function axis with low-density stands clustering in the positive quadrant, while high-density stands shifted toward nutrient-conservation traits. SEM confirmed that stand density affected soil capillary water-holding capacity indirectly through litter accumulation (significant indirect path; non-significant direct path), highlighting the central role of litter quantity. When density exceeded ~2400 stems/ha, litter decomposition rate decreased by ~56%, coinciding with capillary porosity falling below ~47%, a threshold linked to impaired balance between water storage and infiltration. These findings identify 1200–1600 stems/ha as the optimal density range; in this range, soil capillary water-holding capacity reached 4788–4863 t/ha, and available phosphorus remained ≥2.1 mg/kg, providing a density-centered, near-natural management paradigm for constructing “water-conservation vegetation” on the Loess Plateau. Full article
Show Figures

Figure 1

18 pages, 5552 KB  
Article
Development of a Low-Cost Measurement System for Soil Electrical Conductivity and Water Content
by Emmanouil Teletos, Kyriakos Tsiakmakis, Argyrios T. Hatzopoulos and Stefanos Stefanou
AgriEngineering 2025, 7(10), 329; https://doi.org/10.3390/agriengineering7100329 - 1 Oct 2025
Viewed by 366
Abstract
Soil electrical conductivity (EC) and water content are key indicators of soil health, influencing nutrient availability, salinity stress, and crop productivity. Monitoring these parameters is critical for precision agriculture. However, most existing measurement systems are costly, which restricts their use in practical field [...] Read more.
Soil electrical conductivity (EC) and water content are key indicators of soil health, influencing nutrient availability, salinity stress, and crop productivity. Monitoring these parameters is critical for precision agriculture. However, most existing measurement systems are costly, which restricts their use in practical field conditions. The aim of this study was to develop and validate a low-cost, portable system for simultaneous measurement of soil EC, water content, and temperature, while maintaining accuracy comparable to laboratory-grade instruments. The system was designed with four electrodes arranged in two pairs and employed an AC bipolar pulse method with a constant-current circuit, precision rectifier, and peak detector to minimize electrode polarization. Experiments were carried out in sandy loam soil at water contents of 13%, 18%, and 22% and KNO3 concentrations of 0, 0.1, 0.2, and 0.4 M. Measurements from the developed system were benchmarked against a professional impedance analyzer (E4990A). The findings demonstrated that EC increased with both frequency and water content. At 100 Hz, the mean error compared with the analyzer was 8.95%, rising slightly to 9.98% at 10 kHz. A strong linear relationship was observed between EC and KNO3 concentration at 100 Hz (R2 = 0.9898), and for the same salt concentration (0.1 M KNO3) at 100 Hz, EC increased from ~0.26 mS/cm at 13% water content to ~0.43 mS/cm at 22%. In conclusion, the developed system consistently achieved <10% error while maintaining a cost of ~€55, significantly lower than commercial devices. These results confirm its potential as an affordable and reliable tool for soil salinity and water content monitoring in precision agriculture. Full article
Show Figures

