Loading [MathJax]/jax/output/HTML-CSS/jax.js
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = spatial autoregressive model (SAM)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 326 KiB  
Article
A Marginal Maximum Likelihood Approach for Hierarchical Simultaneous Autoregressive Models with Missing Data
by Anjana Wijayawardhana, David Gunawan and Thomas Suesse
Mathematics 2024, 12(23), 3870; https://doi.org/10.3390/math12233870 - 9 Dec 2024
Cited by 1 | Viewed by 808
Abstract
Efficient estimation methods for simultaneous autoregressive (SAR) models with missing data in the response variable have been well explored in the literature. A common practice is introducing measurement error into SAR models to separate the noise component from the spatial process. However, prior [...] Read more.
Efficient estimation methods for simultaneous autoregressive (SAR) models with missing data in the response variable have been well explored in the literature. A common practice is introducing measurement error into SAR models to separate the noise component from the spatial process. However, prior studies have not considered incorporating measurement error into SAR models with missing data. Maximum likelihood estimation for such models, especially with large datasets, poses significant computational challenges. This paper proposes an efficient likelihood-based estimation method, the marginal maximum likelihood (ML), for estimating SAR models on large datasets with measurement errors and a high percentage of missing data in the response variable. The spatial autoregressive model (SAM) and the spatial error model (SEM), two popular SAR model types, are considered. The missing data mechanism is assumed to follow a missing-at-random (MAR) pattern. We propose a fast method for marginal ML estimation with a computational complexity of O(n3/2), where n is the total number of observations. This complexity applies when the spatial weight matrix is constructed based on a local neighbourhood structure. The effectiveness of the proposed methods is demonstrated through simulations and real-world data applications. Full article
(This article belongs to the Section D1: Probability and Statistics)
Show Figures

Figure 1

21 pages, 5848 KiB  
Article
What Factors Revitalize the Street Vitality of Old Cities? A Case Study in Nanjing, China
by Yan Zheng, Ruhai Ye, Xiaojun Hong, Yiming Tao and Zherui Li
ISPRS Int. J. Geo-Inf. 2024, 13(8), 282; https://doi.org/10.3390/ijgi13080282 - 12 Aug 2024
Cited by 2 | Viewed by 1622
Abstract
Urban street vitality has been a perennial focus within the domain of urban planning. This study examined spatial patterns of street vitality in the old city of Nanjing during working days and weekends using real-time user datasets (RTUDs). A spatial autoregressive model (SAM) [...] Read more.
Urban street vitality has been a perennial focus within the domain of urban planning. This study examined spatial patterns of street vitality in the old city of Nanjing during working days and weekends using real-time user datasets (RTUDs). A spatial autoregressive model (SAM) and a multiscale geographically weighted regression (MGWR) model were employed to quantitatively assess the impact of various factors on street vitality and their spatial heterogeneity. This study revealed the following: (1) the distribution of street vitality in the old city of Nanjing exhibited a structure centered around Xinjiekou, with greater regularity and predictability in street vitality on working days than on weekends; (2) eight variables, such as traffic location, road density, and functional density, are positively associated with street vitality, whereas the green view index is negatively associated with street vitality, and commercial location benefits street vitality at weekends but detracts from street vitality on working days; and (3) the influence of variables such as traffic location and functional density on street vitality is contingent on their spatial position. Based on these results, this study provides new strategies to enhance the street vitality of old cities. Full article
(This article belongs to the Topic Spatial Decision Support Systems for Urban Sustainability)
Show Figures

Figure 1

13 pages, 1774 KiB  
Article
Examining Vulnerability Factors to Natural Disasters with a Spatial Autoregressive Model: The Case of South Korea
by Seunghoo Jeong and D. K. Yoon
Sustainability 2018, 10(5), 1651; https://doi.org/10.3390/su10051651 - 20 May 2018
Cited by 31 | Viewed by 6278
Abstract
Socially and economically marginalized people and environmentally vulnerable areas are disproportionately affected by natural hazards. Identifying populations and places vulnerable to disasters is important for disaster management, and crucial for mitigating their economic consequences. From the fields of geography, emergency management, and urban [...] Read more.
Socially and economically marginalized people and environmentally vulnerable areas are disproportionately affected by natural hazards. Identifying populations and places vulnerable to disasters is important for disaster management, and crucial for mitigating their economic consequences. From the fields of geography, emergency management, and urban planning, several approaches and methodologies have been used to identify significant vulnerability factors affecting the incidence and impact of disasters. This study performs a regression analysis to examine several factors associated with disaster damage in 230 local communities in South Korea, using ten vulnerability indicators for social, economic, and environmental aspects, and a single indicator for disaster characteristics. A Lagrange Multiplier diagnostic test-based spatial autoregressive model (SAM) was applied to assess the potential spatial autocorrelation in the ordinary least squares (OLS) residuals. This study compared the OLS regression results with those of a spatial autoregressive model, for both presence of spatial autocorrelation, and model performance. The conclusion of this study is that Korean communities with a higher vulnerability to disasters, as a result of their socioeconomic and environmental characteristics, are more likely to experience economic losses from natural disasters. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

Back to TopTop