Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,269)

Search Parameters:
Keywords = solar cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2186 KB  
Article
A High-Performance Perovskite Solar Cell Prepared Based on Targeted Passivation Technology
by Meihong Liu, Yafeng Hao, Fupeng Ma, Pu Zhu, Huijia Wu, Ziwei Li, Wenyu Niu, Yujie Huang, Guitian Huangfu, Junye Li, Fengchao Li, Jiangang Yu, Tengteng Li, Longlong Zhang, Cheng Lei and Ting Liang
Crystals 2025, 15(10), 873; https://doi.org/10.3390/cryst15100873 - 8 Oct 2025
Abstract
Perovskite materials have garnered significant attention in both fundamental research and practical applications owing to their exceptional light absorption coefficients, low fabrication costs, and inherent advantages for thin-film and flexible device fabrication. Nevertheless, interface defects within perovskite films induce detrimental non-radiative carrier recombination [...] Read more.
Perovskite materials have garnered significant attention in both fundamental research and practical applications owing to their exceptional light absorption coefficients, low fabrication costs, and inherent advantages for thin-film and flexible device fabrication. Nevertheless, interface defects within perovskite films induce detrimental non-radiative carrier recombination and pronounced hysteresis effects, which collectively impose substantial limitations on the photovoltaic performance and long-term operational stability of perovskite solar cells (PSCs). Conventional passivation strategies, despite their demonstrated efficacy in mitigating interface defects, often inadvertently introduce secondary defects in originally defect-free regions, thereby restricting the extent of device performance improvement. To overcome this critical limitation, we have developed a precision defect passivation methodology that employs a targeted two-step immersion–cleaning process, achieving selective defect passivation while concomitantly eliminating residual passivating agents. This approach effectively prevents the formation of new defects in unaffected regions of the perovskite films, and the resultant PSC possesses a power conversion efficiency (PCE) of 21.08%, accompanied by a substantial mitigation of hysteresis behavior. Furthermore, unencapsulated devices demonstrate remarkable stability, retaining over 81% of their initial efficiency after 20 days of atmospheric storage under 50% relative humidity, which underscores the effectiveness of our passivation strategy in simultaneously enhancing both device performance and operational stability. Full article
(This article belongs to the Section Hybrid and Composite Crystalline Materials)
Show Figures

Figure 1

13 pages, 3651 KB  
Article
Optical Absorption Properties of Sn- and Pd-doped ZnO: Comparative Analysis of Substitutional Metallic Impurities
by Vicente Cisternas, Pablo Díaz, Ulises Guevara, David Laroze and Eduardo Cisternas
Materials 2025, 18(19), 4613; https://doi.org/10.3390/ma18194613 - 5 Oct 2025
Viewed by 188
Abstract
In this article, we present density functional theory (DFT) calculations for Zn(1x)MxO, where M represents one of the following substitutional metallic impurities: Ga, Cd, Cu, Pd, Ag, In, or Sn. Our study is [...] Read more.
In this article, we present density functional theory (DFT) calculations for Zn(1x)MxO, where M represents one of the following substitutional metallic impurities: Ga, Cd, Cu, Pd, Ag, In, or Sn. Our study is based on the wurtzite structure of pristine ZnO. We employ the Quantum Espresso package, using a fully unconstrained implementation of the generalized gradient approximation (GGA) with an additional U correction for exchange and correlation effects. We analyze the density of states, energy gaps, and absorption spectra for these doped systems, considering the limitations of a finite-size cell approximation. Rather than focusing on precise numerical values, we highlight the following two key aspects: the location of impurity-induced electronic states and the overall trends in optical properties across the eight systems, including pristine ZnO. Our results indicate that certain dopants introduce electronic levels within the band gap, which enhance optical absorption in the visible, near-infrared, and near-ultraviolet regions. For instance, Sn-doped ZnO shows a pronounced absorption peak at ∼2.5 eV, which is in the middle of the visible spectrum. In the case of Ag and Pd impurities, they lead to increased electromagnetic radiation absorption at the near ultra-violet spectrum. This represents a promising performance for efficient solar radiation absorption, both at the Earth’s surface and in outer space. Furthermore, Ga- and In-doped ZnO present bandgaps of ∼0.9 eV, promising an interesting performance in the near infrared region. These findings suggest potential applications in solar energy harvesting and selective sensors. Full article
(This article belongs to the Topic Wide Bandgap Semiconductor Electronics and Devices)
Show Figures

