Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (536)

Search Parameters:
Keywords = solid-state NMR spectroscopy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 2204 KB  
Article
2,2-Bis(3,5-dimethylpyrazol-1-yl)-1,1-diphenylethanol: A Versatile Heteroscorpionate Ligand for Transition and Main Group Metal Complexes
by Uwe Böhme, Betty Günther and Anke Schwarzer
Crystals 2025, 15(10), 865; https://doi.org/10.3390/cryst15100865 - 30 Sep 2025
Viewed by 111
Abstract
2,2-Bis(3,5-dimethylpyrazol-1-yl)-1,1-diphenylethanol (HL) is a heteroscorpionate ligand capable of coordinating metal ions through two nitrogen atoms and one oxygen atom. We report a base free synthetic route to metal complexes of L and explore the resulting structural diversity. Notably, complex composition varies substantially depending [...] Read more.
2,2-Bis(3,5-dimethylpyrazol-1-yl)-1,1-diphenylethanol (HL) is a heteroscorpionate ligand capable of coordinating metal ions through two nitrogen atoms and one oxygen atom. We report a base free synthetic route to metal complexes of L and explore the resulting structural diversity. Notably, complex composition varies substantially depending on the metal ion, including dinuclear molybdenum species and distinct coordination behavior with silicon and copper. The isolated compounds include the dinuclear, oxygen-bridged complexes (LMoO2)2O and (LMoO)(μ-O)2, as well as the mononuclear complexes LTi(NMe2)3, LZrCl3, LGeCl3, LWO2Cl, LCu(acetate)2H, and LSiMe2Cl. Single crystal X-ray diffraction reveals that the bulky complex structures generate cavities in the crystal lattice, frequently occupied by solvent molecules. The titanium, zirconium, molybdenum, tungsten, and germanium complexes exhibit octahedral coordination, while structural peculiarities are observed for copper and silicon. The copper(II) complex shows a distorted octahedral geometry with one elongated ligand bond; the silicon complex is pentacoordinated in the solid state. Additional characterization includes melting points, NMR, and IR spectroscopy. The developed synthetic strategy provides a straightforward and versatile route to heteroscorpionate metal complexes. Full article
(This article belongs to the Section Organic Crystalline Materials)
Show Figures

Figure 1

33 pages, 6726 KB  
Review
Recent Techniques to Improve Amorphous Dispersion Performance with Quality Design, Physicochemical Monitoring, Molecular Simulation, and Machine Learning
by Hari Prasad Bhatta, Hyo-Kyung Han, Ravi Maharjan and Seong Hoon Jeong
Pharmaceutics 2025, 17(10), 1249; https://doi.org/10.3390/pharmaceutics17101249 - 24 Sep 2025
Viewed by 566
Abstract
Amorphous solid dispersions (ASDs) represent a promising formulation strategy for improving the solubility and bioavailability of poorly water-soluble drugs, a major challenge in pharmaceutical development. This review provides a comprehensive analysis of the physicochemical principles underlying ASD stability, with a focus on drug–polymer [...] Read more.
Amorphous solid dispersions (ASDs) represent a promising formulation strategy for improving the solubility and bioavailability of poorly water-soluble drugs, a major challenge in pharmaceutical development. This review provides a comprehensive analysis of the physicochemical principles underlying ASD stability, with a focus on drug–polymer miscibility, molecular mobility, and thermodynamic properties. The main manufacturing techniques including hot-melt extrusion, spray drying, and KinetiSol® dispersing are discussed for their impact on formulation homogeneity and scalability. Recent advances in excipient selection, molecular modeling, and in silico predictive approaches have transformed ASD design, reducing dependence on traditional trial-and-error methods. Furthermore, machine learning and artificial intelligence (AI)-based computational platforms are reshaping formulation strategies by enabling accurate predictions of drug–polymer interactions and physical stability. Advanced characterization methods such as solid-state NMR, IR, and dielectric spectroscopy provide valuable insights into phase separation and recrystallization. Despite these technological innovations, ensuring long-term stability and maintaining supersaturation remain significant challenges for ASDs. Integrated formulation design frameworks, including PBPK modeling and accelerated stability testing, offer potential solutions to address these issues. Future research should emphasize interdisciplinary collaboration, leveraging computational advancements together with experimental validation to refine formulation strategies and accelerate clinical translation. The scientists can unlock the full therapeutic potential with emerging technologies and a data-driven approach. Full article
Show Figures