Figure 1

22 pages, 5797 KB  
Article
Performance Analysis of Spinifex Fibre-Reinforced Mudbrick as a Sustainable Construction Material for Remote Housing in Australia
by Jivan Subedi, Ali Rajabipour, Milad Bazli, Dhyey Vegda, Nafiseh Ostadmoradi and Sunil Thapa
J. Compos. Sci. 2025, 9(10), 520; https://doi.org/10.3390/jcs9100520 - 1 Oct 2025
Viewed by 237
Abstract
As a sustainable construction material, mudbrick can be used widely in areas where common modern construction materials are not easily accessible but high clay content soil is available. The inclusion of locally available natural fibres in mudbrick could improve its mechanical and erosion [...] Read more.
As a sustainable construction material, mudbrick can be used widely in areas where common modern construction materials are not easily accessible but high clay content soil is available. The inclusion of locally available natural fibres in mudbrick could improve its mechanical and erosion resistance performance. This study examines the performance of fibre-reinforced mudbrick from spinifex and laterite soil which are abundant in Australia. The main objective of this study is to evaluate the mechanical and durability performance of spinifex fibre-reinforced mudbricks made with Australian laterite soil, focusing on the influence of fibre content, fibre length, and cement stabilisation. Spinifex fibre length (30 mm, 40 mm, 50 mm), spinifex fibre percentage (0.3%, 0.6%, 0.9%), and cement percentage (5% and 10%) are considered as the experiment variables. Results show that compressive strength generally decreases with fibre size. In this regard, specimens with 0.3% spinifex fibre, 40 mm fibre length, and 10% cement, with an average compressive strength value of 4.1 MPa, were found to have the highest strength among all design mixes. The elastic Young’s modulus was highest for the specimens with 0.3% spinifex fibre, 30 mm fibre length, and 10% cement with a 36.1 MPa. A low amount of longer fibres was found to be more effective in reducing water absorption in samples with higher cement content. Water absorption and compressive strength results suggest that, on average, 0.3–0.5% spinifex content of size 30 mm improves both low and high cement content mudbricks properties. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Figure 1

11 pages, 705 KB  
Article
Tillage Effects on Soil Hydraulic Parameters Estimated by Brooks–Corey Function in Clay Loam and Sandy Loam Soils
by Jalal D. Jabro, William B. Stevens, William M. Iversen, Upendra M. Sainju, Brett L. Allen and Sadikshya R. Dangi
Agronomy 2025, 15(10), 2325; https://doi.org/10.3390/agronomy15102325 - 30 Sep 2025
Viewed by 338
Abstract
Tillage practices can significantly impact soil structure and pore size distribution and connectivity, consequently affecting the shape of the soil water retention curve (SWRC) and its related estimated hydraulic parameters in the top layer of soil. This study investigated the effect of no-tillage [...] Read more.
Tillage practices can significantly impact soil structure and pore size distribution and connectivity, consequently affecting the shape of the soil water retention curve (SWRC) and its related estimated hydraulic parameters in the top layer of soil. This study investigated the effect of no-tillage (NT) and conventional tillage (CT) practices on SWRCs and their soil hydraulic parameters, estimated by the Brooks–Corey (BC) function at 0–15 and 15–30 cm depths within sugarbeet and corn planting rows in clay loam and sandy loam soils, respectively. Soil water retention curves were measured using the evaporative method (HYPROP). Measured SWRC results were modeled for both untilled and tilled soils using the BC function for each depth in both soils. In clay loam, results indicated that all soil parameters of the BC function, water contents at 330 (θ330) and 15,000 (θ15,000) hPa, and plant available soil water content (AW) were not significantly affected by the type of tillage at either soil depth. The lack of difference in results between NT and CT may be due to considerable soil disturbance, primarily by the harvest process of sugarbeet roots. However, in sandy loam, results indicated that differences occurred in SWRC’s estimated parameters between the NT and CT practices. Averaged across 4 years and two soil depths, the pore size distribution index (λ) and saturated water content (θs) were significantly larger under CT than under NT due to greater soil loosening and disturbance caused by multiple passes of the CT process, thereby developing more soil macroporosity. However, the θ330 and AW were significantly larger in NT than in CT due to reduced soil disturbance and improved soil structure under NT compared to CT practices. Regardless of tillage, measurements of SWRC are important for determining better irrigation management practices, enabling producers to optimize crop productivity, while saving water and sustaining water quality. Full article
Show Figures

