Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,500)

Search Parameters:
Keywords = spatial contrast

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 8591 KB  
Communication
Impact of Channel Confluence Geometry on Water Velocity Distributions in Channel Junctions with Inflows at Angles α = 45° and α = 60°
by Aleksandra Mokrzycka-Olek, Tomasz Kałuża and Mateusz Hämmerling
Water 2025, 17(19), 2890; https://doi.org/10.3390/w17192890 (registering DOI) - 4 Oct 2025
Abstract
Understanding flow dynamics in open-channel node systems is crucial for designing effective hydraulic engineering solutions and minimizing energy losses. This study investigates how junction geometry—specifically the lateral inflow angle (α = 45° and 60°) and the longitudinal bed slope (I = 0.0011 to [...] Read more.
Understanding flow dynamics in open-channel node systems is crucial for designing effective hydraulic engineering solutions and minimizing energy losses. This study investigates how junction geometry—specifically the lateral inflow angle (α = 45° and 60°) and the longitudinal bed slope (I = 0.0011 to 0.0051)—influences the water velocity distribution and hydraulic losses in a rigid-bed Y-shaped open-channel junction. Experiments were performed in a 0.3 m wide and 0.5 m deep rectangular flume, with controlled inflow conditions simulating steady-state discharge scenarios. Flow velocity measurements were obtained using a PEMS 30 electromagnetic velocity probe, which is capable of recording three-dimensional velocity components at a high spatial resolution, and electromagnetic flow meters for discharge control. The results show that a lateral inflow angle of 45° induces stronger flow disturbances and higher local loss coefficients, especially under steeper slope conditions. In contrast, an angle of 60° generates more symmetric velocity fields and reduces energy dissipation at the junction. These findings align with the existing literature and highlight the significance of junction design in hydraulic structures, particularly under high-flow conditions. The experimental data may be used for calibrating one-dimensional hydrodynamic models and optimizing the hydraulic performance of engineered channel outlets, such as those found in hydropower discharge systems or irrigation networks. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

11 pages, 1345 KB  
Article
Beam Tracking X-Ray Phase-Contrast Imaging Using a Conventional X-Ray Source
by Jiaqi Li, Jianheng Huang, Xin Liu, Yaohu Lei, Botao Mai and Chenggong Zhang
Sensors 2025, 25(19), 6089; https://doi.org/10.3390/s25196089 - 2 Oct 2025
Abstract
To address the issue of insufficient contrast in conventional X-ray absorption imaging for biological soft tissues and weakly absorbing materials, this paper proposes a beam tracking X-ray phase-contrast imaging system using a conventional X-ray source. A periodic pinhole array mask is placed between [...] Read more.
To address the issue of insufficient contrast in conventional X-ray absorption imaging for biological soft tissues and weakly absorbing materials, this paper proposes a beam tracking X-ray phase-contrast imaging system using a conventional X-ray source. A periodic pinhole array mask is placed between the X-ray source and the sample to spatially modulate the X-ray beam, dividing it into multiple independent sub-beams. Each sub-beam is deflected due to the modulation effect of the sample, resulting in slight positional shifts in the intensity patterns formed on the detector. The experiments employ an X-ray source with a 400 μm focal spot and use a two-dimensional step-scanning approach to acquire image sequences of various samples. The experimental results show that this method can extract the edge profile and structural changes in the samples to some extent, and it demonstrates good contrast and detail recovery under weak absorption conditions. These results suggest that this method has certain application potential in material inspection, non-destructive testing, and related fields. Full article
(This article belongs to the Special Issue Recent Innovations in X-Ray Sensing and Imaging)
20 pages, 33056 KB  
Article
Spatiotemporal Analysis of Vineyard Dynamics: UAS-Based Monitoring at the Individual Vine Scale
by Stefan Ruess, Gernot Paulus and Stefan Lang
Remote Sens. 2025, 17(19), 3354; https://doi.org/10.3390/rs17193354 - 2 Oct 2025
Abstract
The rapid and reliable acquisition of canopy-related metrics is essential for improving decision support in viticultural management, particularly when monitoring individual vines for targeted interventions. This study presents a spatially explicit workflow that integrates Uncrewed Aerial System (UAS) imagery, 3D point-cloud analysis, and [...] Read more.
The rapid and reliable acquisition of canopy-related metrics is essential for improving decision support in viticultural management, particularly when monitoring individual vines for targeted interventions. This study presents a spatially explicit workflow that integrates Uncrewed Aerial System (UAS) imagery, 3D point-cloud analysis, and Object-Based Image Analysis (OBIA) to detect and monitor individual grapevines throughout the growing season. Vines are identified directly from 3D point clouds without the need for prior training data or predefined row structures, achieving a mean Euclidean distance of 10.7 cm to the reference points. The OBIA framework segments vine vegetation based on spectral and geometric features without requiring pre-clipping or manual masking. All non-vine elements—including soil, grass, and infrastructure—are automatically excluded, and detailed canopy masks are created for each plant. Vegetation indices are computed exclusively from vine canopy objects, ensuring that soil signals and internal canopy gaps do not bias the results. This enables accurate per-vine assessment of vigour. NDRE values were calculated at three phenological stages—flowering, veraison, and harvest—and analyzed using Local Indicators of Spatial Association (LISA) to detect spatial clusters and outliers. In contrast to value-based clustering methods, LISA accounts for spatial continuity and neighborhood effects, allowing the detection of stable low-vigour zones, expanding high-vigour clusters, and early identification of isolated stressed vines. A strong correlation (R2 = 0.73) between per-vine NDRE values and actual yield demonstrates that NDRE-derived vigour reliably reflects vine productivity. The method provides a transferable, data-driven framework for site-specific vineyard management, enabling timely interventions at the individual plant level before stress propagates spatially. Full article
Show Figures

