Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (145,337)

Search Parameters:
Keywords = solutes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 6166 KB  
Article
A Dual-Mechanism Enhanced Secretary Bird Optimization Algorithm and Its Application in Engineering Optimization
by Changzu Chen, Li Cao, Binhe Chen, Yaodan Chen and Xinxue Wu
Biomimetics 2025, 10(10), 679; https://doi.org/10.3390/biomimetics10100679 (registering DOI) - 9 Oct 2025
Abstract
The secretary bird optimization algorithm is a recently developed swarm intelligence method with potential for solving nonlinear and complex optimization problems. However, its performance is constrained by limited global exploration and insufficient local exploitation. To address these issues, an enhanced variant, ORSBOA, is [...] Read more.
The secretary bird optimization algorithm is a recently developed swarm intelligence method with potential for solving nonlinear and complex optimization problems. However, its performance is constrained by limited global exploration and insufficient local exploitation. To address these issues, an enhanced variant, ORSBOA, is proposed by integrating an optimal neighborhood perturbation mechanism with a reverse learning strategy. The algorithm is evaluated on the CEC2019 and CEC2022 benchmark suites as well as four classical engineering design problems. Experimental results demonstrate that ORSBOA achieves faster convergence, stronger robustness, and higher solution quality than nine state-of-the-art algorithms. Statistical analyses further confirm the significance of these improvements, validating the effectiveness and applicability of ORSBOA in solving complex optimization tasks. Full article
(This article belongs to the Special Issue Advances in Biological and Bio-Inspired Algorithms)
Show Figures

Graphical abstract

17 pages, 3259 KB  
Article
Experimental Design of a Novel Daylighting Louver System (DLS); Prototype Validation in Edinburgh Climate for Maximum Daylight Utilisation
by Ahmad Eltaweel, Islam Shyha, Muna Alsukkar and Jamal Alabid
Architecture 2025, 5(4), 93; https://doi.org/10.3390/architecture5040093 (registering DOI) - 9 Oct 2025
Abstract
Achieving optimal daylighting in buildings necessitates complex and expensive control systems. This research addresses this challenge by proposing a simple and more practical solution: a parametric louver system based on rotating slats controlled by stepper motors, powered by an Integrated Circuit platform (Arduino [...] Read more.
Achieving optimal daylighting in buildings necessitates complex and expensive control systems. This research addresses this challenge by proposing a simple and more practical solution: a parametric louver system based on rotating slats controlled by stepper motors, powered by an Integrated Circuit platform (Arduino board), which can translate the digital figures (the rotation angles) to a physical action. The system automatically adjusts the slats in accordance with solar altitudes and reflects them to specific targets over the ceiling. This ensures a uniform and comfortable distribution of daylight throughout a room. This system was developed using Grasshopper as the parametric software, with future control planned via a user-friendly mobile app through a preliminary prototype. This daylighting system prioritises human visual comfort while targeting a significant 53% reduction in electrical lighting energy consumption. The system aims to enhance occupant well-being to significantly increase energy savings, making it a compelling solution for sustainable building design. Full article
29 pages, 2241 KB  
Article
Mathematical Development for the Minimum Cost of Elliptical Combined Footings
by Griselda Santiago-Hurtado, Arnulfo Luévanos-Rojas, Victor Manuel Moreno-Landeros, Eyran Roberto Diaz-Gurrola, Rajeswari Narayanasamy, Facundo Cortés-Martínez and Luis Daimir López-León
Buildings 2025, 15(19), 3633; https://doi.org/10.3390/buildings15193633 - 9 Oct 2025
Abstract
This work shows the mathematical development for the minimum cost of ECF (elliptical combined footings) subjected to biaxial bending due to the two columns, assuming that the distribution of soil pressure below the footing is linear and that the footing rests on elastic [...] Read more.