Figure 1

22 pages, 4578 KB  
Article
Effects of Plastic Film and Gravel-Sand Mulching on Soil Moisture and Yield of Wolfberry Under Ridge-Furrow Planting in an Arid Desert Region of China’s Loess Plateau
by Xiaojuan Ma, Zhi Wang, Bo Ma, Luyao Zhang, Juncang Tian and Jinyu He
Agronomy 2025, 15(10), 2312; https://doi.org/10.3390/agronomy15102312 - 30 Sep 2025
Viewed by 396
Abstract
In arid areas, the combined use of plastic sheeting under gravel-sand mulch on ridge-furrow planting systems is an emerging practice to minimize soil water evaporation and micro-plastic pollution. In this study, we conducted a two-year field experiment near Gobi-Tengger Desert in Ningxia, China, [...] Read more.
In arid areas, the combined use of plastic sheeting under gravel-sand mulch on ridge-furrow planting systems is an emerging practice to minimize soil water evaporation and micro-plastic pollution. In this study, we conducted a two-year field experiment near Gobi-Tengger Desert in Ningxia, China, to evaluate the effects of a plastic film underneath a layer of pure sand (MS1), pure gravel (MS2) and mixed gravel-and-sand (MS3) mulch on the soil hydrothermal properties, water use efficiency, yield, and fruit quality of wolfberry, compared to bare soil (CK). The results showed that mulching significantly increased soil temperature and water content in the 0–20 cm surface layer, though the effects varied with soil depth and water availability between a supplemental irrigated year (2022) and a rain-fed year (2023). Mulching markedly altered soil water dynamics, enhancing the capture and retention of light-to-heavy rainfall events. Consequently, all mulches significantly increased seasonal water consumption (ET) and water use efficiency (WUE) compared to CK. The MS1 treatment consistently achieved the highest yield and WUE, and the highest accumulation of beneficial fruit compounds like polysaccharides and flavonoids. However, this treatment also resulted in elevated soil salinity. Our findings demonstrate that combined mulching, especially MS1, is a highly effective strategy for optimizing soil conditions, water productivity, and fruit quality in wolfberry cultivation, although long-term salinity management requires attention. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

20 pages, 4998 KB  
Technical Note
Design and Implementation of a Small-Scale Hydroponic Chamber for Sustainable Vegetative Propagation from Cuttings: A Basil (Ocimum basilicum L.)
by Angélica Nohemí Cardona Rodríguez, Carlos Alberto Olvera-Olvera, Santiago Villagrana-Barraza, Ma. Auxiliadora Araiza-Ezquivel, Diana I. Ortíz-Esquivel, Luis Octavio Solís-Sánchez and Germán Díaz-Flórez
Sustainability 2025, 17(19), 8773; https://doi.org/10.3390/su17198773 - 30 Sep 2025
Viewed by 286
Abstract
Urban agriculture in space-constrained cities requires compact, reproducible propagation systems. Therefore, the aim of this Technical Note is to design, implement, and functionally validate a low-cost, modular hydroponic chamber (SSHG) for early-stage vegetative propagation. This system couples DHT11-based temperature/RH monitoring with rule-based actuation—irrigation [...] Read more.
Urban agriculture in space-constrained cities requires compact, reproducible propagation systems. Therefore, the aim of this Technical Note is to design, implement, and functionally validate a low-cost, modular hydroponic chamber (SSHG) for early-stage vegetative propagation. This system couples DHT11-based temperature/RH monitoring with rule-based actuation—irrigation 4×/day and temperature-triggered ventilation—under the control of an Arduino Uno microcontroller; LED lighting was not controlled nor analyzed. Two 15-day trials with basil (Ocimum basilicum L.) yielded rooting rates of 61.7% (37/60) and 43.3% (26/60) under a deliberate minimal-input configuration without nutrient solutions or rooting hormones. Environmental summaries and spatial survival maps revealed edge-effect patterns and RH variability that inform irrigation layout improvements. The chamber, bill of materials, and protocol are documented to support replication and iteration. Thus, the SSHG provides a transferable baseline for educators and researchers to audit, reproduce, and improve small-footprint, controlled-environment propagation. Beyond its technical feasibility, the SSHG contributes to sustainability by leveraging low-cost, readily available components, enabling decentralized seedling production in space-constrained settings, and operating under a minimal-input configuration. In line with widely reported hydroponic efficiencies (e.g., lower water use relative to soil-based propagation), this open and replicable platform aligns with SDGs 2, 11, 12, and 13. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Graphical abstract

Back to TopTop