Figure 1

26 pages, 16624 KB  
Article
Design and Evaluation of an Automated Ultraviolet-C Irradiation System for Maize Seed Disinfection and Monitoring
by Mario Rojas, Claudia Hernández-Aguilar, Juana Isabel Méndez, David Balderas-Silva, Arturo Domínguez-Pacheco and Pedro Ponce
Sensors 2025, 25(19), 6070; https://doi.org/10.3390/s25196070 - 2 Oct 2025
Abstract
This study presents the development and evaluation of an automated ultraviolet-C irradiation system for maize seed treatment, emphasizing disinfection performance, environmental control, and vision-based monitoring. The system features dual 8-watt ultraviolet-C lamps, sensors for temperature and humidity, and an air extraction unit to [...] Read more.
This study presents the development and evaluation of an automated ultraviolet-C irradiation system for maize seed treatment, emphasizing disinfection performance, environmental control, and vision-based monitoring. The system features dual 8-watt ultraviolet-C lamps, sensors for temperature and humidity, and an air extraction unit to regulate the microclimate of the chamber. Without air extraction, radiation stabilized within one minute, with internal temperatures increasing by 5.1 °C and humidity decreasing by 13.26% over 10 min. When activated, the extractor reduced heat build-up by 1.4 °C, minimized humidity fluctuations (4.6%), and removed odors, although it also attenuated the intensity of ultraviolet-C by up to 19.59%. A 10 min ultraviolet-C treatment significantly reduced the fungal infestation in maize seeds by 23.5–26.25% under both extraction conditions. Thermal imaging confirmed localized heating on seed surfaces, which stressed the importance of temperature regulation during exposure. Notable color changes (ΔE>2.3) in treated seeds suggested radiation-induced pigment degradation. Ultraviolet-C intensity mapping revealed spatial non-uniformity, with measurements limited to a central axis, indicating the need for comprehensive spatial analysis. The integrated computer vision system successfully detected seed contours and color changes under high-contrast conditions, but underperformed under low-light or uneven illumination. These limitations highlight the need for improved image processing and consistent lighting to ensure accurate monitoring. Overall, the chamber shows strong potential as a non-chemical seed disinfection tool. Future research will focus on improving radiation uniformity, assessing effects on germination and plant growth, and advancing system calibration, safety mechanisms, and remote control capabilities. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Graphical abstract