This work shows the mathematical development for the minimum cost of ECF (elliptical combined footings) subjected to biaxial bending due to the two columns, assuming that the distribution of soil pressure below the footing is linear and that the footing rests on elastic soil. There are no similar contributions on the subject of this article, as it is an innovative contribution in terms of its form. This work is developed in two parts: first, determine the minimum area in contact with the soil below the footing, and then the minimum cost is obtained. The formulation of the development by integration is shown to determine the moments, unidirectional shears, and punching shears acting on the critical sections, according to the ACI (American Concrete Institute) design code, and then the flowchart algorithm is applied to determine the solution using Maple Software, which is the main contribution of this article. Some authors show studies on the combined footings of various shapes such as rectangular, trapezoidal, strap, corner or L, and T, but there are none for ECF. Two numerical studies are shown with different length: the first with free ends in the longitudinal direction and the second with ends limited in the longitudinal direction to estimate the minimum cost of ECF under biaxial bending. A third numerical study is shown, with different allowable bearing capacities of the ground and with free ends in the longitudinal direction. Also, a comparison is developed between ECF and RCF (rectangular combined footings). The model for the design of ECF shows a savings of 7.17% with limited ends and a savings of 1.67% with free ends for the minimum area, and for the minimum cost, it shows a savings of 23.95% with limited ends and a savings of 9.14% with free ends rather than RCF. Therefore, the proposed development will be of great help to structural engineers specializing in foundations, as it represents significant savings. Full article
(This article belongs to the Section Building Structures)
25 pages, 3887 KB  
Article
A Semi-Automatic and Visual Leaf Area Measurement System Integrating Hough Transform and Gaussian Level-Set Method
by Linjuan Wang, Chengyi Hao, Xiaoying Zhang, Wenfeng Guo, Zhifang Bi, Zhaoqing Lan, Lili Zhang and Yuanhuai Han
Agriculture 2025, 15(19), 2101; https://doi.org/10.3390/agriculture15192101 - 9 Oct 2025
Abstract
Accurate leaf area measurement is essential for plant growth monitoring and ecological research; however, it is often challenged by perspective distortion and color inconsistencies resulting from variations in shooting conditions and plant status. To address these issues, this study proposes a visual and [...] Read more.
Accurate leaf area measurement is essential for plant growth monitoring and ecological research; however, it is often challenged by perspective distortion and color inconsistencies resulting from variations in shooting conditions and plant status. To address these issues, this study proposes a visual and semi-automatic measurement system. The system utilizes Hough transform-based perspective transformation to correct perspective distortions and incorporates manually sampled points to obtain prior color information, effectively mitigating color inconsistency. Based on this prior knowledge, the level-set function is automatically initialized. The leaf extraction is achieved through level-set curve evolution that minimizes an energy function derived from a multivariate Gaussian distribution model, and the evolution process allows visual monitoring of the leaf extraction progress. Experimental results demonstrate robust performance under diverse conditions: the standard deviation remains below 1 cm2, the relative error is under 1%, the coefficient of variation is less than 3%, and processing time is under 10 s for most images. Compared to the traditional labor-intensive and time-consuming manual photocopy-weighing approach, as well as OpenPheno (which lacks parameter adjustability) and ImageJ 1.54g (whose results are highly operator-dependent), the proposed system provides a more flexible, controllable, and robust semi-automatic solution. It significantly reduces operational barriers while enhancing measurement stability, demonstrating considerable practical application value. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
23 pages, 5026 KB  
Article
Vibration Control of Passenger Aircraft Active Landing Gear Using Neural Network-Based Fuzzy Inference System
by Aslı Durmuşoğlu and Şahin Yıldırım
Appl. Sci. 2025, 15(19), 10855; https://doi.org/10.3390/app151910855 - 9 Oct 2025
Abstract
Runway surface roughness is recognized as a principal cause of passenger aircraft vibration during taxiing, adversely affecting ride comfort, safety, and even human health. Effective mitigation of such vibrations is therefore essential for improving passenger experience and operational reliability. Previous studies have investigated [...] Read more.