Graphical abstract

17 pages, 3464 KB  
Article
Advanced Spectroscopic and Thermoanalytical Quantification of LLDPE in Mealworm Frass: A Multitechnique Approach
by Encarnación Martínez-Sabater, Rosa Peñalver, Margarita Ros, José A. Pascual, Raul Moral and Frutos C. Marhuenda-Egea
Appl. Sci. 2025, 15(18), 10244; https://doi.org/10.3390/app151810244 - 20 Sep 2025
Viewed by 295
Abstract
Plastic pollution from polyethylene-based materials is a critical environmental concern due to their high persistence. Here, we report the first proof-of-concept application of a multitechnique analytical framework for quantifying linear low-density polyethylene (LLDPE) in Tenebrio molitor frass. Artificially enriched frass–LLDPE mixtures were analyzed [...] Read more.
Plastic pollution from polyethylene-based materials is a critical environmental concern due to their high persistence. Here, we report the first proof-of-concept application of a multitechnique analytical framework for quantifying linear low-density polyethylene (LLDPE) in Tenebrio molitor frass. Artificially enriched frass–LLDPE mixtures were analyzed using thermogravimetric analysis (TGA), TGA coupled with Fourier-Transform Infrared Spectroscopy (FTIR) and Mass Spectrometry (MS), TGA under inert atmosphere, and solid-state 13C nuclear magnetic resonance spectroscopy with Cross-Polarization and Magic Angle Spinning (CP-MAS NMR) 13C CP-MAS NMR combined with interval Partial Least Squares (iPLS) modeling. Thermal methods provided insight into decomposition pathways but showed reduced specificity at <1% w/w due to matrix interference. CP-MAS NMR offered matrix-independent quantification, with characteristic signals in the 10–45 ppm region and a calculated LOD and LOQ of 0.173% and 0.525% w/w, respectively. The LOQ lies within the reported ingestion range for T. molitor (0.8–3.2% w/w in frass), confirming biological relevance. This validated workflow establishes CP-MAS NMR as the most robust tool for quantifying polyethylene residues in complex matrices and provides a foundation for in vivo biodegradation studies and environmental monitoring. Full article
Show Figures

Figure 1

22 pages, 4158 KB  
Article
Commercial, Non-Commercial and Experimental Wound Dressings Based on Bacterial Cellulose: An In-Depth Comparative Study of Physicochemical Properties
by Sarah Brandão Palácio, Simone Oliveira Penello, Katharine Valéria Saraiva Hodel, Willams Teles Barbosa, Gisele Assunção Reis, Bruna Aparecida Souza Machado, Ana Leonor Pardo Campos Godoy, Maria Inês Bruno Tavares, Layla Carvalho Mahnke, Josiane Dantas Viana Barbosa and José Lamartine de Andrade Aguiar
Fibers 2025, 13(9), 127; https://doi.org/10.3390/fib13090127 - 15 Sep 2025
Viewed by 517
Abstract
Wound management remains a significant global healthcare challenge, particularly due to chronic wounds that resist healing and impose economic and social burdens. Bacterial cellulose (BC), owing to its biocompatibility, high purity and moisture-handling capabilities, has gained attention as a wound dressing material. This [...] Read more.
Wound management remains a significant global healthcare challenge, particularly due to chronic wounds that resist healing and impose economic and social burdens. Bacterial cellulose (BC), owing to its biocompatibility, high purity and moisture-handling capabilities, has gained attention as a wound dressing material. This study provides a comparative evaluation of a commercial BC film (Membracel®), a non-commercial BC from POLISA® (BCP) and an experimental BC from SENAI CIMATEC (BCC), all produced via static fermentation using distinct culture conditions. Comprehensive characterization included scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, solid-state 13C NMR, water interaction assessments, porosity and vapor permeability measurements, optical and mechanical testing and in vitro stability in simulated wound fluid. The three BC films exhibited markedly different structural and functional profiles. BCC displayed the highest crystallinity (78.7%), thermal stability and vapor permeability, indicating suitability for wounds with high exudate. BCP showed the greatest tensile strength (46.2 MPa) and flexibility, suggesting utility where mechanical robustness is required. Membracel® exhibited lower crystallinity and vapor permeability, appropriate for low-exudate wounds. All samples remained dimensionally stable in simulated wound fluid. These findings highlight clear correlations between the physicochemical properties of BC-based dressings and their potential clinical applications, supporting the development of tailored wound care solutions based on wound type and moisture management requirements. Full article
Show Figures