29 pages, 2009 KB  
Article
Assessment of Infrastructure and Service Supply on Sustainable Urban Transport Systems in Delhi-NCR: Implications of Last-Mile Connectivity for Government Policies
by Snigdha Choudhary, D. P. Singh and Manoj Kumar
Future Transp. 2025, 5(4), 134; https://doi.org/10.3390/futuretransp5040134 - 2 Oct 2025
Abstract
Urban mobility plays a vital role in shaping sustainable cities, yet the effectiveness of public transportation is often undermined by poor last-mile connectivity (LMC). In the National Capital Region (NCR) of Delhi, despite the Delhi Metro Rail serving as a key transit system, [...] Read more.
Urban mobility plays a vital role in shaping sustainable cities, yet the effectiveness of public transportation is often undermined by poor last-mile connectivity (LMC). In the National Capital Region (NCR) of Delhi, despite the Delhi Metro Rail serving as a key transit system, limited integration with surrounding areas hinders accessibility, which particularly affects women, elderly adults, and socioeconomically disadvantaged groups. This study evaluates LMC performance at two key metro stations, Nehru Place and Botanical Garden, using a mixed-methods approach that includes user surveys, spatial survey, thematic analysis, and infrastructure scoring across five critical pillars: accessibility, safety and comfort, intermodality, service availability, and inclusivity. The findings communicate notable contrasts. Botanical Garden exhibits strong intermodal linkages, pedestrian-friendly design, and supportive signage, while Nehru Place indicates a need for infrastructural improvements, safety advancement and upgrades, and strengthened universal design features. These disparities limit effective metro usage and discourage a shift from private to public transport. The study highlights the importance of user-centered, multimodal solutions and the need for cohesive urban governance to address LMC gaps. By identifying barriers and opportunities for improvement, this research paper contributes to the formulation of more inclusive and sustainable urban transport strategies in Indian metropolitan regions. Full article
Show Figures