Runway surface roughness is recognized as a principal cause of passenger aircraft vibration during taxiing, adversely affecting ride comfort, safety, and even human health. Effective mitigation of such vibrations is therefore essential for improving passenger experience and operational reliability. Previous studies have investigated passive, semi-active, and intelligent controllers such as PID, H∞, and ANFIS; however, the comprehensive application of a robust adaptive neuro-fuzzy inference system (RANFIS) to active landing-gear control has not yet been addressed. The novelty of this work lies in combining robustness with adaptive learning of fuzzy rules and neural network parameters, thereby filling this critical gap in the literature. To investigate this, a six-degrees-of-freedom aircraft dynamic model was developed, and three controllers were comparatively evaluated: model-based neural network (MBNN), adaptive neuro-fuzzy inference system (ANFIS), and the proposed RANFIS. Performance was assessed in terms of rise time, settling time, peak value, and steady-state error under stochastic runway excitations. Simulation results show that while MBNN and ANFIS provide satisfactory control, RANFIS achieved superior performance, reducing vibration peaks to ≤0.3–1.0 cm, shortening settling times to <1.5 s, and decreasing steady-state errors to <0.05 cm. These findings confirm that RANFIS offers a more effective solution for enhancing comfort, safety, and structural durability in next-generation active landing-gear systems. Full article
(This article belongs to the Special Issue Vibration Analysis of Nonlinear Mechanical Systems)
Show Figures

Figure 1

18 pages, 934 KB  
Article
Potential for Improving the Environmental Sustainability of Natural Aggregates Production (Slovenian Case Study)
by Janez Turk, Anja Kodrič, Rok Cajzek and Tjaša Zupančič Hartner
Appl. Sci. 2025, 15(19), 10856; https://doi.org/10.3390/app151910856 - 9 Oct 2025
Abstract
The environmental performance of natural aggregates for concrete and road construction, extracted from a dolomite quarry, was investigated. Environmental hotspots were identified, and potential optimization measures to further reduce the environmental footprint were proposed. The natural aggregates extracted from the dolomite quarry have [...] Read more.
The environmental performance of natural aggregates for concrete and road construction, extracted from a dolomite quarry, was investigated. Environmental hotspots were identified, and potential optimization measures to further reduce the environmental footprint were proposed. The natural aggregates extracted from the dolomite quarry have relatively low GWP and a low environmental footprint in general. The GWP of 1 tonne of natural aggregates used in concrete production is 1.13 kg CO2 equiv., while for 1 tonne of aggregates used in road construction, it is 0.97 kg CO2 equiv. The dolomite rock in the quarry in question is tectonically fractured, such that very intensive extraction is not required, taking into account the blasting of the rock and further processing. The use of non-road mobile machinery is already optimized. Additional reductions in environmental impact could be achieved by powering the screening process exclusively with electricity from renewable sources, such as a photovoltaic system. In this context, integrating on-site battery storage systems might present a promising solution for addressing the seasonal mismatch between solar energy generation and processing demands. Full article
18 pages, 3244 KB  
Article
Enhancing Tree-Based Machine Learning for Personalized Drug Assignment
by Katyna Sada Del Real and Angel Rubio
Appl. Sci. 2025, 15(19), 10853; https://doi.org/10.3390/app151910853 - 9 Oct 2025
Abstract
Personalized drug selection is crucial for treating complex diseases such as Acute Myeloid Leukemia, where maximizing therapeutic efficacy is essential. Although precision medicine aims to tailor treatments to individual molecular profiles, existing machine learning models often fall short in selecting the best drug [...] Read more.