Figure 1

15 pages, 1793 KB  
Article
Formation of Racemic Phases of Amino Acids by Liquid-Assisted Resonant Acoustic Mixing Monitored by Solid-State NMR Spectroscopy
by Leeroy Hendrickx, Calogero Quaranta, Emilian Fuchs, Maksim Plekhanov, Mirijam Zobel, Carsten Bolm and Thomas Wiegand
Molecules 2025, 30(18), 3745; https://doi.org/10.3390/molecules30183745 - 15 Sep 2025
Viewed by 414
Abstract
Mechanochemistry has become a fundamental method in various sciences including biology and chemistry. Despite its popularity, the mechanisms behind mechanochemically induced reactions are not very well understood. In previous work, we investigated molecular-recognition processes of molecules capable of forming racemic phases in ball [...] Read more.
Mechanochemistry has become a fundamental method in various sciences including biology and chemistry. Despite its popularity, the mechanisms behind mechanochemically induced reactions are not very well understood. In previous work, we investigated molecular-recognition processes of molecules capable of forming racemic phases in ball mill devices. Solid-state nuclear magnetic resonance (solid-state NMR) was used as the key technique to analyze such events. We now extended this study and focused on mechanochemically induced racemic-phase formations of two representative amino acids, alanine and serine, in a resonant acoustic mixer. The data reveal the importance of adding small amounts of solvents (here water) to facilitate the underlying solid-state molecular-recognition processes. The role of water therein is further studied by deuterium magic-angle spinning (MAS) NMR experiments, also revealing that resonant acoustic mixing (RAM) enables efficient hydrogen to deuterium exchange in enantiopure serine, paving the way to deuterate organic compounds in the RAM device. Full article
(This article belongs to the Special Issue NMR and MRI in Materials Analysis: Opportunities and Challenges)
Show Figures

Figure 1

15 pages, 4033 KB  
Review
Illuminating High-Affinity ATP Binding to the Sodium-Potassium Pump Using Solid-State NMR Spectroscopy
by David A. Middleton
Molecules 2025, 30(17), 3609; https://doi.org/10.3390/molecules30173609 - 3 Sep 2025
Viewed by 1105
Abstract
Proteins that span cellular membranes represent around 30% of the proteome and over 50% of drug targets. A variety of synthetic and naturally-occurring small organic molecules interact with membrane proteins and up- and down-regulate protein function. The atomic details of these regulatory molecules [...] Read more.
Proteins that span cellular membranes represent around 30% of the proteome and over 50% of drug targets. A variety of synthetic and naturally-occurring small organic molecules interact with membrane proteins and up- and down-regulate protein function. The atomic details of these regulatory molecules offer important information about protein function and aid the discovery, refinement and optimization of new drugs. X-ray crystallography and cryo-electron microscopy (cryo-EM) are not always able to resolve the structures of small molecules in their physiological sites on membrane proteins, particularly if the molecules are unstable or are reactive enzyme substrates. Solid-state nuclear magnetic resonance (SSNMR) is a valuable technique for filling in missing details on the conformations, dynamics and binding environments of small molecules regulators of membrane proteins. SSNMR does not require diffracting crystals possessing long-range order and can be performed on proteins within their native membranes and with freeze-trapping to maintain sample stability. Here, work over the last two decades is described, in which SSNMR methods have been developed to report on interactions of the ATP substrate with the Na,K-ATPase (NKA), an ion-transporting enzyme that maintains cellular potential in all animals. It is shown how a combination of SSNMR measurements on membranous NKA preparations in the frozen and fluid states have provided unique information about the molecular conformation and local environment of ATP in the high-affinity nucleotide site. A combination of chemical shift analysis using density functional theory (DFT) calculations, dipolar coupling measurements using REDOR and measurements of the rates of proton spin diffusion is appraised collectively. The work described herein highlights the methods developed and challenges encountered, which have led to a detailed and unrivalled picture of ATP in its high-affinity binding site. Full article
Show Figures