Figure 1

25 pages, 2657 KB  
Article
Hydro-Functional Strategies of Sixteen Tree Species in a Mexican Karstic Seasonally Dry Tropical Forest
by Jorge Palomo-Kumul, Mirna Valdez-Hernández, Gerald A. Islebe, Edith Osorio-de-la-Rosa, Gabriela Cruz-Piñon, Francisco López-Huerta and Raúl Juárez-Aguirre
Forests 2025, 16(10), 1535; https://doi.org/10.3390/f16101535 - 1 Oct 2025
Abstract
Seasonally dry tropical forests (SDTFs) are shaped by strong climatic and edaphic constraints, including pronounced rainfall seasonality, extended dry periods, and shallow karst soils with limited water retention. Understanding how tree species respond to these pressures is crucial for predicting ecosystem resilience under [...] Read more.
Seasonally dry tropical forests (SDTFs) are shaped by strong climatic and edaphic constraints, including pronounced rainfall seasonality, extended dry periods, and shallow karst soils with limited water retention. Understanding how tree species respond to these pressures is crucial for predicting ecosystem resilience under climate change. In the Yucatán Peninsula, we characterized sixteen tree species along a spatial and seasonal precipitation gradient, quantifying wood density, predawn and midday water potential, saturated and relative water content, and specific leaf area. Across sites, diameter classes, and seasons, we measured ≈4 individuals per species (n = 319), ensuring replication despite natural heterogeneity. Using a principal component analysis (PCA) based on individual-level data collected during the dry season, we identified five functional groups spanning a continuum from conservative hard-wood species, with high hydraulic safety and access to deep water sources, to acquisitive light-wood species that rely on stem water storage and drought avoidance. Intermediate-density species diverged into subgroups that employed contrasting strategies such as anisohydric tolerance, high leaf area efficiency, or strict stomatal regulation to maintain performance during the dry season. Functional traits were strongly associated with precipitation regimes, with wood density emerging as a key predictor of water storage capacity and specific leaf area responding plastically to spatial and seasonal variability. These findings refine functional group classifications in heterogeneous karst landscapes and highlight the value of trait-based approaches for predicting drought resilience and informing restoration strategies under climate change. Full article
21 pages, 4986 KB  
Article
Analysis of Public Space Characteristics in Traditional Villages Along the Western Beijing Cultural Belt and Their Behavioral Adaptation to Residents: A Multi-Scale Perspective Study
by Yuke Chen, Yiming Xiong, Chengbin Xi, Shiyu Meng, Chenhui Liu and Yunlu Zhang
Land 2025, 14(10), 1982; https://doi.org/10.3390/land14101982 - 1 Oct 2025
Abstract
Under the accelerating urbanization, the evolution of public spaces in traditional villages increasingly diverges from social needs. The top-down governance model fails to adequately address the actual needs of indigenous residents, highlighting the necessity for structural analysis and optimization from an integrated physical–social [...] Read more.
Under the accelerating urbanization, the evolution of public spaces in traditional villages increasingly diverges from social needs. The top-down governance model fails to adequately address the actual needs of indigenous residents, highlighting the necessity for structural analysis and optimization from an integrated physical–social perspective. This study, focusing on traditional villages in Beijing’s Fangshan District, constructs a three-tier model (village-street-node) by integrating Social Network Analysis (SNA) and space syntax theory. It analyzes the relationship between the accessibility and traffic potentiality of linear and point-based public spaces across the region and the frequency/scope of villagers’ daily activities. The findings reveal that within the linear belt-like spatial layout of traditional villages in western Beijing, historical spaces situated within the core residential areas demonstrate high stability and integrity, serving as primary venues for villagers’ daily activities. In contrast, historical spaces located at the periphery of settlements suffer from low utilization rates and even exhibit social segregation. Additionally, deficiencies in spatial choice, intermediary nodes, and functionality within settlements are identified as key factors contributing to social segregation in public spaces. Finally, the study proposes targeted policy recommendations for the preservation and sustainable development of traditional villages. Full article
(This article belongs to the Section Land Planning and Landscape Architecture)
Show Figures

Figure 1

20 pages, 3824 KB  
Article
Spatial Transcriptomics Reveals Distinct Architectures but Shared Vulnerabilities in Primary and Metastatic Liver Tumors
by Swamy R. Adapa, Sahanama Porshe, Divya Priyanka Talada, Timothy M. Nywening, Mattew L. Anderson, Timothy I. Shaw and Rays H. Y. Jiang
Cancers 2025, 17(19), 3210; https://doi.org/10.3390/cancers17193210 - 1 Oct 2025
Abstract
Background: Primary hepatocellular carcinoma (HCC) and liver metastases differ in origin, progression, and therapeutic response, yet a direct high-resolution spatial comparison of their tumor microenvironments (TMEs) within the liver has not previously been performed. Methods: We applied high-definition spatial transcriptomics to [...] Read more.
Background: Primary hepatocellular carcinoma (HCC) and liver metastases differ in origin, progression, and therapeutic response, yet a direct high-resolution spatial comparison of their tumor microenvironments (TMEs) within the liver has not previously been performed. Methods: We applied high-definition spatial transcriptomics to fresh-frozen specimens of one HCC and one liver metastasis (>16,000 genes per sample, >97% mapping rates) as a proof-of-principle two-specimen study, cross-validated in human proteomics and patients’ survival datasets. Transcriptional clustering revealed spatially distinct compartments, rare cell states, and pathway alterations, which were further compared against an independent systemic dataset. Results: HCC displayed an ordered lineage architecture, with transformed hepatocyte-like tumor cells broadly dispersed across the tissue and more differentiated hepatocyte-derived cells restricted to localized zones. By contrast, liver metastases showed two sharply compartmentalized domains: an invasion zone, where proliferative stem-like tumor cells occupied TAM-rich boundaries adjacent to hypoxia-adapted tumor-core cells, and a plasticity zone, which formed a heterogeneous niche of cancer–testis antigen–positive germline-like cells. Across both tumor types, we detected a conserved metabolic program of “porphyrin overdrive,” defined by reduced cytochrome P450 expression, enhanced oxidative phosphorylation gene expression, and upregulation of FLVCR1 and ALOX5, reflecting coordinated rewiring of heme and lipid metabolism. Conclusions: In this pilot study, HCC and liver metastases demonstrated fundamentally different spatial architectures, with metastases uniquely harboring a germline/neural-like plasticity hub. Despite these organizational contrasts, both tumor types converged on a shared program of metabolic rewiring, highlighting potential therapeutic targets that link local tumor niches to systemic host–tumor interactions. Full article
Show Figures

