Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,345)

Search Parameters:
Keywords = solar activity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3343 KB  
Article
Experimental Investigation of Nickel-Based Co-Catalysts for Photoelectrochemical Water Splitting Using Hematite and Cupric Oxide Nanostructured Electrodes
by Maria Aurora Mancuso, Rossana Giaquinta, Carmine Arnese, Patrizia Frontera, Anastasia Macario, Angela Malara and Stefano Trocino
Nanomaterials 2025, 15(20), 1551; https://doi.org/10.3390/nano15201551 (registering DOI) - 11 Oct 2025
Abstract
Growing interest in sustainable hydrogen production has brought renewed attention to photoelectrochemical (PEC) water splitting as a promising route for direct solar-to-chemical energy conversion. This study explores how integrating hematite (α-Fe2O3) and cupric oxide (CuO) photoelectrodes with a series [...] Read more.
Growing interest in sustainable hydrogen production has brought renewed attention to photoelectrochemical (PEC) water splitting as a promising route for direct solar-to-chemical energy conversion. This study explores how integrating hematite (α-Fe2O3) and cupric oxide (CuO) photoelectrodes with a series of nickel-based co-catalysts can improve photoelectrochemical activity. Photoanodic (NiOx, NiFeOx, NiWO4) and photocathodic (Ni, NiCu, NiMo) co-catalysts were synthesized via co-precipitation and mechanochemical methods and characterized through X-ray Diffraction (XRD), X-ray Fluorescence (XRF), Transmission Electron Microscopy–Energy Dispersive X-ray Spectroscopy (TEM-EDX), Scanning Electron Microscopy–Energy Dispersive X-ray Spectroscopy (SEM-EDX), X-ray photoelectron spectroscopy (XPS) and Brunauer–Emmett–Teller (BET) gas-adsorption analyses to clarify their crystallographic, morphological, and compositional properties, as well as their surface chemistry and textural properties (surface area and porosity). Electrochemical tests under 1 SUN illumination showed that NiOx significantly improves the photocurrent of hematite photoanodes. Among the cathodic co-catalysts, NiMo demonstrated the best performance when combined with CuO photocathodes. For both photoelectrodes, an optimal co-catalyst loading was identified, beyond which performance declined due to potential charge transfer limitations and light attenuation. These findings highlight the critical role of co-catalyst composition and loading in optimizing the efficiency of PEC systems based on earth-abundant materials, offering a pathway toward scalable and cost-effective hydrogen production. Full article
(This article belongs to the Special Issue Hydrogen Production and Evolution Based on Nanocatalysts)
Show Figures

Graphical abstract

11 pages, 2186 KB  
Article
A High-Performance Perovskite Solar Cell Prepared Based on Targeted Passivation Technology
by Meihong Liu, Yafeng Hao, Fupeng Ma, Pu Zhu, Huijia Wu, Ziwei Li, Wenyu Niu, Yujie Huang, Guitian Huangfu, Junye Li, Fengchao Li, Jiangang Yu, Tengteng Li, Longlong Zhang, Cheng Lei and Ting Liang
Crystals 2025, 15(10), 873; https://doi.org/10.3390/cryst15100873 - 8 Oct 2025
Viewed by 187
Abstract
Perovskite materials have garnered significant attention in both fundamental research and practical applications owing to their exceptional light absorption coefficients, low fabrication costs, and inherent advantages for thin-film and flexible device fabrication. Nevertheless, interface defects within perovskite films induce detrimental non-radiative carrier recombination [...] Read more.
Perovskite materials have garnered significant attention in both fundamental research and practical applications owing to their exceptional light absorption coefficients, low fabrication costs, and inherent advantages for thin-film and flexible device fabrication. Nevertheless, interface defects within perovskite films induce detrimental non-radiative carrier recombination and pronounced hysteresis effects, which collectively impose substantial limitations on the photovoltaic performance and long-term operational stability of perovskite solar cells (PSCs). Conventional passivation strategies, despite their demonstrated efficacy in mitigating interface defects, often inadvertently introduce secondary defects in originally defect-free regions, thereby restricting the extent of device performance improvement. To overcome this critical limitation, we have developed a precision defect passivation methodology that employs a targeted two-step immersion–cleaning process, achieving selective defect passivation while concomitantly eliminating residual passivating agents. This approach effectively prevents the formation of new defects in unaffected regions of the perovskite films, and the resultant PSC possesses a power conversion efficiency (PCE) of 21.08%, accompanied by a substantial mitigation of hysteresis behavior. Furthermore, unencapsulated devices demonstrate remarkable stability, retaining over 81% of their initial efficiency after 20 days of atmospheric storage under 50% relative humidity, which underscores the effectiveness of our passivation strategy in simultaneously enhancing both device performance and operational stability. Full article
(This article belongs to the Section Hybrid and Composite Crystalline Materials)
Show Figures