Figure 1

24 pages, 2836 KB  
Article
Investigation of the Optimum Solar Insolation for PV Systems Considering the Effect of Tilt Angle and Ambient Temperature
by Raghed Melhem, Yomna Shaker, Fatma Mazen Ali Mazen and Ali Abou-Elnour
Energies 2025, 18(19), 5257; https://doi.org/10.3390/en18195257 - 3 Oct 2025
Viewed by 275
Abstract
As interest in PV installation has spiked in recent years, the need for optimizing several factors of PV performance has become crucial. These are tilt angle and solar cell temperature (taking into account ambient temperature) and their effect on solar insolation for solar [...] Read more.
As interest in PV installation has spiked in recent years, the need for optimizing several factors of PV performance has become crucial. These are tilt angle and solar cell temperature (taking into account ambient temperature) and their effect on solar insolation for solar photovoltaic (PV) systems. The objective of this study is to achieve the optimal tilt angle and cell temperature accordingly by developing a MATLAB program to reach the target of maximizing the received solar insolation. To achieve this, additional solar angles such as the azimuth, hour, latitude angle, declination angle, hour angle, and azimuth angle need to be calculated. By computing the solar insolation for specific regions of interest, specifically the Gulf Cooperation Council (GCC) countries, the desired results can be obtained. Additionally, the study aims to assess the influence of PV cell temperature on the I–V curves of commercially available PV modules, which will provide insights into the impact of temperature on the performance characteristics of PV cells. By employing a developed model, the study examined the combined collective influences of solar received radiation, tilt angle, and ambient temperature on the output power of PV systems in five different cities. The annual optimal tilt angles were found to be as follows: Mecca (21.4° N)—21.48°, Fujairah (25.13° N)—25.21°, Kuwait (29.3° N)—29.38°, Baghdad (33.3° N)—33.38°, and Mostaganem (35.9° N)—2535.98°. Notably, the estimated yearly optimal tilt angles closely corresponded to the latitudes of the respective cities. Additionally, the study explored the impact of ambient temperature on PV module performance. It was observed that an increase in ambient temperature resulted in a corresponding rise in the temperature of the PV cells, indicating the significant influence of environmental temperature on PV module efficiency. Overall, the findings demonstrate that adjusting the tilt angle of PV modules on a monthly basis led to higher solar power output compared to yearly adjustments. These results underscore the importance of considering both solar radiation and ambient temperature when optimizing PV power generation. Full article
(This article belongs to the Collection Featured Papers in Solar Energy and Photovoltaic Systems Section)
Show Figures