Figure 1

20 pages, 6173 KB  
Article
Challenge-Based Learning Through Making: Representing STEM Crosscutting Concepts Through Designing and Making in Middle School Engineering
by Juan Torralba and Jorge Membrillo-Hernández
Educ. Sci. 2025, 15(10), 1292; https://doi.org/10.3390/educsci15101292 - 1 Oct 2025
Abstract
Proportional reasoning is a crosscutting concept identified as necessary for student success in upper-level mathematics as well as science, technology, and engineering. Research on middle-grade mathematics learning shows that students tend to develop stronger understandings of mathematical concepts when they learn through constructionist [...] Read more.
Proportional reasoning is a crosscutting concept identified as necessary for student success in upper-level mathematics as well as science, technology, and engineering. Research on middle-grade mathematics learning shows that students tend to develop stronger understandings of mathematical concepts when they learn through constructionist real-world projects that are relevant and meaningful to them. In this qualitative exploratory research study, we developed and implemented a Challenge-Based Learning through Making project for a middle school engineering class to investigate how students demonstrate their understanding of proportional reasoning through designing and making physical and digital artifacts, mentored by industry experts, and within the context of a school makerspace. Our findings showed that students accurately represented their understanding of proportionality through their digital artifacts more than any other modality available, contrasting previous findings in the relevant literature. Findings regarding the integration of professional technology for digital 3D modeling, mentorship of industry experts, and the prevalence of mathematical estimation in digital modeling provide avenues for further research vis-a-vis the role of expert mentorship in middle school STEM design challenges and mathematical estimation in spatial reasoning for design. Implications for the practice and the field of STEM learning are discussed. Full article
(This article belongs to the Special Issue Advancing Science Learning through Design-Based Learning)
Show Figures

Figure 1

22 pages, 3456 KB  
Article
Evaluating Urban Economic Resilience in the Face of Major Public Health Emergencies: A Spatiotemporal Analysis
by Zeyu Lin, Shanlang Lin and Jianxing Chen
Land 2025, 14(10), 1977; https://doi.org/10.3390/land14101977 - 1 Oct 2025
Abstract
The COVID-19 pandemic severely impacted China’s economic stability. This study assesses the economic resilience of 2843 Chinese counties from 2019 to 2021 by constructing a comprehensive evaluation index system. Using the Projection Pursuit Model to generate index weights, we analyze resilience across four [...] Read more.
The COVID-19 pandemic severely impacted China’s economic stability. This study assesses the economic resilience of 2843 Chinese counties from 2019 to 2021 by constructing a comprehensive evaluation index system. Using the Projection Pursuit Model to generate index weights, we analyze resilience across four key dimensions: resistance, stress, recovery, and innovation. Our analysis reveals that urban economic resilience first declined during the pandemic’s peak before recovering in 2021. Spatially, eastern coastal regions demonstrated stronger resilience, supported by robust infrastructure, advanced industries, and flexible markets. In contrast, central and western regions were less resilient due to their reliance on traditional industries. A deeper sub-dimensional analysis showed that eastern regions consistently outperformed the west across all four metrics. This research establishes a rigorous framework for evaluating urban economic resilience and offers targeted strategies for policymakers to build more resilient cities in the face of future public health emergencies. Full article
Show Figures