Graphical abstract

20 pages, 3801 KB  
Article
Structural Study of Metakaolin-Phosphate Geopolymers Prepared with Wide Range of Al/P Molar Ratios
by Martin Keppert, Martina Urbanová, Ivana Šeděnková, Václav Pokorný, Michala Breníková, Jitka Krejsová, Vojtěch Pommer, Eva Vejmelková, Dana Koňáková and Jiří Brus
Polymers 2025, 17(17), 2358; https://doi.org/10.3390/polym17172358 - 30 Aug 2025
Viewed by 867
Abstract
Geopolymers represent an innovative and environmentally sustainable alternative to traditional construction materials, offering significant potential for reducing anthropogenic CO2 emissions. Among these, phosphoric acid-activated metakaolin-based systems have attracted increasing attention for their chemical and thermal resilience. In this study, we present a [...] Read more.
Geopolymers represent an innovative and environmentally sustainable alternative to traditional construction materials, offering significant potential for reducing anthropogenic CO2 emissions. Among these, phosphoric acid-activated metakaolin-based systems have attracted increasing attention for their chemical and thermal resilience. In this study, we present a comprehensive structural and mechanical evaluation of metakaolin-based geopolymers synthesized across a wide range of Al/P molar ratios (0.8–4.0). Six formulations were systematically prepared and analyzed using X-ray powder diffraction (XRPD), small-angle X-ray scattering (SAXS), Fourier-transform infrared spectroscopy (FTIR), solid-state nuclear magnetic resonance (ssNMR), and complementary mechanical testing. The novelty of this work lies in the integrated mapping of composition–structure–property relationships across the broad Al/P spectrum under controlled synthesis, combined with the rare application of SAXS to reveal composition-dependent nanoscale domains (~18–50 nm). We identify a stoichiometric window at Al/P ≈ 1.5, where complete acid consumption leads to a structurally homogeneous AlVI–O–P network, yielding the highest compressive strength. In contrast, acid-rich systems exhibit divergent flexural and compressive behaviors, with enhanced flexural strength linked to hydrated silica domains arising from metakaolin dealumination, quantitatively tracked by 29Si MAS NMR. XRPD further reveals the formation of uncommon Si–P crystalline phases (SiP2O7, Si5P6O25) under low-temperature curing in acid-rich compositions. Together, these findings provide new insights into the nanoscale structuring, phase evolution, and stoichiometric control of silica–alumino–phosphate geopolymers, highlighting strategies for optimizing their performance in demanding thermal and chemical environments. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Graphical abstract

28 pages, 5200 KB  
Article
Lewis Acid–Base Adducts of α-Amino Isobutyric Acid-Derived Silaheterocycles and Amines
by Anne Seidel, Erica Brendler, Ana Torvisco, Roland Fischer and Jörg Wagler
Molecules 2025, 30(17), 3501; https://doi.org/10.3390/molecules30173501 - 26 Aug 2025
Viewed by 731
Abstract
The 1:1 stoichiometric reactions of α-amino isobutyric acid (H2Aib) and diaminosilanes of the type SiRR′(NR1R2)2 (SiMe2(imidazol-1-yl)2, SiMe2(NHnPr)2, and SiRR′(pyrrolidin-1-yl)2 with [...] Read more.
The 1:1 stoichiometric reactions of α-amino isobutyric acid (H2Aib) and diaminosilanes of the type SiRR′(NR1R2)2 (SiMe2(imidazol-1-yl)2, SiMe2(NHnPr)2, and SiRR′(pyrrolidin-1-yl)2 with R,R′ = Me,Me, Me,H, Me,Vi, and Et,Et) afforded the pentacoordinate silicon complexes (Aib)SiRR′(HNR1R2) with the release of one equivalent of HNR1R2. Single-crystal X-ray diffraction analyses confirmed the coordination of the N-donor Lewis base (i.e., imidazole, n-propylamine, and pyrrolidine, respectively) in an axial position of the distorted trigonal-bipyramidal Si-coordination sphere, trans to the carboxylate O atom of the Si-chelating Aib-dianion. The N–H moieties of the adduct-forming Lewis bases are involved in N–H⋯O hydrogen bonds with carboxylate groups of adjacent complex molecules, thus supporting the supramolecular structures of these adducts. The equatorially bound NH group of the Aib-dianion is involved in N–H⋯O hydrogen bonds in most cases, and it gives rise to residual dipolar coupling of the 14N nucleus with its directly bound atoms C and Si, thus causing characteristic shapes of both the 29Si and 13C NMR signals of these two atoms in the solid-state spectra. In contrast to the adduct-formation reactions, the analogous conversion of H2Aib and SiMe2(NHtBu)2 did not afford an amine adduct. Instead, a second equivalent of H2Aib entered the reaction, and the ionic silicon complex [tBuNH3]+[(Aib)2SiMe] was obtained and characterized by crystallography and solution NMR spectroscopy. Full article
Show Figures