Figure 1

50 pages, 6411 KB  
Article
AI-Enhanced Eco-Efficient UAV Design for Sustainable Urban Logistics: Integration of Embedded Intelligence and Renewable Energy Systems
by Luigi Bibbò, Filippo Laganà, Giuliana Bilotta, Giuseppe Maria Meduri, Giovanni Angiulli and Francesco Cotroneo
Energies 2025, 18(19), 5242; https://doi.org/10.3390/en18195242 - 2 Oct 2025
Viewed by 352
Abstract
The increasing use of UAVs has reshaped urban logistics, enabling sustainable alternatives to traditional deliveries. To address critical issues inherent in the system, the proposed study presents the design and evaluation of an innovative unmanned aerial vehicle (UAV) prototype that integrates advanced electronic [...] Read more.
The increasing use of UAVs has reshaped urban logistics, enabling sustainable alternatives to traditional deliveries. To address critical issues inherent in the system, the proposed study presents the design and evaluation of an innovative unmanned aerial vehicle (UAV) prototype that integrates advanced electronic components and artificial intelligence (AI), with the aim of reducing environmental impact and enabling autonomous navigation in complex urban environments. The UAV platform incorporates brushless DC motors, high-density LiPo batteries and perovskite solar cells to improve energy efficiency and increase flight range. The Deep Q-Network (DQN) allocates energy and selects reference points in the presence of wind and payload disturbances, while an integrated sensor system monitors motor vibration/temperature and charge status to prevent failures. In urban canyon and field scenarios (wind from 0 to 8 m/s; payload from 0.35 to 0.55 kg), the system reduces energy consumption by up to 18%, increases area coverage by 12% for the same charge, and maintains structural safety factors > 1.5 under gust loading. The approach combines sustainable materials, efficient propulsion, and real-time AI-based navigation for energy-conscious flight planning. A hybrid methodology, combining experimental design principles with finite-element-based structural modelling and AI-enhanced monitoring, has been applied to ensure structural health awareness. The study implements proven edge-AI sensor fusion architectures, balancing portability and telemonitoring with an integrated low-power design. The results confirm a reduction in energy consumption and CO2 emissions compared to traditional delivery vehicles, confirming that the proposed system represents a scalable and intelligent solution for last-mile delivery, contributing to climate resilience and urban sustainability. The findings position the proposed UAV as a scalable reference model for integrating AI-driven navigation and renewable energy systems in sustainable logistics. Full article
Show Figures

Figure 1

10 pages, 4647 KB  
Article
Color-Tunable and Efficient CsPbBr3 Photovoltaics Enabled by a Triple-Functional P3HT Modification
by Yanan Zhang, Zhizhe Wang, Dazheng Chen, Tongwanming Zheng, Menglin Yan, Yibing He, Zihao Wang, Weihang Zhang and Chunfu Zhang
Materials 2025, 18(19), 4579; https://doi.org/10.3390/ma18194579 - 2 Oct 2025
Viewed by 259
Abstract
All inorganic CsPbBr3 possesses ideal stability in halide perovskites, but its wide bandgap and relatively poor film quality seriously limit the performance enhancement and possible applications of perovskite solar cells (PSCs). In this work, a triple-functional poly(3-Hexylthiophene) (P3HT) modifier was introduced to [...] Read more.
All inorganic CsPbBr3 possesses ideal stability in halide perovskites, but its wide bandgap and relatively poor film quality seriously limit the performance enhancement and possible applications of perovskite solar cells (PSCs). In this work, a triple-functional poly(3-Hexylthiophene) (P3HT) modifier was introduced to realize color-tunable semi-transparent CsPbBr3 PSCs. From the optical perspective, the P3HT acted as the assistant photoactive layer, enhanced the light absorption capacity of the CsPbBr3 film, and broadened the spectrum response range of devices. In view of the hole transport layer, P3HT modified the energy level matching between the CsPbBr3/anode interface and facilitated the hole transport. Simultaneously, the S in P3HT formed a more stable Pb-S bond with the uncoordinated Pb2+ on the surface of CsPbBr3 and played the role of a defect passivator. As the P3HT concentration increased from 0 to 15 mg/mL, the color of CsPbBr3 devices gradually changed from light yellow to reddish brown. The PSC treated by an optimal P3HT concentration of 10 mg/mL achieved a champion power conversion efficiency (PCE) of 8.71%, with a VOC of 1.30 V and a JSC of 8.54 mA/cm2, which are remarkably higher than those of control devices (6.86%, 1.22 V, and 8.21 mA/cm2), as well its non-degrading stability and repeatability. Here, the constructed CsPbBr3/P3HT heterostructure revealed effective paths for enhancing the photovoltaic performance of CsPbBr3 PSCs and boosted their semi-transparent applications in building integrated photovoltaics (BIPVs). Full article
Show Figures