Figure 1

24 pages, 5751 KB  
Article
Multiscale Uncertainty Quantification of Woven Composite Structures by Dual-Correlation Sampling for Stochastic Mechanical Behavior
by Guangmeng Yang, Sinan Xiao, Chi Hou, Xiaopeng Wan, Jing Gong and Dabiao Xia
Polymers 2025, 17(19), 2648; https://doi.org/10.3390/polym17192648 - 30 Sep 2025
Abstract
Woven composite structures are inherently influenced by uncertainties across multiple scales, ranging from constituent material properties to mesoscale geometric variations. These uncertainties give rise to both spatial autocorrelation and cross-correlation among material parameters, resulting in stochastic strength performance and damage morphology at the [...] Read more.
Woven composite structures are inherently influenced by uncertainties across multiple scales, ranging from constituent material properties to mesoscale geometric variations. These uncertainties give rise to both spatial autocorrelation and cross-correlation among material parameters, resulting in stochastic strength performance and damage morphology at the macroscopic structural level. This study established a comprehensive multiscale uncertainty quantification framework to systematically propagate uncertainties from the microscale to the macroscale. A novel dual-correlation sampling approach, based on multivariate random field (MRF) theory, was proposed to simultaneously capture spatial autocorrelation and cross-correlation with clear physical interpretability. This method enabled a realistic representation of both inter-specimen variability and intra-specimen heterogeneity of material properties. Experimental validation via in-plane tensile tests demonstrated that the proposed approach accurately predicts not only probabilistic mechanical responses but also discrete damage morphology in woven composite structures. In contrast, traditional independent sampling methods exhibited inherent limitations in representing spatially distributed correlations of material properties, leading to inaccurate predictions of stochastic structural behavior. The findings offered valuable insights into structural reliability assessment and risk management in engineering applications. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