Personalized drug selection is crucial for treating complex diseases such as Acute Myeloid Leukemia, where maximizing therapeutic efficacy is essential. Although precision medicine aims to tailor treatments to individual molecular profiles, existing machine learning models often fall short in selecting the best drug from multiple candidates. We present SEATS (Systematic Efficacy Assignment with Treatment Seats), which adapts conventional models like Random Forest and XGBoost for multiclass drug assignment by allocating probabilistic “treatment seats” to drugs based on efficacy. This approach helps models learn clinically relevant distinctions. Additionally, we assess an interpretable Optimal Decision Tree (ODT) model designed specifically for drug assignment. Trained on the BeatAML2 cohort and validated on the GDSC AML cell line dataset, integrating SEATS with Random Forest and XGBoost improved prediction accuracy and consistency. The ODT model offered competitive performance with clear, interpretable decision paths and minimal feature requirements, facilitating clinical use. SEATS reorients standard models towards personalized drug selection. Combined with the ODT framework it provides effective, interpretable strategies for precision oncology, underscoring the potential of tailored machine learning solutions in supporting real-world treatment decisions. Full article
(This article belongs to the Special Issue Recent Advances in Biomedical Data Analysis)
15 pages, 1074 KB  
Article
Cyclopentadienyl–Silsesquioxane Titanium Complexes in the Polymerizations of Styrene and L-Lactide
by Joan Vinueza-Vaca, Shoaib Anwar, Salvatore Impemba, Ilaria Grimaldi, Gerardo Jiménez, Carmine Capacchione, Vanessa Tabernero and Stefano Milione
Polymers 2025, 17(19), 2715; https://doi.org/10.3390/polym17192715 - 9 Oct 2025
Abstract
In this contribution, two silsesquioxane–cyclopentadienyl titanium complexes featuring one or two chloride ancillary ligands, [Ti(η5-C5H4SiMeO2Ph7Si7O10-κO)Cl2] (1) and [Ti(η5-C5H4 [...] Read more.
In this contribution, two silsesquioxane–cyclopentadienyl titanium complexes featuring one or two chloride ancillary ligands, [Ti(η5-C5H4SiMeO2Ph7Si7O10-κO)Cl2] (1) and [Ti(η5-C5H4SiMe2OPh7Si7O11-κ2O2)Cl] (2), were synthesized and evaluated in the Ziegler–Natta polymerization of styrene and the ring-opening polymerization (ROP) of L-lactide, respectively. Complex 1, activated with methylaluminoxane (MAO), catalyzed the syndiotactic polymerization of styrene with turnover frequencies up to 28 h−1, affording polymers with narrow dispersity, low number-average molecular weights (Mn = 5.2–8.2 kDa), and high stereoregularity, as confirmed by 13C NMR. Complex 2, in combination with benzyl alcohol, promoted the ring-opening polymerization of L-lactide in solution at 100 °C, achieving conversions up to 95% with good molecular weight control (Mn close to theoretical, Đ = 1.19–1.32). Under melt conditions at 175 °C, it converted up to 3000 equiv. of monomer within 1 h. Kinetic analysis revealed first-order dependence on monomer concentration. The results highlight the ability of these complexes to produce syndiotactic polystyrene with narrow molecular weight distributions and to catalyze controlled ROP of L-lactide under both solution and melt conditions. Computational studies provided insight into key structural and energetic features influencing reactivity, offering a framework for further catalyst optimization. This work broadens the application scope of silsesquioxane–cyclopentadienyl titanium complexes and supports their potential as sustainable and versatile catalysts for both commodity and biodegradable polymer synthesis. Full article
(This article belongs to the Section Polymer Chemistry)
12 pages, 4194 KB  
Article
Interaction Between Air Entraining Agent and Graphene Oxide and Its Effect on Bubble Behavior of Cement-Based Materials
by Min Qiao, Guofeng Chen, Yajie Fang, Yuxin Li and Mei Shi
Buildings 2025, 15(19), 3631; https://doi.org/10.3390/buildings15193631 - 9 Oct 2025
Abstract
Nanomaterials play a beneficial role in regulating the function of cement-based materials. The effects and mechanism of graphene oxide (GO) on foam behavior in solutions and air-entraining behavior of cement mortar were studied, and its effect on the microstructure of cement mortar was [...] Read more.