Figure 1

21 pages, 5821 KB  
Article
Systematic Study of Gold Nanoparticle Effects on the Performance and Stability of Perovskite Solar Cells
by Sofia Rubtsov, Akshay Puravankara, Edi L. Laufer, Alexander Sobolev, Alexey Kosenko, Vasily Shishkov, Mykola Shatalov, Victor Danchuk, Michael Zinigrad, Albina Musin and Lena Yadgarov
Nanomaterials 2025, 15(19), 1501; https://doi.org/10.3390/nano15191501 - 1 Oct 2025
Viewed by 257
Abstract
We explore a plasmonic interface for perovskite solar cells (PSCs) by integrating inkjet-printed TiO2-AuNP microdot arrays (MDA) into the electron transport layer. This systematic study examines how the TiO2 blocking layer (BL) surface conditioning, AuNP layer positioning, and nanoparticle loading [...] Read more.
We explore a plasmonic interface for perovskite solar cells (PSCs) by integrating inkjet-printed TiO2-AuNP microdot arrays (MDA) into the electron transport layer. This systematic study examines how the TiO2 blocking layer (BL) surface conditioning, AuNP layer positioning, and nanoparticle loading collectively influence device performance. Pre-annealing the BL increases its hydrophobicity, yielding smaller and denser AuNP microdots with an enhanced localized surface plasmon resonance (LSPR). Positioning the AuNP MDA at the BL/perovskite interface (above the BL) maximizes near-field plasmonic coupling to the absorber, resulting in higher photocurrent and power conversion devices; these trends are corroborated by finite-difference time-domain (FDTD) simulations. Moreover, these devices demonstrate better stability over time compared to those with AuNPs at the transparent electrode (under BL). Although higher AuNP concentrations improve dispersion stability, preserve MAPI crystallinity, and yield more uniform nanoparticle sizes, device measurements showed no performance gains. After annealing, the samples with the Au content of 23 wt% relative to TiO2 achieved optimal PSC efficiency by balancing plasmonic enhancement and charge transport without the increased resistance and recombination losses seen at higher loadings. Importantly, X-ray diffraction (XRD) confirms that introducing the TiO2-AuNP MDA at the interface does not disrupt the perovskite’s crystal structure, underscoring the structural compatibility of this plasmonic enhancement. Overall, our findings highlight a scalable strategy to boost PSC efficiency via engineered light-matter interactions at the nanoscale without compromising the perovskite’s structural integrity. Full article
(This article belongs to the Special Issue Photochemical Frontiers of Noble Metal Nanomaterials)
Show Figures

Figure 1

15 pages, 4890 KB  
Article
Tunable Bandgap in Cobalt-Doped FeS2 Thin Films for Enhanced Solar Cell Performance
by Eder Cedeño Morales, Yolanda Peña Méndez, Sergio A. Gamboa-Sánchez, Boris Ildusovich Kharissov, Tomás C. Hernández García and Marco A. Garza-Navarro
Materials 2025, 18(19), 4546; https://doi.org/10.3390/ma18194546 - 30 Sep 2025
Viewed by 254
Abstract
Cobalt-doped iron disulfide (FeS2) thin films were synthesized via chemical bath deposition (CBD) followed by annealing at 450 °C, yielding phase-pure pyrite structures with multifunctional properties. A deposition temperature of 95 °C is critical for promoting Co incorporation, suppressing sulphur vacancies, [...] Read more.
Cobalt-doped iron disulfide (FeS2) thin films were synthesized via chemical bath deposition (CBD) followed by annealing at 450 °C, yielding phase-pure pyrite structures with multifunctional properties. A deposition temperature of 95 °C is critical for promoting Co incorporation, suppressing sulphur vacancies, and achieving structural stabilization of the film. After annealing, the dendritic morphologies transformed into compact quasi-spherical nanoparticles (~100 nm), which enhanced the crystallinity and optoelectronic performance of the films. The films exhibited strong absorption (>50%) in the visible and near-infrared regions and tunable direct bandgaps (1.14 to 0.96 eV, within the optimal range for single-junction solar cells. Electrical characterization revealed a fourth-order increase in conductivity after annealing (up to 4.78 Ω−1 cm−1) and confirmed stable p-type behavior associated with Co2+-induced acceptor states and defect passivation. These results demonstrate that CBD enabled the fabrication of Co-doped FeS2 thin films with synergistic structural, electrical, and optical properties. The integration of earth-abundant elements and tunable electronic properties makes these films promising absorber materials for the next-generation photovoltaic devices. Full article
(This article belongs to the Special Issue The Optical, Ferroelectric and Dielectric Properties of Thin Films)
Show Figures

