Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (802)

Search Parameters:
Keywords = spring wheat

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 10228 KB  
Article
Genomic Insights into Winter Wheat Breeding for Severely Cold Climates
by Demissew Sertse, Wubishet Abebe Bekele and Curt A. McCartney
Int. J. Mol. Sci. 2026, 27(3), 1568; https://doi.org/10.3390/ijms27031568 - 5 Feb 2026
Viewed by 60
Abstract
Wheat is one of the world’s most important crops, cultivated across diverse ecogeographic zones on more than ~245 million hectares annually. Classified by vernalization requirement into spring, facultative, or winter types, the latter typically achieves higher yields due to its extended growing season, [...] Read more.
Wheat is one of the world’s most important crops, cultivated across diverse ecogeographic zones on more than ~245 million hectares annually. Classified by vernalization requirement into spring, facultative, or winter types, the latter typically achieves higher yields due to its extended growing season, reaching ~18 t ha−1 and 9–10 t ha−1 as a national average for Western European countries such as Germany, France, and England, compared with the global average of barely above 3 t ha−1. Despite this potential, winter wheat is largely confined to regions with relatively mild winters, while vast temperate zones with extremely cold winters rely on spring wheat. Breeding has traditionally targeted the vernalization–C-repeat Binding Factor (VRN–CBF) pathway, which confers tolerance to moderately severe winters but is insufficient for extreme cold, implying the need for additional layers of adaptive mechanisms. Using multiple genotypic datasets, we identified genomic regions underlying low-temperature tolerance. Genome- and chromosome-wide scans revealed strong differentiation on chromosome 5A (526–703 Mb), overlapping the VRN–CBF loci. SNP-level FST analysis between spring and winter cultivars highlighted the VRN-A1 (586–588 Mb) region and a locus spanning 549 and 559 Mb on chromosome 6A. Further comparisons between winter accessions adapted to extreme cold (≤−12 °C) and mild winters (>0 °C) revealed a differentiated region on chromosome 3B (561–564 Mb) harbouring two key genes conferring CBF-independent cold tolerance, TRAESCS3B02G351100 and TRAESCS3B02G354000, encoding diacylglycerol kinase1 (DGK1) and peroxidase 56 (PRX56), respectively. These findings underscore alternative pathways in shaping cold adaptation, highlighting the need to broaden breeding strategies for extreme environments. We further detected a pronounced haplotype divergence between Chinese and U.S. winter cultivars reflecting distinct breeding trajectories; notably, China, where ~90% of wheat production is of the winter type, achieves national yields >5 t ha−1, compared with ~3 t ha−1 in the United States, where over 70% of production is winter wheat. This contrast suggests that the haplotypes enriched in Chinese winter cultivars could represent valuable resources for enhancing winter wheat performance in other regions with comparable environments. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

25 pages, 853 KB  
Article
Molecular Marker-Based Identification of Resistance to Bipolaris sorokiniana in Kazakh and Global Wheat Germplasm
by Ardak Bolatbekova, Alma Kokhmetova, Yerlan Dutbayev, Göksel Özer, Madina Kumarbayeva, Sholpan Bastaubayeva, Aidana Kharipzhanova, Makpal Nurzhuma, Zhenis Keishilov, Assiya Kokhmetova, Kanat Bakhytuly, Kanat Mukhametzhanov and Vladimir Tsygankov
Biology 2026, 15(3), 244; https://doi.org/10.3390/biology15030244 - 28 Jan 2026
Viewed by 202
Abstract
Diseases caused by Bipolaris sorokiniana, expressed as leaf spot blotch (SB) and common root rot (CRR), continue to limit spring wheat production, particularly in dry regions where yield losses may reach 35–40%. This study evaluated resistance to SB and CRR in fifty [...] Read more.
Diseases caused by Bipolaris sorokiniana, expressed as leaf spot blotch (SB) and common root rot (CRR), continue to limit spring wheat production, particularly in dry regions where yield losses may reach 35–40%. This study evaluated resistance to SB and CRR in fifty spring wheat genotypes at both seedling and adult plant stages and identified genetic sources of resistance using molecular markers linked to the Sb1 and Sb2 genes. Field trials were conducted in 2023 and 2024 in the Aktobe region under natural infection, artificial inoculation, and a fungicide-treated background. Based on leaf spot blotch severity quantified as the area under the disease progress curve (leaf AUDPC) under natural infection, nine genotypes displayed stable resistance across both years, while fungicide-treated plots revealed twenty-three resistant genotypes in 2023 and eighteen in 2024. Artificial inoculation identified five resistant lines in 2023 and one in 2024. Resistance to common root rot (CRR) was assessed independently based on subcrown internode (SCI) browning at the adult plant stage. Seedling assays confirmed consistent resistance in six genotypes, all of which carried Sb1, Sb2, or their combination. In total, Sb genes were detected in thirty-six of the fifty accessions, including genotypes from Kazakhstan, Russia, and several other countries. The presence of Sb1 or Sb2 was associated with reduced disease severity, particularly at the seedling stage. These findings identify valuable germplasm for breeding wheat with improved resistance to B. sorokiniana in Kazakhstan. Full article
(This article belongs to the Special Issue The Potential of Genetics and Plant Breeding in Crop Improvement)
Show Figures