Figure 1

16 pages, 3674 KB  
Article
Constructing the Urban Landscape Through Heat Turbulence Fluxes as a Passive Form to Mitigate Urban Heat Islands
by Monica Ballinas, Sean Rodolfo S. Vilchis-Martínez, Adriana Lira-Oliver, Juan Gerardo Oliva Salinas and Victor L. Barradas
Land 2025, 14(10), 2013; https://doi.org/10.3390/land14102013 - 8 Oct 2025
Viewed by 264
Abstract
Urban microclimates depend on the city’s features, geographical position, climatic conditions, solar irradiance, and building materials. Many urban elements delay heat dissipation, giving rise to the urban heat island (UHI) phenomenon. (1) In Mexico City, UHIs occur mainly during the dry season (April–May) [...] Read more.
Urban microclimates depend on the city’s features, geographical position, climatic conditions, solar irradiance, and building materials. Many urban elements delay heat dissipation, giving rise to the urban heat island (UHI) phenomenon. (1) In Mexico City, UHIs occur mainly during the dry season (April–May) and likely increase in energy consumption in buildings. (2) Computational fluid dynamics models such as Ansys Fluent provide detailed flow field data related to atmospheric parameters and building surface fluctuations. With the data generated, a mitigation technique is proposed that displaces heat away from buildings, using air turbulence to actively cool them by examining the performance of w. (3) An experimental analysis was carried out to simulate thermal and aerodynamic scenarios throughout the day around three modules of different sizes, configurations, and albedo values. All modules showed a decrease in the difference between the building temperature and the air temperature, becoming colder with differences from −0.46 to −0.76 °C, while w presented values from −1.3 to 0.59 m·s−1, indicating some turbulence. (4) Therefore, it is necessary to consider mitigating UHIs in urban planning through efficient use of the properties and construction materials of each building and their arrangement in each block. Full article
Show Figures

Figure 1

23 pages, 6928 KB  
Article
Sustainable Floating PV–Storage Hybrid System for Coastal Energy Resilience
by Yong-Dong Chang, Gwo-Ruey Yu, Ching-Chih Chang and Jun-Hao Chen
Electronics 2025, 14(19), 3949; https://doi.org/10.3390/electronics14193949 - 7 Oct 2025
Viewed by 259
Abstract
Floating photovoltaic (FPV) systems are promising for coastal aquaculture where reliable electricity is essential for pumping, oxygenation, sensing, and control. A sustainable FPV–storage hybrid tailored to monsoon-prone sites is developed, with emphasis on energy efficiency and structural resilience. The prototype combines dual-axis solar [...] Read more.
Floating photovoltaic (FPV) systems are promising for coastal aquaculture where reliable electricity is essential for pumping, oxygenation, sensing, and control. A sustainable FPV–storage hybrid tailored to monsoon-prone sites is developed, with emphasis on energy efficiency and structural resilience. The prototype combines dual-axis solar tracking with a spray-cooling and cleaning subsystem and an active wind-protection strategy that automatically flattens the array when wind speed exceeds 8.0 m/s. Temperature, wind speed, and irradiance sensors are coordinated by an Arduino-based supervisor to optimize tracking, thermal management, and tilt control. A 10 W floating module and a fixed-tilt reference were fabricated and tested outdoors in Penghu, Taiwan. The FPV achieved a 25.17% energy gain on a sunny day and a 40.29% gain under overcast and windy conditions, while module temperature remained below 45 °C through on-demand spraying, reducing thermal losses. In addition, a hybrid energy storage system (HESS), integrating a 12 V/10 Ah lithium-ion battery and a 12 V/24 Ah lead-acid battery, was validated using a priority charging strategy. During testing, the lithium-ion unit was first charged to stabilize the control circuits, after which excess solar energy was redirected to the lead-acid battery for long-term storage. This hierarchical design ensured both immediate power stability and extended endurance under cloudy or low-irradiance conditions. The results demonstrate a practical, low-cost, and modular pathway to couple FPV with hybrid storage for coastal energy resilience, improving yield and maintaining safe operation during adverse weather, and enabling scalable deployment across cage-aquaculture facilities. Full article
Show Figures