Graphical abstract

15 pages, 12294 KB  
Article
Physicochemical Properties of Supramolecular Complexes Formed Between Cyclodextrin and Rice Bran-Derived Komecosanol
by Mione Uchimura, Akiteru Ohtsu, Junki Tomita, Yoshiyuki Ishida, Daisuke Nakata, Keiji Terao and Yutaka Inoue
Physchem 2025, 5(3), 34; https://doi.org/10.3390/physchem5030034 - 13 Aug 2025
Viewed by 534
Abstract
In this study, supramolecular inclusion complexes composed of komecosanol (Ko), a lipophilic compound derived from rice bran, and α-cyclodextrin (αCD) were prepared using a solvent-free three-dimensional (3D) ball milling method. Their physicochemical properties were examined using various techniques. Powder X-ray diffraction analysis of [...] Read more.
In this study, supramolecular inclusion complexes composed of komecosanol (Ko), a lipophilic compound derived from rice bran, and α-cyclodextrin (αCD) were prepared using a solvent-free three-dimensional (3D) ball milling method. Their physicochemical properties were examined using various techniques. Powder X-ray diffraction analysis of the ground mixture at a Ko/αCD ratio of 1/8 revealed the disappearance of diffraction peaks characteristic of Ko and the emergence of new peaks, indicating the formation of a distinct crystalline phase. Moreover, differential scanning calorimetry analysis showed the disappearance of the endothermic peaks corresponding to Ko, indicating molecular-level interactions with αCD. Near-infrared spectroscopy results suggested the formation of hydrogen bonds between the C–H groups of Ko and the O–H groups of αCD. Solid-state 13C CP/MAS NMR and T1 relaxation time measurements indicated the formation of a pseudopolyrotaxane structure, while scanning electron microscopy images confirmed distinct morphological changes consistent with complex formation. These findings demonstrate that 3D ball milling facilitates the formation of Ko/αCD inclusion complexes with a supramolecular architecture, providing a novel approach to improve the formulation and bioavailability of poorly water-soluble lipophilic compounds. Full article
(This article belongs to the Section Biophysical Chemistry)
Show Figures