Figure 1

20 pages, 1799 KB  
Article
An Analytical Framework for Determining the Minimum Size of Highly Miniaturized Satellites: PlanarSats
by Mehmet Şevket Uludağ and Alim Rüstem Aslan
Aerospace 2025, 12(10), 876; https://doi.org/10.3390/aerospace12100876 - 28 Sep 2025
Viewed by 222
Abstract
This paper introduces a power-driven systems engineering methodology for the early-phase design of highly miniaturized satellites: PlanarSats. We derive an analytical framework linking power requirements, contingency policies, solar-cell performance, and subsystem integration to determine the absolute minimum satellite size. Through idealized and detailed [...] Read more.
This paper introduces a power-driven systems engineering methodology for the early-phase design of highly miniaturized satellites: PlanarSats. We derive an analytical framework linking power requirements, contingency policies, solar-cell performance, and subsystem integration to determine the absolute minimum satellite size. Through idealized and detailed case studies, we explore the trade-offs inherent in subsystem selection and integration constraints. Sensitivity analysis identifies critical factors affecting minimum area and operational envelopes. Our framework provides a clear tool for balancing functionality, reliability, and physical limits in next-generation ultra-small satellite missions. Full article
(This article belongs to the Special Issue Space System Design)
Show Figures

Figure 1

32 pages, 7290 KB  
Article
Dynamic Modeling and Experimental Validation of the Photovoltaic/Thermal System
by Klemen Sredenšek, Eva Simonič, Klemen Deželak, Marko Bizjak, Niko Lukač and Sebastijan Seme
Appl. Sci. 2025, 15(19), 10505; https://doi.org/10.3390/app151910505 - 28 Sep 2025
Viewed by 212
Abstract
The aim of this paper is to present a novel and comprehensive methodology for the dynamic modeling and experimental validation of a photovoltaic/thermal system. The dynamic model is divided into thermal and electrical subsystems, encompassing the photovoltaic/thermal module and the thermal energy storage. [...] Read more.
The aim of this paper is to present a novel and comprehensive methodology for the dynamic modeling and experimental validation of a photovoltaic/thermal system. The dynamic model is divided into thermal and electrical subsystems, encompassing the photovoltaic/thermal module and the thermal energy storage. The thermal subsystem of both the photovoltaic/thermal module and the thermal energy storage is described by a one-dimensional dynamic model of heat transfer mechanisms and optical losses, while the electrical subsystem is presented as an electrical equivalent circuit of double diode solar cell. Model validation was conducted on a modern experimental photovoltaic/thermal system over an extended operational period at a five-minute resolution, with validation days classified as sunny, cloudy, or overcast based on weather conditions, thereby demonstrating an applied approach. The results demonstrate the lowest deviation values reported to date, confirmed using six quantitative indicators. The added value of the proposed methodology, not previously addressed in the literature, lies in the following contributions: (i) comprehensive modeling of the entire photovoltaic/thermal system, (ii) accurate consideration of optical losses in the photovoltaic/thermal module, and (iii) long-term experimental validation. Overall, the proposed methodology provides a reliable and efficient framework for PV/T system design, optimization, and long-term performance assessment. Full article
(This article belongs to the Special Issue Solar Thermal Energy: Conversion, Storage, and Utilization)
Show Figures