Figure 1

23 pages, 1736 KB  
Article
Gap Analysis and Development of Low-Carbon Tourism in Chiang Mai Province Towards Sustainable Tourism Goals
by Kanokwan Khiaolek, Det Damrongsak, Wongkot Wongsapai, Korawan Sangkakorn, Walinpich Kumpiw, Tassawan Jaitiang, Ratchapan Karapan, Wasin Wongwilai, Nattasit Srinurak, Janjira Sukwai, Suwipa Champawan and Pongsathorn Dhumtanom
Sustainability 2025, 17(19), 8889; https://doi.org/10.3390/su17198889 - 6 Oct 2025
Viewed by 363
Abstract
This paper aims to conduct a gap analysis and explore the potential for greenhouse gas (GHG) emissions reduction in the tourism sector of Chiang Mai province, with the goal of promoting sustainable tourism. Chiang Mai is a major tourism hub in Thailand, located [...] Read more.
This paper aims to conduct a gap analysis and explore the potential for greenhouse gas (GHG) emissions reduction in the tourism sector of Chiang Mai province, with the goal of promoting sustainable tourism. Chiang Mai is a major tourism hub in Thailand, located in the Northern Economic Corridor (NEC). The gap analysis of small- and medium-sized tourism enterprises will be examined across four dimensions: (1) management, (2) socio-economy, (3) cultural, and (4) environmental. In 2024, Chiang Mai’s tourism revenue accounted for 46.97% of the northern region’s total tourism revenue and 3.73% of Thailand’s total tourism revenue. Given this economic significance, the development of sustainable tourism should be accelerated to meet the expectations of new tourists who are increasingly concerned about the environment. To address this need, this study analyzes the gaps in small- and medium-sized tourism enterprises and assesses GHG emissions through interviews and surveys of 90 tourism-related establishments across nine sectors: hotels, restaurants and beverages, tour agencies, transportation, souvenirs, attractions and activities, spas and wellness, community-based tourism, and farm tourism. The total GHG emissions from these establishments were found to be 15,303.72 tCO2eq. Moreover, if renewable energy from solar power were adopted, an installation capacity of 21,866.84 kWp would be required. Such a transition would not only reduce emissions, but also support low-carbon development in small- and medium-sized tourism enterprises and ultimately contribute to achieving net-zero tourism. Finally, this study contributes to the advancement of STGs 1–17, adapted from the SDGs 1–17, with particular emphasis on SDG 7 on clean energy and SDG 13 on climate change. Full article
Show Figures