33 pages, 20632 KB  
Article
A Complex Network Science Perspective on Urban Parcel Locker Placement
by Enrico Corradini, Mattia Mandorlini, Filippo Mariani, Paolo Roselli, Samuele Sacchetti and Matteo Spiga
Big Data Cogn. Comput. 2025, 9(10), 249; https://doi.org/10.3390/bdcc9100249 - 30 Sep 2025
Abstract
The rapid rise of e-commerce is intensifying pressure on last-mile delivery networks, making the strategic placement of parcel lockers an urgent urban challenge. In this work, we adapt multilayer two-mode Social Network Analysis to the parcel-locker siting problem, modeling city-scale systems as bipartite [...] Read more.
The rapid rise of e-commerce is intensifying pressure on last-mile delivery networks, making the strategic placement of parcel lockers an urgent urban challenge. In this work, we adapt multilayer two-mode Social Network Analysis to the parcel-locker siting problem, modeling city-scale systems as bipartite networks linking spatially resolved demand zones to locker locations using only open-source demographic and geographic data. We introduce two new Social Network Analysis metrics, Dual centrality and Coverage centrality, designed to identify both structurally critical and highly accessible lockers within the network. Applying our framework to Milan, Rome, and Naples, we find that conventional coverage-based strategies successfully maximize immediate service reach, but tend to prioritize redundant hubs. In contrast, Dual centrality reveals a distinct set of lockers whose presence is essential for maintaining overall connectivity and resilience, often acting as hidden bridges between user communities. Comparative analysis with state-of-the-art multi-criteria optimization baselines confirms that our network-centric metrics deliver complementary, and in some cases better, guidance for robust locker placement. Our results show that a network-analytic lens yields actionable guidance for resilient last-mile locker siting. The method is reproducible from open data (potential-access weights) and plug-in compatible with observed assignments. Importantly, the path-based results (Coverage centrality) are adjacency-driven and thus largely insensitive to volumetric weights. Full article
18 pages, 3941 KB  
Article
Cerebellar Contributions to Spatial Learning and Memory: Effects of Discrete Immunotoxic Lesions
by Martina Harley Leanza, Elisa Storelli, David D’Arco, Gioacchino de Leo, Giulio Kleiner, Luciano Arancio, Giuseppe Capodieci, Rosario Gulino, Antonio Bava and Giampiero Leanza
Int. J. Mol. Sci. 2025, 26(19), 9553; https://doi.org/10.3390/ijms26199553 - 30 Sep 2025
Abstract
Evidence of possible cerebellar involvement in spatial processing, place learning and other types of higher order functions comes mainly from clinical observations, as well as from mutant mice and lesion studies. The latter, in particular, have reported deficits in spatial learning and memory [...] Read more.
Evidence of possible cerebellar involvement in spatial processing, place learning and other types of higher order functions comes mainly from clinical observations, as well as from mutant mice and lesion studies. The latter, in particular, have reported deficits in spatial learning and memory following surgical or neurotoxic cerebellar ablation. However, the low specificity of such manipulations has often made it difficult to precisely dissect the cognitive components of the observed behaviors. Likewise, due to conflicting data coming from lesion studies, it has not been possible so far to conclusively address whether a cerebellar dysfunction is sufficient per se to induce learning deficits, or whether concurrent damage to other regulatory structure(s) is necessary to significantly interfere with cognitive processing. In the present study, the immunotoxin 192 IgG-saporin, selectively targeting cholinergic neurons in the basal forebrain and a subpopulation of cerebellar Purkinje cells, was administered to adult rats bilaterally into the basal forebrain nuclei, the cerebellar cortices or both areas combined. Additional animals underwent injections of the toxin into the lateral ventricles. Starting from two–three weeks post-lesion, the animals were tested on paradigms of motor ability as well as spatial learning and memory and then sacrificed for post-mortem morphological analyses. All lesioned rats showed no signs of ataxia and no motor deficits that could impair their performance in the water maze task. The rats with discrete cerebellar lesions exhibited fairly normal performance and did not differ from controls in any aspect of the task. By contrast, animals with double lesions, as well as those with 192 IgG-saporin given intraventricularly did manifest severe impairments in both reference and working memory. Histo- and immunohistochemical analyses confirmed the effects of the toxin conjugate on target neurons and fairly similar patterns of Purkinje cell loss in the animals with cerebellar lesion only, basal forebrain-cerebellar double lesions and bilateral intraventricular injections of the toxin. No such loss was by contrast seen in the basal forebrain-lesioned animals, whose Purkinje cells were largely spared and exhibited a normal distribution pattern. The results suggest important functional interactions between the ascending regulatory inputs from the cerebellum and those arising in the basal forebrain nuclei that would act together to modulate the complex sensory–motor and cognitive processes required to control whole body movement in space. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