Figure 1

23 pages, 3362 KB  
Review
Polymer Functional Layers for Perovskite Solar Cells
by Jinho Lee, Jaehyeok Kang, Jong-Hoon Lee and Soonil Hong
Polymers 2025, 17(19), 2607; https://doi.org/10.3390/polym17192607 - 26 Sep 2025
Viewed by 572
Abstract
Perovskite solar cells (PSCs) are next-generation solar cells; they are replacing silicon-based solar cells due to their higher efficiency, greater cost-effectiveness, and enhanced potential for various applications. Exceeding the efficiency of crystalline silicon-based solar cells, the commercialization of PSCs has driven not only [...] Read more.
Perovskite solar cells (PSCs) are next-generation solar cells; they are replacing silicon-based solar cells due to their higher efficiency, greater cost-effectiveness, and enhanced potential for various applications. Exceeding the efficiency of crystalline silicon-based solar cells, the commercialization of PSCs has driven not only the development of perovskite photoactive materials but also charge transport layer advancements, interfacial engineering, and processing technologies. PSCs were developed later than dye-sensitized solar cells and organic solar cells; the adoption of techniques previously employed in these technologies is significant to enhancing their performance. Among them, polymers are widely employed in perovskite solar cells to facilitate efficient charge transport, provide interfacial passivation, enhance mechanical flexibility, enable solution-based processing, and improve environmental stability. In this review, we highlight the roles of polymer materials as charge transport layers, interfacial layers, and other functional layers for highly efficient and stable PSCs. Full article
(This article belongs to the Special Issue Polymer Thin Films: Synthesis, Characterization and Applications)
Show Figures

Figure 1

15 pages, 1460 KB  
Article
Areal Assessment in the Design of a Try-Out Grid-Tied Solar PV-Green Hydrogen-Battery Storage Microgrid System for Industrial Application in South Africa
by Blessed Sarema, Gibson P. Chirinda, Sören Scheffler, Stephen Matope and Ulrike Beyer
Sustainability 2025, 17(19), 8649; https://doi.org/10.3390/su17198649 - 26 Sep 2025
Viewed by 231
Abstract
The carbon emission reduction mission requires a multifaceted approach, in which green hydrogen is expected to play a key role. The accelerated adoption of green hydrogen technologies is vital to this journey towards carbon neutrality by 2050. However, the energy transition involving green [...] Read more.
The carbon emission reduction mission requires a multifaceted approach, in which green hydrogen is expected to play a key role. The accelerated adoption of green hydrogen technologies is vital to this journey towards carbon neutrality by 2050. However, the energy transition involving green hydrogen requires a data-driven approach to ensure that the benefits are realised. The introduction of testing sites for green hydrogen technologies will be crucial in enabling the performance testing of various components within the green hydrogen value chain. This study involves an areal assessment of a selected test site for the installation of a grid-tied solar PV-green hydrogen-battery storage microgrid system at a factory facility in South Africa. The evaluation includes a site energy audit to determine the consumption profile and an analysis of the location’s weather pattern to assess its impact on the envisaged microgrid. Lastly, a design of the microgrid is conceptualised. A 39 kW photovoltaic system powers the microgrid, which comprises a 22 kWh battery storage system, 10 kW of electrolyser capacity, an 8 kW fuel cell, and an 800 L hydrogen storage capacity between 30 and 40 bars. Full article
Show Figures