Nanomaterials play a beneficial role in regulating the function of cement-based materials. The effects and mechanism of graphene oxide (GO) on foam behavior in solutions and air-entraining behavior of cement mortar were studied, and its effect on the microstructure of cement mortar was also investigated. The results show that a synergy between GO’s hydrophobicity and the air-entraining agent’s hydrophobic chains drove more agent molecules to adsorb onto the GO surface, subsequently spreading and aggregating across the bubbles. GO effectively assisted the air entraining agent to refine the bubble size, improved the bubble stability of aqueous solutions, and had excellent air entraining performance in the fresh cement mortar, as well as the optimum air-void adjustment performance of hardened cement mortars. With the addition of 0.4‰ GO, the loss rate of gas content in the GO mixed mortar was 10.3%, which was 55.8% lower than that when only using AEA. The addition of 0.4‰ of GO effectively increased the volume fraction of the cement mortar system. GO reduced the pore volume in the mortar through the filling effect and nucleation effect to reduce the total porosity and refine the microstructure of the mortar. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
37 pages, 2891 KB  
Review
Strategies for Biofouling Control: A Review from an Environmental Perspective of Innovation and Trends
by Virgínia Rayanne Soares de Souza, Camila Ferreira Alves, Larissa Felix de Lucena, Luana Caroline Costa Silva, Everthon de Albuquerque Xavier, Cláudio José Galdino da Silva Jr., Attilio Converti, Renata Laranjeiras Gouveia and Leonie Asfora Sarubbo
Coatings 2025, 15(10), 1185; https://doi.org/10.3390/coatings15101185 - 9 Oct 2025
Abstract
Biofouling is the colonization and attachment of sessile organisms on submerged surfaces, whether natural or artificial. The presence of these communities compromises the structural integrity, operational efficiency, and durability of coastal structures, resulting in high economic and environmental costs, especially when conventional removal [...] Read more.
Biofouling is the colonization and attachment of sessile organisms on submerged surfaces, whether natural or artificial. The presence of these communities compromises the structural integrity, operational efficiency, and durability of coastal structures, resulting in high economic and environmental costs, especially when conventional removal methods involve the use of toxic biocides. In this context, this article aimed to evaluate the scientific productivity of the literature related to sustainable antifouling strategies, with an emphasis on technologically and environmentally sustainable solutions, through a bibliometric analysis. We analyzed 160 research articles and 90 patents published between 2004 and 2024. It was observed that, since 2019, there has been an increase in publications about biofouling solutions, with a notable emphasis on China’s leadership in both scientific production and patent filings. This topic has also attracted extensive international collaboration. The most promising strategies for controlling marine biofouling involve a combination of physical, chemical, and biological methods, integrated with sustainable coatings. The growing demand for low-environmental-impact solutions has driven the development of safer, more effective, and economically viable antifouling technologies. Therefore, the integration of traditional techniques with advances in biotechnology represents a strategic path to mitigating the impacts of biofouling in marine environments. Full article
(This article belongs to the Special Issue Eco-Friendly Antifouling Coatings and Paint in Marine Coating Systems)
24 pages, 2805 KB  
Article
Design and Implementation of an Inductive Proximity Sensor with Embedded Systems
by Septimiu Sever Pop, Alexandru-Florin Flutur and Alexandra Fodor
Sensors 2025, 25(19), 6258; https://doi.org/10.3390/s25196258 (registering DOI) - 9 Oct 2025
Abstract
Non-mechanical contact distance measurement solutions are becoming more and more necessary in various industries, including building monitoring, automotive, and aviation industries. Inductive proximity sensor (IPS) technology is becoming a more popular solution in the field of short distances. Because of its small size, [...] Read more.
Non-mechanical contact distance measurement solutions are becoming more and more necessary in various industries, including building monitoring, automotive, and aviation industries. Inductive proximity sensor (IPS) technology is becoming a more popular solution in the field of short distances. Because of its small size, dependability, and measurement capabilities, IPS is a good option. Separate circuits are used in the classical structures to generate the excitation signal for the sensor coil and measure the response signal. The response signal’s amplitude is typically measured. This article proposes an IPS model that uses frequency response as its basis for operation. A microcontroller and embedded technology are used to implement a small IPS structure. This includes the circuit for determining distance, as well as the signal generator used to excite the sensor coil. In essence, an LC circuit is employed, which at the unit step has a damped oscillatory response by nature. Periodically injecting energy into the LC circuit, however, causes it to enter a persistent oscillatory state. The full experimental model is implemented and presented in the article, illustrating how the distance can be measured with a 33 µm accuracy within the 10 mm range with the help of the nonlinear relationship between frequency and distance and the linear drift of frequency with temperature. Full article
(This article belongs to the Section Electronic Sensors)
23 pages, 4862 KB  
Article
Rapid Temperature Prediction Model for Large-Scale Seasonal Borehole Thermal Energy Storage Unit
by Donglin Zhao, Mengying Cui, Shuchuan Yang, Xiao Li, Junqing Huo and Yonggao Yin
Energies 2025, 18(19), 5326; https://doi.org/10.3390/en18195326 (registering DOI) - 9 Oct 2025
Abstract
The temperature of the thermal energy storage unit is a critical parameter for the stable operation of seasonal borehole thermal energy storage (BTES) systems. However, existing temperature prediction models predominantly focus on estimating single-point temperatures or borehole wall temperatures, while lacking effective methods [...] Read more.