36 pages, 20880 KB  
Article
NDGRI: A Novel Sentinel-2 Normalized Difference Gamma-Radiation Index for Pixel-Level Detection of Elevated Gamma Radiation
by Marko Simić, Boris Vakanjac and Siniša Drobnjak
Remote Sens. 2025, 17(19), 3331; https://doi.org/10.3390/rs17193331 - 29 Sep 2025
Abstract
This study introduces the Normalized Difference Gamma Ray Index (NDGRI), a novel spectral composite derived from Sentinel 2 imagery for mapping elevated natural gamma radiation in semi-arid and arid basins. We hypothesized that water-sensitive spectral indices correlate with gamma-ray hotspots in arid regions [...] Read more.
This study introduces the Normalized Difference Gamma Ray Index (NDGRI), a novel spectral composite derived from Sentinel 2 imagery for mapping elevated natural gamma radiation in semi-arid and arid basins. We hypothesized that water-sensitive spectral indices correlate with gamma-ray hotspots in arid regions of Mongolia, where natural radionuclide distribution is influenced by hydrological processes. Leveraging historical car-borne gamma spectrometry data collected in 2008 across the Sainshand and Zuunbayan uranium project areas, we evaluated twelve spectral bands and five established moisture-sensitive indices against radiation heatmaps in Naarst and Zuunbayan. Using Pearson and Spearman correlations alongside two percentile-based overlap metrics, indices were weighted to yield a composite performance score. The best performing indices (MI—Moisture Index and NDSII_1—Normalized Difference Snow and Ice Index) guided the derivation of ten new ND constructs incorporating SWIR bands (B11, B12) and visible bands (B4, B8A). The top performer, NDGRI = (B4 − B12)/(B4 + B12) achieved a precision of 62.8% for detecting high gamma-radiation areas and outperformed benchmarks of other indices. We established climatological screening criteria to ensure NDGRI reliability. Validation at two independent sites (Erdene, Khuvsgul) using 2008 airborne gamma ray heatmaps yielded 76.41% and 85.55% spatial overlap accuracy, respectively. Our results demonstrate that NDGRI effectively delineates gamma radiation hotspots where moisture-controlled spectral contrasts prevail. The index’s stringent acquisition constraints, however, limit the temporal availability of usable scenes. NDGRI offers a rapid, cost-effective remote sensing tool to prioritize ground surveys in uranium prospective basins and may be adapted for other radiometric applications in semi-arid and arid regions. Full article
(This article belongs to the Special Issue Remote Sensing in Engineering Geology (Third Edition))
Show Figures

Figure 1

21 pages, 1584 KB  
Article
Ionospheric Information-Assisted Spoofing Detection Technique and Performance Evaluation for Dual-Frequency GNSS Receiver
by Zhenyang Wu, Haixuan Fu, Xiaoxuan Xu, Yuhao Xiao, Yimin Ma, Ziheng Zhou and Hong Li
Electronics 2025, 14(19), 3865; https://doi.org/10.3390/electronics14193865 - 29 Sep 2025
Abstract
Global Navigation Satellite System (GNSS) spoofing, which manipulates PVT solutions through false measurements, increasingly threatens GNSS reliability and user safety. However, most existing simulator-based spoofers, constrained by their inability to access real-time ionospheric information (e.g., Global Ionosphere Maps, GIMs) from external sources, struggle [...] Read more.
Global Navigation Satellite System (GNSS) spoofing, which manipulates PVT solutions through false measurements, increasingly threatens GNSS reliability and user safety. However, most existing simulator-based spoofers, constrained by their inability to access real-time ionospheric information (e.g., Global Ionosphere Maps, GIMs) from external sources, struggle to replicate authentic total electron content (TEC) along each signal propagation path accurately and in a timely manner. In contrast, widespread dual-frequency (DF) receivers with access to the internet can validate local TEC measurements against external references, establishing a pivotal spoofing detection distinction. Here, we propose an Ionospheric Information-Assisted Spoofing Detection Technique (IIA-SDT), exploiting the inherent consistency between TEC values derived from DF pseudo-range measurements and external references in spoofing-free scenarios. Spoofing probably disrupts this consistency: in simulator-based full-channel spoofing where all channels are spoofed, the inaccuracies of the offline ionospheric model used by the spoofer inevitably cause TEC mismatches; in partial-channel spoofing where the spoofer fails to control all channels, an unintended PVT deviation is induced, which also causes TEC deviations due to the spatial variation of the ionosphere. Basic principles and theoretical analysis of the proposed IIA-SDT are elaborated in the paper. Simulations using ionospheric data collected from 2023 to 2024 at a typical mid-latitude location are conducted to evaluate IIA-SDT performance under various parameter configurations. With a window length of 5 s and satellite number of 8, the annual average detection probability approximates 75% at a false alarm rate of 1×103, with observable temporal variations. Field experiments across multiple scenarios further validate the spoofing detection capability of the proposed method. Full article
Show Figures

Figure 1

Back to TopTop