Figure 1

19 pages, 9329 KB  
Article
How to Achieve Integrated High Supply and a Balanced State of Ecosystem Service Bundles: A Case Study of Fujian Province, China
by Ziyi Zhang, Zhaomin Tong, Feifei Fan and Ke Liang
Land 2025, 14(10), 2002; https://doi.org/10.3390/land14102002 - 6 Oct 2025
Viewed by 306
Abstract
Ecosystems are nonlinear systems that can shift between multiple stable states. Ecosystem service bundles (ESBs) integrate the supply and trade-offs of multiple services, yet the conditions for achieving high-supply and balanced states remain unclear from a nonlinear, threshold-based perspective. In this study, six [...] Read more.
Ecosystems are nonlinear systems that can shift between multiple stable states. Ecosystem service bundles (ESBs) integrate the supply and trade-offs of multiple services, yet the conditions for achieving high-supply and balanced states remain unclear from a nonlinear, threshold-based perspective. In this study, six representative ecosystem services in Fujian Province were quantified, and ESBs were identified using a Self-Organizing Map (SOM). By integrating the Multiclass Explainable Boosting Machine (MC-EBM) with the API interpretable algorithm, we propose a framework for exploring ESB driving mechanisms from a nonlinear, threshold-based perspective, addressing two key questions: (1) Which factors dominate ESB formation? (2) What thresholds of these factors promote high-supply, balanced ESBs? Results show that (i) the proportion of water bodies, distance to construction land, annual solar radiation, annual precipitation, population density, and GDP density are the primary driving factors; (ii) higher proportions of water bodies enhance and balance multiple services, whereas intensified human activities significantly reduce supply levels, and ESBs are highly sensitive to climatic variables; (iii) at the 1 km × 1 km grid scale, optimal threshold ranges of the dominant factors substantially increase the likelihood of forming high-supply, balanced ESBs. The MC-EBM effectively reveals ESB formation mechanisms, significantly outperforming multinomial logistic regression in predictive accuracy and demonstrating strong generalizability. The proposed approach provides methodological guidance for multi-service coordination across regions and scales. Corresponding land management strategies are also proposed, which deepen understanding of ESB formation and offer practical references for enhancing ecosystem service supply and reducing trade-offs. Full article
Show Figures

Figure 1

21 pages, 4159 KB  
Article
The Key Role of Carbon Materials in the Biological and Photocatalytic Reduction of Nitrates for the Sustainable Management of Wastewaters
by Luisa M. Pastrana-Martínez, Sergio Morales-Torres and Francisco J. Maldonado-Hódar
Catalysts 2025, 15(10), 958; https://doi.org/10.3390/catal15100958 - 6 Oct 2025
Viewed by 380
Abstract
This work explores the influence of material properties and experimental conditions on both biological and photocatalytic nitrate reduction processes. For the biological route, results demonstrate that carbon supports, specifically carbon gels, with open porosity, slight acidity, and high purity enhance E. coli adhesion [...] Read more.
This work explores the influence of material properties and experimental conditions on both biological and photocatalytic nitrate reduction processes. For the biological route, results demonstrate that carbon supports, specifically carbon gels, with open porosity, slight acidity, and high purity enhance E. coli adhesion and promote the formation of highly active bacterial colonies. However, carbon supports of bacteria, produced from waste biomass, emerge as a sustainable and cost-effective alternative, improving scalability and environmental value. The complete conversion of nitrates to nitrites, followed by full nitrite reduction, is achieved under optimized conditions. Photocatalytic nitrate reduction under solar radiation is also proposed as a promising and ecofriendly upgrade method to conventional wastewater treatment. Graphene oxide (GO) was used to enhance the photocatalytic activity of TiO2 nanoparticles for the degradation of nitrates. The efficiency of nitrate reduction is found to be highly sensitive to solution pH and the physicochemical nature of the photocatalyst surface, which governs nitrate interactions through electrostatic forces. TiO2–GO composites achieved up to 80% nitrate removal within 1 h and complete removal of 50 mg/L nitrate within 15 min under optimized conditions. The screening of hole scavengers revealed that formic acid, in combination with the TiO2–GO composite, delivered exceptional performance, achieving complete nitrate reduction in just 15 min under batch conditions at an acidic pH. Full article
(This article belongs to the Special Issue Advances in Photocatalytic Wastewater Purification, 2nd Edition)
Show Figures