The temperature of the thermal energy storage unit is a critical parameter for the stable operation of seasonal borehole thermal energy storage (BTES) systems. However, existing temperature prediction models predominantly focus on estimating single-point temperatures or borehole wall temperatures, while lacking effective methods for calculating the average temperature of the storage unit. This limitation hinders accurate assessment of the thermal charging and discharging states. Furthermore, some models involve complex computations and exhibit low operational efficiency, failing to meet the practical engineering demands for rapid prediction and response. To address these challenges, this study first develops a thermal response model for the average temperature of the storage unit based on the finite line source theory and further proposes a simplified engineering algorithm for predicting the storage unit temperature. Subsequently, two-dimensional discrete convolution and Fast Fourier Transform (FFT) techniques are introduced to accelerate the solution of the storage unit temperature distribution. Finally, the model’s accuracy is validated against practical engineering cases. The results indicate that the single-point temperature engineering algorithm yields a maximum relative error of only 0.3%, while the average temperature exhibits a maximum relative error of 1.2%. After employing FFT, the computation time of both single-point and average temperature engineering algorithms over a 10-year simulation period is reduced by more than 90%. When using two-dimensional discrete convolution to calculate the temperature distribution of the storage unit, expanding the input layer from 200 × 200 to 400 × 400 and the convolution kernel from 25 × 25 to 51 × 51 reduces the time required for temperature superposition calculations to approximately 0.14–0.82% of the original time. This substantial improvement in computational efficiency is achieved without compromising accuracy. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

28 pages, 3474 KB  
Article
OptoBrain: A Wireless Sensory Interface for Optogenetics
by Rodrigo de Albuquerque Pacheco Andrade, Helder Eiki Oshiro, Gabriel Augusto Ginja, Eduardo Colombari, Maria Celeste Dias, José A. Afonso and João Paulo Pereira do Carmo
Future Internet 2025, 17(10), 465; https://doi.org/10.3390/fi17100465 (registering DOI) - 9 Oct 2025
Abstract
Optogenetics leverages light to control neural circuits, but traditional systems are often bulky and tethered, limiting their use. This work introduces OptoBrain, a novel, portable wireless system for optogenetics designed to overcome these challenges. The system integrates modules for multichannel data acquisition, smart [...] Read more.
Optogenetics leverages light to control neural circuits, but traditional systems are often bulky and tethered, limiting their use. This work introduces OptoBrain, a novel, portable wireless system for optogenetics designed to overcome these challenges. The system integrates modules for multichannel data acquisition, smart neurostimulation, and continuous processing, with a focus on low-power and low-voltage operation. OptoBrain features up to eight neuronal acquisition channels with a low input-referred noise (e.g., 0.99 µVRMS at 250 sps with 1 V/V gain), and reliably streams data via a Bluetooth 5.0 link at a measured throughput of up to 400 kbps. Experimental results demonstrate robust performance, highlighting its potential as a simple, practical, and low-cost solution for emerging optogenetics research centers and enabling new avenues in neuroscience. Full article
Show Figures

Figure 1

13 pages, 589 KB  
Article
Transpancreatic Sphincterotomy Is a Safe and Effective Pancreatic Guidewire-Assisted Cannulation Method: Real-World Data Analysis of the Hungarian ERCP Registry
by Dániel Pécsi, Nelli Farkas, Szilárd Gódi, Péter Hegyi, Andrea Szentesi, István Altorjay, Tamás Bakucz, Ákos Orbán-Szilágyi, Zoltán Szepes, László Czakó, Árpád Patai, Tibor Gyökeres, Roland Fejes, Zsolt Dubravcsik and Áron Vincze
J. Clin. Med. 2025, 14(19), 7118; https://doi.org/10.3390/jcm14197118 (registering DOI) - 9 Oct 2025
Abstract
Background/Objectives: Difficult biliary cannulation during endoscopic retrograde cholangiopancreatography (ERCP) poses significant challenges and increases the risk of adverse events. Pancreatic guidewire (PGW)-assisted techniques offer potential solutions, but real-world comparative data are limited. Methods: This cohort study of prospectively collected data analyzed 234 ERCP [...] Read more.