Figure 1

26 pages, 6533 KB  
Article
MPC Design and Comparative Analysis of Single-Phase 7-Level PUC and 9-Level CSC Inverters for Grid Integration of PV Panels
by Raghda Hariri, Fadia Sebaaly, Kamal Al-Haddad and Hadi Y. Kanaan
Energies 2025, 18(19), 5116; https://doi.org/10.3390/en18195116 - 26 Sep 2025
Viewed by 728
Abstract
In this study, a novel comparison between single phase 7-Level Packed U—Cell (PUC) inverter and single phase 9-Level Cross Switches Cell (CSC) inverter with Model Predictive Controller (MPC) for solar grid-tied applications is presented. Our innovation introduces a unique approach by integrating PV [...] Read more.
In this study, a novel comparison between single phase 7-Level Packed U—Cell (PUC) inverter and single phase 9-Level Cross Switches Cell (CSC) inverter with Model Predictive Controller (MPC) for solar grid-tied applications is presented. Our innovation introduces a unique approach by integrating PV solar panels in PUC and CSC inverters in their two DC links rather than just one which increases power density of the system. Another key benefit for the proposed models lies in their simplified design, offering improved power quality and reduced complexity relative to traditional configurations. Moreover, both models feature streamlined control architectures that eliminate the need for additional controllers such as PI controllers for grid reference current extraction. Furthermore, the implementation of Maximum Power Point Tracking (MPPT) technology directly optimizes power output from the PV panels, negating the necessity for a DC-DC booster converter during integration. To validate the proposed concept’s performance for both inverters, extensive simulations were conducted using MATLAB/Simulink, assessing both inverters under steady-state conditions as well as various disturbances to evaluate its robustness and dynamic response. Both inverters exhibit robustness against variations in grid voltage, phase shift, and irradiation. By comparing both inverters, results demonstrate that the CSC inverter exhibits superior performance due to its booster feature which relies on generating voltage level greater than the DC input source. This primary advantage makes CSC a booster inverter. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

23 pages, 3810 KB  
Article
Nanofibrous Polymer Filters for Removal of Metal Oxide Nanoparticles from Industrial Processes
by Andrzej Krupa, Arkadiusz Tomasz Sobczyk and Anatol Jaworek
Membranes 2025, 15(10), 291; https://doi.org/10.3390/membranes15100291 - 25 Sep 2025
Viewed by 272
Abstract
Filtration of submicron particles and nanoparticles is an important problem in nano-industry and in air conditioning and ventilation systems. The presence of submicron particles comprising fungal spores, bacteria, viruses, microplastic, and tobacco-smoke tar in ambient air is a severe problem in air conditioning [...] Read more.
Filtration of submicron particles and nanoparticles is an important problem in nano-industry and in air conditioning and ventilation systems. The presence of submicron particles comprising fungal spores, bacteria, viruses, microplastic, and tobacco-smoke tar in ambient air is a severe problem in air conditioning systems. Many nanotechnology material processes used for catalyst, solar cells, gas sensors, energy storage devices, anti-corrosion and hydrophobic surface coating, optical glasses, ceramics, nanocomposite membranes, textiles, and cosmetics production also generate various types of nanoparticles, which can retain in a conveying gas released into the atmosphere. Particles in this size range are particularly difficult to remove from the air by conventional methods, e.g., electrostatic precipitators, conventional filters, or cyclones. For these reasons, nanofibrous filters produced by electrospinning were developed to remove fine particles from the post-processing gases. The physical basis of electrospinning used for nanofilters production is an employment of electrical forces to create a tangential stress on the surface of a viscous liquid jet, usually a polymer solution, flowing out from a capillary nozzle. The paper presents results for investigation of the filtration process of metal oxide nanoparticles: TiO2, MgO, and Al2O3 by electrospun nanofibrous filter. The filter was produced from polyvinylidene fluoride (PVDF). The concentration of polymer dissolved in dimethylacetamide (DMAC) and acetone mixture was 15 wt.%. The flow rate of polymer solution was 1 mL/h. The nanoparticle aerosol was produced by the atomization of a suspension of these nanoparticles in a solvent (methanol) using an aerosol generator. The experimental results presented in this paper show that nanofilters made of PVDF with surface density of 13 g/m2 have a high filtration efficiency for nano- and microparticles, larger than 90%. The gas flow rate through the channel was set to 960 and 670 l/min. The novelty of this paper was the investigation of air filtration from various types of nanoparticles produced by different nanotechnology processes by nanofibrous filters and studies of the morphology of nanoparticle deposited onto the nanofibers. Full article
Show Figures