Graphical abstract

26 pages, 4484 KB  
Article
Banana (Musa sapientum) Waste-Derived Biochar–Magnetite Magnetic Composites for Acetaminophen Removal via Photochemical Fenton Oxidation
by Manasik M. Nour, Maha A. Tony, Mai Kamal Fouad and Hossam A. Nabwey
Catalysts 2025, 15(10), 955; https://doi.org/10.3390/catal15100955 - 5 Oct 2025
Viewed by 261
Abstract
Recently, researchers have been focused on the recycling as well as transforming of bio-waste streams into a valuable resource. Banana peels are promising for such application, due to their wide availability. In this context, the integration of banana peel-derived biochar with environmentally benign [...] Read more.
Recently, researchers have been focused on the recycling as well as transforming of bio-waste streams into a valuable resource. Banana peels are promising for such application, due to their wide availability. In this context, the integration of banana peel-derived biochar with environmentally benign magnetite has significantly broadened its potential applications as a solar photocatalyst compared to the conventional photocatalysts. The materials are mixed in varied proportions of Ban-Char500-Mag@-(0:1), Ban-Char500@Mag-(1:1) and Ban-Char500@Mag-(2:1) and characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM) augmented with dispersive X-ray spectroscopy (EDX). Such modification is leading to an improvement in its application as a solar photocatalyst using the photochemical solar collector facility. The study discusses the factors controlling acetaminophen removal from aqueous effluent within 30 min of solar illumination time. Furthermore, the highlighted optimum parameters are pH 3.0, using 10 mg/L of the Ban-Char500@Mag-(1:1) catalyst and 100 mg/L of the hydrogen peroxide as a Fenton combination system for removing a complete acetaminophen from wastewater (100% oxidation). Also, the temperature influence in the oxidation system is studied and the high temperature is unfavorable, which verifies that the reaction is exothermic in nature. The catalyst is signified as a sustainable (recoverable, recyclable and reusable) substance, and showed a 72% removal even though it was in the six cyclic uses. Further, the kinetic study is assessed, and the experimental results revealed the oxidation process is following the first-order kinetic reaction. Also, the kinetic–thermodynamic parameters of activation are investigated and it is confirmed that the oxidation is exothermic and non-spontaneous in nature. Full article
(This article belongs to the Special Issue Environmentally Friendly Catalysis for Green Future)
Show Figures

Figure 1

23 pages, 2788 KB  
Article
Green Cores as Architectural and Environmental Anchors: A Performance-Based Framework for Residential Refurbishment in Novi Sad, Serbia
by Marko Mihajlovic, Jelena Atanackovic Jelicic and Milan Rapaic
Sustainability 2025, 17(19), 8864; https://doi.org/10.3390/su17198864 - 3 Oct 2025
Viewed by 438
Abstract
This research investigates the integration of green cores as central biophilic elements in residential architecture, proposing a climate-responsive design methodology grounded in architectural optimization. The study begins with the full-scale refurbishment of a compact urban apartment, wherein interior partitions, fenestration and material systems [...] Read more.
This research investigates the integration of green cores as central biophilic elements in residential architecture, proposing a climate-responsive design methodology grounded in architectural optimization. The study begins with the full-scale refurbishment of a compact urban apartment, wherein interior partitions, fenestration and material systems were reconfigured to embed vegetated zones within the architectural core. Light exposure, ventilation potential and spatial coherence were maximized through data-driven design strategies and structural modifications. Integrated planting modules equipped with PAR-specific LED systems ensure sustained vegetation growth, while embedded environmental infrastructure supports automated irrigation and continuous microclimate monitoring. This plant-centered spatial model is evaluated using quantifiable performance metrics, establishing a replicable framework for optimized indoor ecosystems. Photosynthetically active radiation (PAR)-specific LED systems and embedded environmental infrastructure were incorporated to maintain vegetation viability and enable microclimate regulation. A programmable irrigation system linked to environmental sensors allows automated resource management, ensuring efficient plant sustenance. The configuration is assessed using measurable indicators such as daylight factor, solar exposure, passive thermal behavior and similar elements. Additionally, a post-occupancy expert assessment was conducted with several architects evaluating different aspects confirming the architectural and spatial improvements achieved through the refurbishment. This study not only demonstrates a viable architectural prototype but also opens future avenues for the development of metabolically active buildings, integration with decentralized energy and water systems, and the computational optimization of living infrastructure across varying climatic zones. Full article
(This article belongs to the Special Issue Advances in Ecosystem Services and Urban Sustainability, 2nd Edition)
Show Figures