Graphical abstract

35 pages, 3497 KB  
Review
Recent Advances in Dendrite Suppression Strategies for Solid-State Lithium Batteries: From Interface Engineering to Material Innovations
by Abniel Machín, Francisco Díaz, María C. Cotto, José Ducongé and Francisco Márquez
Batteries 2025, 11(8), 304; https://doi.org/10.3390/batteries11080304 - 8 Aug 2025
Viewed by 3900
Abstract
Solid-state lithium batteries (SSLBs) have emerged as a promising alternative to conventional lithium-ion systems due to their superior safety profile, higher energy density, and potential compatibility with lithium metal anodes. However, a major challenge hindering their widespread deployment is the formation and growth [...] Read more.
Solid-state lithium batteries (SSLBs) have emerged as a promising alternative to conventional lithium-ion systems due to their superior safety profile, higher energy density, and potential compatibility with lithium metal anodes. However, a major challenge hindering their widespread deployment is the formation and growth of lithium dendrites, which compromise both performance and safety. This review provides a comprehensive and structured overview of recent advances in dendrite suppression strategies, with special emphasis on the role played by the nature of the solid electrolyte. In particular, we examine suppression mechanisms and material innovations within the three main classes of solid electrolytes: sulfide-based, oxide-based, and polymer-based systems. Each electrolyte class presents distinct advantages and challenges in relation to dendrite behavior. Sulfide electrolytes, known for their high ionic conductivity and good interfacial wettability, suffer from poor mechanical strength and chemical instability. Oxide electrolytes exhibit excellent electrochemical stability and mechanical rigidity but often face high interfacial resistance. Polymer electrolytes, while mechanically flexible and easy to process, generally have lower ionic conductivity and limited thermal stability. This review discusses how these intrinsic properties influence dendrite nucleation and propagation, including the role of interfacial stress, grain boundaries, void formation, and electrochemical heterogeneity. To mitigate dendrite formation, we explore a variety of strategies including interfacial engineering (e.g., the use of artificial interlayers, surface coatings, and chemical additives), mechanical reinforcement (e.g., incorporation of nanostructured or gradient architectures, pressure modulation, and self-healing materials), and modifications of the solid electrolyte and electrode structure. Additionally, we highlight the critical role of advanced characterization techniques—such as in situ electron microscopy, synchrotron-based X-ray diffraction, vibrational spectroscopy, and nuclear magnetic resonance (NMR)—for elucidating dendrite formation mechanisms and evaluating the effectiveness of suppression strategies in real time. By integrating recent experimental and theoretical insights across multiple disciplines, this review identifies key limitations in current approaches and outlines emerging research directions. These include the design of multifunctional interphases, hybrid electrolytes, and real-time diagnostic tools aimed at enabling the development of reliable, scalable, and dendrite-free SSLBs suitable for practical applications in next-generation energy storage. Full article
(This article belongs to the Special Issue Advances in Solid Electrolytes and Solid-State Batteries)
Show Figures

Graphical abstract

20 pages, 2299 KB  
Article
Valorization of Waste Mineral Wool and Low-Rank Peat in the Fertilizer Industry in the Context of a Resource-Efficient Circular Economy
by Marta Huculak-Mączka, Dominik Nieweś, Kinga Marecka and Magdalena Braun-Giwerska
Sustainability 2025, 17(15), 7083; https://doi.org/10.3390/su17157083 - 5 Aug 2025
Viewed by 500
Abstract
This study aims to evaluate eco-innovative solutions in the fertilizer industry that allow for waste valorization in the context of a resource-efficient circular economy. A comprehensive reuse strategy was developed for low-rank peat and post-cultivation horticultural mineral wool, involving the extraction of valuable [...] Read more.
This study aims to evaluate eco-innovative solutions in the fertilizer industry that allow for waste valorization in the context of a resource-efficient circular economy. A comprehensive reuse strategy was developed for low-rank peat and post-cultivation horticultural mineral wool, involving the extraction of valuable humic substances from peat and residual nutrients from used mineral wool, followed by the use of both post-extraction residues to produce organic–mineral substrates. The resulting products/semifinished products were characterized in terms of their composition and properties, which met the requirements necessary to obtain the admission of this type of product to the market in accordance with the Regulation of the Minister for Agriculture and Rural Development of 18 June 2008 on the implementation of certain provisions of the Act on fertilizers and fertilization (Journal of Laws No 119, item 765). Elemental analysis, FTIR spectroscopy, and solid-state CP-MAS 13C NMR spectroscopy suggest that post-extraction peat has a relatively condensed structure with a high C content (47.4%) and a reduced O/C atomic ratio and is rich in alkyl-like matter (63.2%) but devoid of some functional groups in favor of extracted fulvic acids. Therefore, it remains a valuable organic biowaste, which, in combination with post-extraction waste mineral wool in a ratio of 60:40 and possibly the addition of mineral nutrients, allows us to obtain a completely new substrate with a bulk density of 264 g/m3, a salinity of 7.8 g/dm3 and a pH of 5.3, with an appropriate content of heavy metals and with no impurities, meeting the requirements of this type of product. A liquid fertilizer based on an extract containing previously recovered nutrients also meets the criteria in terms of quality and content of impurities and can potentially be used as a fertilizing product suitable for agricultural crops. This study demonstrates a feasible pathway for transforming specific waste streams into valuable agricultural inputs, contributing to environmental protection and sustainable production. The production of a new liquid fertilizer using nutrients recovered from post-cultivation mineral wool and the preparation of an organic–mineral substrate using post-extraction solid residue is a rational strategy for recycling hard-to-biodegrade end-of-life products. Full article
Show Figures