Background/Objectives: Difficult biliary cannulation during endoscopic retrograde cholangiopancreatography (ERCP) poses significant challenges and increases the risk of adverse events. Pancreatic guidewire (PGW)-assisted techniques offer potential solutions, but real-world comparative data are limited. Methods: This cohort study of prospectively collected data analyzed 234 ERCP cases from the Hungarian ERCP Registry, focusing on three PGW-assisted methods: transpancreatic sphincterotomy (TPS), double-guidewire technique (DGW), and prophylactic pancreatic stent-assisted cannulation (PPS-C). Results: TPS demonstrated the highest primary cannulation success rate (83.1%), significantly outperforming DGW (67.7%) and PPS-C (67.6%) (p < 0.001). With salvage methods, cannulation success was high across all groups. Post-ERCP pancreatitis rates were low (5.0% TPS, 5.6% DGW, 3.9% PPS-C), but prophylactic measures (pancreatic stents, indomethacin) were underutilized. Conclusions: Our findings suggest that TPS is a safe and effective alternative for difficult biliary cannulation in ERCP. Routine considerations of post-ERCP pancreatitis prophylaxis (prophylactic pancreatic stents and non-steroidal suppositories) are recommended in all PGW-assisted cannulations to minimize complications. Full article
(This article belongs to the Section Gastroenterology & Hepatopancreatobiliary Medicine)
21 pages, 2144 KB  
Article
Effect of Surface Treatments on Interlaminar Strength of an FML Formed by Basalt Fiber/Polyester Composite and Al 3003-H14 Sheets Manufactured via Combined VARTM and Vacuum Bagging Processes
by Cesar Alfonso Cortes-Tejada, Honorio Ortíz-Hernández, Marco Antonio García-Bernal, Gabriela Lourdes Rueda-Morales, Hilario Hernández-Moreno, Víctor Manuel Sauce-Rangel and Alexander Morales-Gómez
J. Manuf. Mater. Process. 2025, 9(10), 331; https://doi.org/10.3390/jmmp9100331 - 9 Oct 2025
Abstract
Metal/composite interfacial interactions are critical to the mechanical performance of Fiber Metal Laminates (FMLs). In this study, the feasibility of successively combining Vacuum-Assisted Resin Transfer Molding (VARTM) and Vacuum Bagging (VB) was investigated, a strategy that has not been reported in the literature [...] Read more.
Metal/composite interfacial interactions are critical to the mechanical performance of Fiber Metal Laminates (FMLs). In this study, the feasibility of successively combining Vacuum-Assisted Resin Transfer Molding (VARTM) and Vacuum Bagging (VB) was investigated, a strategy that has not been reported in the literature for the fabrication of FMLs with 2/1 stacking configuration, using low-cost 3003-H14 aluminum alloy. The substrate was surface modified through mechanical abrasion and chemical etching in an ultrasonic bath with a 0.1 M NaOH solution, varying the exposure time (20, 40, and 60 min). These surfaces were characterized by optical microscopy and atomic force microscopy (AFM), conducting both qualitative and quantitative analyses of the two- and three-dimensional surface features associated with pore morphology. Additionally, their effects on interlaminar strength and Mode I failure modes of the adhesive joint at the metal/composite interface were evaluated. Micrographs of the surface variants revealed a systematic evolution of the metallic microstructure. The T-peel tests demonstrated that the microstructural features influenced the interlaminar behavior. The 40 min treatment exhibited the highest initial peak force (26.4 N) and the highest average peel force (12.4 N), with a predominantly cohesive mixed-mode failure, representing the most favorable configuration for maximizing adhesion at the metal/composite interface. Full article
Back to TopTop