Figure 1

21 pages, 1106 KB  
Article
Risk Assessment Method for CPS-Based Distributed Generation Cluster Control in Active Distribution Networks Under Cyber Attacks
by Jinxin Ouyang, Fan Mo, Fei Huang and Yujie Chen
Sensors 2025, 25(19), 6053; https://doi.org/10.3390/s25196053 - 1 Oct 2025
Viewed by 269
Abstract
In modern power systems, distributed generation (DG) clusters such as wind and solar resources are increasingly being integrated into active distribution networks through DG cluster control, which enhances the economic efficiency and adaptability of the DGs. However, cyber attacks on cyber–physical systems (CPS) [...] Read more.
In modern power systems, distributed generation (DG) clusters such as wind and solar resources are increasingly being integrated into active distribution networks through DG cluster control, which enhances the economic efficiency and adaptability of the DGs. However, cyber attacks on cyber–physical systems (CPS) may disable control links within the DG cluster, leading to the loss of control over slave DGs and resulting in power deficits, thereby threatening system stability. Existing CPS security assessment methods have limited capacity to capture cross-domain propagation effects caused by cyber attacks and lack a comprehensive evaluation framework from the attacker’s perspective. This paper establishes a CPS system model and control–communication framework and then analyzes the cyber–physical interaction characteristics under DG cluster control. A logical model of cyber attack strategies targeting DG cluster inverters is proposed. Based on the control topology and master–slave logic, a probabilistic failure model for DG cluster control is developed. By considering power deficits at cluster point of common coupling (PCC) and results in internal network of the DG cluster, a physical consequence quantification method is introduced. Finally, a cyber risk assessment method is proposed for DG cluster control under cyber attacks. Simulation results validate the effectiveness of the proposed method. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

20 pages, 14676 KB  
Article
Optimal and Model Predictive Control of Single Phase Natural Circulation in a Rectangular Closed Loop
by Aitazaz Hassan, Guilherme Ozorio Cassol, Syed Abuzar Bacha and Stevan Dubljevic
Sustainability 2025, 17(19), 8807; https://doi.org/10.3390/su17198807 - 1 Oct 2025
Viewed by 336
Abstract
Pipeline systems are essential across various industries for transporting fluids over various ranges of distances. A notable application is natural circulation through thermo-syphoning, driven by temperature-induced density variations that generate fluid flow in closed loops. This passive mechanism is widely employed in sectors [...] Read more.
Pipeline systems are essential across various industries for transporting fluids over various ranges of distances. A notable application is natural circulation through thermo-syphoning, driven by temperature-induced density variations that generate fluid flow in closed loops. This passive mechanism is widely employed in sectors such as process engineering, oil and gas, geothermal energy, solar water heaters, fertilizers, etc. Natural Circulation Loops eliminate the need for mechanical pumps. While this passive mechanism reduces energy consumption and maintenance costs, maintaining stability and efficiency under varying operating conditions remains a challenge. This study investigates thermo-syphoning in a rectangular closed-loop system and develops optimal control strategies like using a Linear Quadratic Regulator (LQR) and Model Predictive Control (MPC) to ensure stable and efficient heat removal while explicitly addressing physical constraints. The results demonstrate that MPC improves system stability and reduces energy usage through optimized control actions by nearly one-third in the initial energy requirement. Compared to the LQR and unconstrained MPC, MPC with active constraints effectively manages input limitations, ensuring safer and more practical operation. With its predictive capability and adaptability, the proposed MPC framework offers a robust, scalable solution for real-time industrial applications, supporting the development of sustainable and adaptive natural circulation pipeline systems. Full article
Show Figures