Figure 1

6 pages, 790 KB  
Short Note
6-Amino-4-phenylpyrrolo[2,3-c][1,2,6]thiadiazine-5-carbonitrile
by Andreas S. Kalogirou, Andreas Kourtellaris and Panayiotis A. Koutentis
Molbank 2025, 2025(3), M2043; https://doi.org/10.3390/M2043 - 28 Jul 2025
Viewed by 517
Abstract
The reaction of 2-(3-chloro-5-phenyl-4H-1,2,6-thiadiazin-4-ylidene)malononitrile with ammonia in anhydrous THF, at ca. 20 °C, for 24 h, gave 6-amino-4-phenylpyrrolo[2,3-c][1,2,6]thiadiazine-5-carbonitrile in 95% yield. The product was characterized by 1H and 13C NMR, SC-XRD, MALDI-TOF mass spectrometry, FTIR, and UV-vis [...] Read more.
The reaction of 2-(3-chloro-5-phenyl-4H-1,2,6-thiadiazin-4-ylidene)malononitrile with ammonia in anhydrous THF, at ca. 20 °C, for 24 h, gave 6-amino-4-phenylpyrrolo[2,3-c][1,2,6]thiadiazine-5-carbonitrile in 95% yield. The product was characterized by 1H and 13C NMR, SC-XRD, MALDI-TOF mass spectrometry, FTIR, and UV-vis spectroscopy. Intermolecular hydrogen bonding interactions were observed in the solid state between the C≡N and N-H groups of adjacent molecules. Full article
Show Figures

Figure 1

15 pages, 1767 KB  
Article
Synthesis and Photophysics of 5-(1-Pyrenyl)-1,2-Azoles
by María-Camila Ríos, Alexander Ladino-Bejarano and Jaime Portilla
Chemistry 2025, 7(4), 120; https://doi.org/10.3390/chemistry7040120 - 27 Jul 2025
Viewed by 834
Abstract
Two pyrene derivatives, substituted at position 1 with isoxazole or NH-pyrazole, were synthesized in 85–87% yield starting from 1-acetylpyrene and via the cyclocondensation reaction of a β-enaminone intermediate with hydroxylamine or hydrazine. The photophysics of the two 5-(1-pyrenyl)-1,2-azoles were explored, revealing that [...] Read more.
Two pyrene derivatives, substituted at position 1 with isoxazole or NH-pyrazole, were synthesized in 85–87% yield starting from 1-acetylpyrene and via the cyclocondensation reaction of a β-enaminone intermediate with hydroxylamine or hydrazine. The photophysics of the two 5-(1-pyrenyl)-1,2-azoles were explored, revealing that only the isoxazole derivative exhibits good emission properties (ϕF ≥ 74%) but without solvatofluorochromism behavior. However, both probes exhibited noticeable photophysics in the aggregated state (in the presence of H2O and/or in the solid state) and through acid–base interactions (using TFA and TBACN), leveraging the basic and acidic character of the analyzed 1,2-azoles, which was also investigated by 1H NMR spectroscopy. Therefore, the selective incorporation of N-heteroaromatic units into the pyrene scaffold effectively modulates the photophysics and environmental sensitivity of the corresponding probes. Full article
(This article belongs to the Special Issue Modern Photochemistry and Molecular Photonics)
Show Figures