Figure 1

12 pages, 8239 KB  
Article
Impact of Molecular π-Bridge Modifications on Triphenylamine-Based Donor Materials for Organic Photovoltaic Solar Cells
by Duvalier Madrid-Úsuga, Omar J. Suárez and Alfonso Portacio
Condens. Matter 2025, 10(4), 52; https://doi.org/10.3390/condmat10040052 - 25 Sep 2025
Viewed by 275
Abstract
This study presents a computational investigation into the design of triphenylamine-based donor chromophores incorporating 2-(1,1-dicyanomethylene)rhodanine as the acceptor unit. Three molecular architectures (System-1 to System-3) were developed by introducing distinct thiophene-derived π-bridges to modulate their electronic and optical characteristics for potential application [...] Read more.
This study presents a computational investigation into the design of triphenylamine-based donor chromophores incorporating 2-(1,1-dicyanomethylene)rhodanine as the acceptor unit. Three molecular architectures (System-1 to System-3) were developed by introducing distinct thiophene-derived π-bridges to modulate their electronic and optical characteristics for potential application in bulk heterojunction organic solar cells (OSCs). Geometrical optimizations were performed at the B3LYP/6-31+G(d,p) level, while excited-state and absorption properties were evaluated using TD-DFT with the CAM-B3LYP functional. Frontier orbital analysis revealed efficient charge transfer from donor to acceptor moieties, with System-3 showing the narrowest HOMO–LUMO gap (1.96 eV) and the lowest excitation energy (2.968 eV). Charge transport properties, estimated from reorganization energies, indicated that System-2 exhibited the most favorable balance for ambipolar transport, featuring the lowest electron reorganization energy (0.317 eV) and competitive hole mobility. Photovoltaic parameters calculated with PC61BM as acceptor predicted superior Voc, Jsc, and fill factor values for System-2, resulting in the highest theoretical power conversion efficiency (10.95%). These findings suggest that π-bridge engineering in triphenylamine-based systems can significantly enhance optoelectronic performance, offering promising donor materials for next-generation OSC devices. Full article
(This article belongs to the Section Condensed Matter Theory)
Show Figures

Figure 1

18 pages, 6030 KB  
Article
Broadband Omnidirectional Rectenna with Integrated Solar Cell for Hybrid Energy Harvesting
by Fei Cheng, Bu-Yun Cheng, Han-Ping Li and Wang Ni
Energies 2025, 18(19), 5098; https://doi.org/10.3390/en18195098 - 25 Sep 2025
Viewed by 235
Abstract
This paper presents a broadband omnidirectional rectenna combined with a solar cell for hybrid energy harvesting, addressing the daytime-only limitation of solar cells via complementary RF energy harvesting. To avoid mutual interaction in integration, the solar cell is placed above the antenna to [...] Read more.
This paper presents a broadband omnidirectional rectenna combined with a solar cell for hybrid energy harvesting, addressing the daytime-only limitation of solar cells via complementary RF energy harvesting. To avoid mutual interaction in integration, the solar cell is placed above the antenna to receive light/EM waves from different directions. A broadband discone antenna ensures omnidirectional RF reception from 1.56 to 6.63 GHz, while a single-stub matching circuit and voltage doubler enable rectifier operation from 1.4 to 3.6 GHz, with over 50% power conversion efficiency at 5 dBm. The measurement demonstrates that the hybrid system can yield 20.25 mW from combined RF/solar power. This broadband hybrid energy harvesting system shows potential for powering sensors throughout the day by integrating two complementary energy sources with minimal interaction. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

Back to TopTop