Figure 1

33 pages, 3727 KB  
Article
BiOI/Magnetic Nanocomposites Derived from Mine Tailings for Photocatalytic Degradation of Phenolic Compounds (Caffeic Acid) in Winery Wastewater
by Valeria Araya Alfaro, Celeste Vega Zamorano, Claudia Araya Vera, Adriana C. Mera, Ricardo Zamarreño Bastias and Alexander Alfonso Alvarez
Catalysts 2025, 15(10), 937; https://doi.org/10.3390/catal15100937 - 1 Oct 2025
Viewed by 389
Abstract
The development of advanced photocatalysts that are efficient, recyclable and sustainable represents a significant challenge in the face of the growing presence of persistent organic contaminants in industrial wastewaters. This paper presents a novel approach based on the design of new heterostructures synthesized [...] Read more.
The development of advanced photocatalysts that are efficient, recyclable and sustainable represents a significant challenge in the face of the growing presence of persistent organic contaminants in industrial wastewaters. This paper presents a novel approach based on the design of new heterostructures synthesized from BiOI and magnetic materials, using not only synthetic magnetite, but also magnetic compounds extracted from mine tailings, transforming environmental liabilities in active supporting materials through valorization strategies in line with the circular economy. Through precise control of composition, it was established that a proportion of 6% by mass of the magnetic phase allows the formation of a heterostructure that is highly photocatalytically efficient. These compounds were evaluated using caffeic acid, an organic contaminant of agroindustrial origin, as a target compound. Experiments were carried out under simulated solar radiation for 120 min. Among the materials synthesized, the BiOI/MMA heterostructure, derived from industrial tailing A, displayed an outstanding photodegradation efficiency of over 89.4 ± 0.25%, attributed to an effective separation of photoinduced charges, a broad active surface and a synergic interface interaction between its constituent phases. Furthermore, BiOI/MMA exhibited excellent structural stability and magnetic recovery capacity, which allowed for its reuse through two consecutive cycles without any significant losses to its photocatalytic performance. Thus, this study constitutes a significant contribution to the design of functional photocatalysts derived from industrial tailings, thus promoting clean, technological solutions for the treatment of wastewater and reinforcing the link between environmental remediation and circular economy. Full article
(This article belongs to the Section Catalytic Reaction Engineering)
Show Figures

Graphical abstract

30 pages, 11668 KB  
Article
Energy Simulation-Driven Life-Cycle Costing of Gobi Solar Greenhouses: Stakeholder-Focused Analysis for Tomato Production
by Xiaodan Zhang, Jianming Xie, Ning Ma, Youlin Chang, Jing Zhang and Jing Li
Agriculture 2025, 15(19), 2053; https://doi.org/10.3390/agriculture15192053 - 30 Sep 2025
Viewed by 287
Abstract
Sustainable agricultural production systems are a global consensus. Their life-cycle economic feasibility is essential for long-term sustainable goals. This study integrates life-cycle costing with building energy simulation to assess the cost performance of conventional and innovative greenhouse tomato production systems in China’s Hexi [...] Read more.
Sustainable agricultural production systems are a global consensus. Their life-cycle economic feasibility is essential for long-term sustainable goals. This study integrates life-cycle costing with building energy simulation to assess the cost performance of conventional and innovative greenhouse tomato production systems in China’s Hexi Corridor, using dynamic thermal load modeling to overcome empirical-data limitations in traditional life-cycle costing. Under the facility-lease farming model, construction companies incur life-cycle costs of CNY 10.53·m−2·yr−1 for the conventional concrete-walled Gobi solar greenhouse and CNY 10.45·m−2·yr−1 for the innovative flexible insulation-walled Gobi solar greenhouses. However, farmer greenhouse contractors achieve 10.5% lower life-cycle costs for tomato cultivation in the conventional structure (CNY 2.87·kg−1·yr−1) than in the innovative one (CNY 3.21·kg−1·yr−1) due to 52.6% heating energy savings from the integrated active solar thermal systems. Furthermore, life-cycle cash flow analysis confirms construction companies incur non-viable returns, while farmers achieve substantial profits, with 52.5% higher cumulative profits obtained in the conventional greenhouse than the innovative greenhouse. This profit allocation imbalance threatens sustainability. Our pioneering stakeholder-perspective assessment provides evidence-based strategies for government, investors, and farmers to optimize resource allocation and promote sustainable Gobi agriculture. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