Figure 1

14 pages, 2758 KB  
Article
Monitoring Lead–Phosphorus Interactions Through 31P-NMR Used as a Sensor in Phosphine Functionalized Silica Gel Adsorbent
by Jessica Badillo-Camacho, José A. Gutiérrez-Ortega, Ilya G. Shenderovich, Yenni G. Velázquez-Galván and Ricardo Manríquez-González
Gels 2025, 11(8), 580; https://doi.org/10.3390/gels11080580 - 26 Jul 2025
Viewed by 471
Abstract
A triphenylphosphine-functionalized silica gel material, optimized for lead adsorption, was synthesized via a one-pot sol–gel reaction and characterized using FTIR and solid-state 13C and 29Si NMR and XPS spectroscopy. The interaction between lead cations and phosphine groups was evaluated using the [...] Read more.
A triphenylphosphine-functionalized silica gel material, optimized for lead adsorption, was synthesized via a one-pot sol–gel reaction and characterized using FTIR and solid-state 13C and 29Si NMR and XPS spectroscopy. The interaction between lead cations and phosphine groups was evaluated using the 31P NMR chemical shift tensor as a sensor. Two distinct types of phosphine groups, exhibiting different rotational mobility behaviors, were identified, with their ratio influenced by the presence of lead cations. These results suggest that the adsorption behavior of lead on this functionalized silica gel adsorbent can be directly evaluated by its lead–phosphorus interaction. This association was corroborated by the shifting of the binding energies of phosphorus functional groups after lead uptake in the XPS analysis. Full article
(This article belongs to the Special Issue Gel-Based Adsorbent Materials for Environmental Remediation)
Show Figures

Graphical abstract

20 pages, 2822 KB  
Article
Nanoparticle Formulation Generated from DDGS and Its Anthraquinone Synthesis Elicitation in Rubia tinctorum Hairy Roots
by Gonzalo Galaburri, Yazmín R. Kalapuj, María Perassolo, Julián Rodríguez Talou, Patricio G. Márquez, Romina J. Glisoni, Antonia Infantes-Molina, Enrique Rodríguez-Castellón and Juan M. Lázaro-Martínez
Polymers 2025, 17(15), 2021; https://doi.org/10.3390/polym17152021 - 24 Jul 2025
Viewed by 1098
Abstract
A nanoparticle formulation was generated from distiller dried grains with solubles (DDGS), and its effect on the production of anthraquinones (AQs) was evaluated on Rubia tinctorum hairy roots. The DDGS material was washed with water and ethyl acetate to remove mainly the soluble [...] Read more.
A nanoparticle formulation was generated from distiller dried grains with solubles (DDGS), and its effect on the production of anthraquinones (AQs) was evaluated on Rubia tinctorum hairy roots. The DDGS material was washed with water and ethyl acetate to remove mainly the soluble organic/inorganic molecules and reduce the fat content, respectively, followed by an alkaline treatment to remove the polysaccharides. The resulting alkaline solutions were then lyophilized and redispersed in deionized water to generate a monodispersed nanoparticulate formulation (DDGS-NP) with a hydrodynamic diameter and zeta potential of 227 ± 42 nm and −53 ± 7 mV, respectively. The formulation demonstrated good colloidal stability over time, and sterilized DDGS-NPs maintained comparable physicochemical properties. The nanoparticles were enriched in protein fractions, unsaturated fatty acids, and orthophosphate anion components from DDGS, as determined by solid-state Nuclear Magnetic Resonance (NMR), X-ray photoelectron spectroscopy (XPS), organic elemental analysis (OEA), and inductively coupled plasma optical emission spectrometry (ICP-OES) techniques. The DDGS-NPs were tested at different concentrations on Rubia tinctorum hairy roots, in comparison to or in combination with methyl jasmonate (MeJ), for their capacity to induce the production of AQs. All DDGS-NP concentrations increased the production of specific AQs to 7.7 (100 mg L−1), 7.8 (200 mg L−1), and 9.3 µmol/gFW (500 mg L−1), with an extracellular AQ accumulation of 18 µM for the highest DDGS-NP concentration, in comparison with the control hairy roots (~2 µM AQ). The plant growth was not affected at any of the tested nanoparticle concentrations. Interestingly, the combination of DDGS-NPs and MeJ resulted in the highest extracellular AQ accumulation in R. tinctorum root cultures. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

Back to TopTop