26 pages, 10152 KB  
Article
Linking Acoustic Indices to Vegetation and Microclimate in a Historical Urban Garden: Setting the Stage for a Restorative Soundscape
by Alessia Portaccio, Francesco Chianucci, Francesco Pirotti, Marco Piragnolo, Marco Sozzi, Andrea Zangrossi, Miriam Celli, Marta Mazzella di Bosco, Monica Bolognesi, Enrico Sella, Maurizio Corbetta, Francesca Pazzaglia and Raffaele Cavalli
Land 2025, 14(10), 1970; https://doi.org/10.3390/land14101970 - 30 Sep 2025
Viewed by 356
Abstract
Urban soundscapes are increasingly recognized as fundamental for both ecological integrity and human well-being, yet the complex interplay between the vegetation structure, seasonal dynamics, and microclimatic factors in shaping these soundscapes remains poorly understood. This study tests the hypothesis that vegetation structure and [...] Read more.
Urban soundscapes are increasingly recognized as fundamental for both ecological integrity and human well-being, yet the complex interplay between the vegetation structure, seasonal dynamics, and microclimatic factors in shaping these soundscapes remains poorly understood. This study tests the hypothesis that vegetation structure and seasonally driven biological activity mediate the balance and the quality of the urban acoustic environment. We investigated seasonal and spatial variations in five acoustic indices (NDSI, ACI, AEI, ADI, and BI) within a historical urban garden in Castelfranco Veneto, Italy. Using linear mixed-effects models, we analyzed the effects of season, microclimatic variables, and vegetation characteristics on soundscape composition. Non-parametric tests were used to assess spatial differences in vegetation metrics. Results revealed strong seasonal patterns, with spring showing increased NDSI (+0.17), ADI (+0.22), and BI (+1.15) values relative to winter, likely reflecting bird breeding phenology and enhanced biological productivity. Among microclimatic predictors, temperature (p < 0.001), humidity (p = 0.014), and solar radiation (p = 0.002) showed significant relationships with acoustic indices, confirming their influence on both animal behaviour and sound propagation. Spatial analyses showed significant differences in acoustic patterns across points (Kruskal–Wallis p < 0.01), with vegetation metrics such as tree density and evergreen proportion correlating with elevated biophonic activity. Although the canopy height model did not emerge as a significant predictor in the models, the observed spatial heterogeneity supports the role of vegetation in shaping urban sound environments. By integrating ecoacoustic indices, LiDAR-derived vegetation data, and microclimatic parameters, this study offers novel insights into how vegetational components should be considered to manage urban green areas to support biodiversity and foster acoustically restorative environments, advancing the evidence base for sound-informed urban planning. Full article
Show Figures

Figure 1

17 pages, 4320 KB  
Article
Can Heat Waves Fully Capture Outdoor Human Thermal Stress? A Pilot Investigation in a Mediterranean City
by Serena Falasca, Ferdinando Salata, Annalisa Di Bernardino, Anna Maria Iannarelli and Anna Maria Siani
Atmosphere 2025, 16(10), 1145; https://doi.org/10.3390/atmos16101145 - 29 Sep 2025
Viewed by 613
Abstract
In addition to air temperature and personal factors, other weather quantities govern the outdoor human thermal perception. This study provides a new targeted approach for the evaluation of extreme events based on a specific multivariable bioclimate index. Heat waves (HWs) and outdoor human [...] Read more.
In addition to air temperature and personal factors, other weather quantities govern the outdoor human thermal perception. This study provides a new targeted approach for the evaluation of extreme events based on a specific multivariable bioclimate index. Heat waves (HWs) and outdoor human thermal stress (OHTS) events that occurred in downtown Rome (Italy) over the years 2018–2023 are identified, characterized, and compared through appropriate indices based on the air temperature for HWs and the Mediterranean Outdoor Comfort Index (MOCI) for OHTS events. The overlap between the two types of events is evaluated for each year through the hit (HR) and false alarm rates. The outcomes reveal severe traits for HWs and OHTS events and higher values of HR (minimum of 66%) with OHTS as a predictor of extreme conditions. This pilot investigation confirms that the use of air temperature threshold underestimates human physiological stress, revealing the importance of including multiple parameters, such as weather variables (temperature, wind speed, humidity, and solar radiation) and personal factors, in the assessment of hazards for the population living in a specific geographical region. This type of approach reveals increasingly critical facets and can provide key strategies to establish safe outdoor conditions for occupational and leisure activities. Full article
(This article belongs to the Section Biometeorology and Bioclimatology)
Show Figures

Figure 1

Back to TopTop