Figure 1

17 pages, 1332 KB  
Article
The Effect of Maize Residual Nitrogen on Nitrogen Use Efficiency Indicators of Subsequent Wheat Crops
by Piotr Szulc, Katarzyna Ambroży-Deręgowska, Robert Idziak, Przemysław Strażyński, Krzysztof Górecki and Roman Wąsala
Appl. Sci. 2026, 16(3), 1314; https://doi.org/10.3390/app16031314 - 28 Jan 2026
Viewed by 90
Abstract
The field experiment was carried out in the fields of the Experimental Variety Testing Station in Chrząstów, belonging to the Central Research Centre for Cultivated Plants in Słupia Wielka. The aim of the present study was to determine the effect of residual nitrogen [...] Read more.
The field experiment was carried out in the fields of the Experimental Variety Testing Station in Chrząstów, belonging to the Central Research Centre for Cultivated Plants in Słupia Wielka. The aim of the present study was to determine the effect of residual nitrogen (Nres) remaining in the soil after cultivation of three varieties of common maize fertilized with different types of nitrogen fertilizers on nitrogen-use-efficiency indicators in subsequent crops of winter and spring common wheat. Nitrogen accumulation in both wheat cultivation systems showed a significant response to the interaction between maize varieties and the type of nitrogen fertilizer applied. Urea proved to be the most consistent source of nitrogen in the grain, regardless of the maize variety used as the preceding crop or the form of nitrogen applied. Variability in nitrogen accumulation under the U + N-Lock, Super N-46, and SG Stabilo treatments was primarily associated with a marked decrease in the SC maize variety. The SC + Roots Power maize variety left the soil in a condition highly favourable for nitrogen accumulation in wheat grain across two consecutive growing seasons. Maize variety was the primary factor influencing the proportion of fertilizer-derived nitrogen in the total nitrogen accumulated in the grain. The highest recovery of fertilizer nitrogen over the two-year production cycle was obtained in the SC + Roots Power treatment fertilized with SG Stabilo. Notably, urea demonstrated the strongest residual effect on nitrogen availability to winter wheat. Full article
Show Figures

Figure 1

31 pages, 6179 KB  
Article
Effects of Climate Change and Crop Management on Wheat Phenology in Arid Oasis Areas
by Jian Huang, Juan Huang, Pengfei Wu, Wenyuan Xing and Xiaojun Wang
Agriculture 2026, 16(3), 314; https://doi.org/10.3390/agriculture16030314 - 27 Jan 2026
Viewed by 221
Abstract
Crops grown in ecologically vulnerable oases are increasingly vulnerable to climate change, a trend that poses a severe threat to the sustainability of agricultural production in arid zones. Clarifying the relative contributions of climate change and crop management to crop phenology is critical [...] Read more.
Crops grown in ecologically vulnerable oases are increasingly vulnerable to climate change, a trend that poses a severe threat to the sustainability of agricultural production in arid zones. Clarifying the relative contributions of climate change and crop management to crop phenology is critical for designing climate-resilient agricultural practices—yet this remains underexplored for wheat in Xinjiang’s oases, a major arid-region agricultural hub. Using 1981–2021 phenological and meteorological data from 26 agrometeorological stations, we integrated a first-difference multiple regression model, Pearson’s correlation, multiple linear regression, and path analysis to quantify spatiotemporal phenological dynamics; disentangle the distinct impacts of climate and management factors; and identify dominant climatic drivers regulating wheat growth. Temperature was confirmed as the dominant climatic factor regulating wheat growth in arid oasis regions. Results showed that the annual change rates of sowing, emergence, booting, flowering, and maturity dates were 0.261 (−0.027), 0.265 (−0.103), −0.272 (−0.161), −0.269 (−0.226), and −0.216 (−0.127) days/year for winter (spring) wheat, respectively. For phenological durations, the annual change rates of sowing-to-emergence, emergence-to-anthesis, anthesis-to-maturity, vegetative growth period, reproductive growth period, and whole growth period were 0.007 (−0.076), −0.537 (−0.068), 0.096 (0.099), −0.502 (−0.134), 0.068 (0.034), and −0.434 (−0.100) days/year for winter (spring) wheat, respectively. Regarding climatic effects, maximum, minimum, and mean temperatures generally exerted positive impacts on wheat phenological durations; increased precipitation prolonged growth periods; and higher sunshine hours shortened winter wheat growth periods while extending those of spring wheat. Multiple regression and path analysis were employed to clarify the relative importance of climatic and management factors, as well as their direct and indirect effects on wheat phenology and yield. Furthermore, climate change had a substantially weaker impact on wheat phenology and yield compared to crop management, with climatic driver intensity following the order of mean temperature > precipitation > sunshine hours—confirming mean temperature as the key climate-induced driver. Correlation analysis revealed a positive relationship between yield and growth period length. This study provides novel insights into region-specific climate adaptation for wheat production in arid oases, highlighting that planting longer-growth-period varieties is an effective, eco-friendly strategy to enhance climate resilience and ensure sustainable agricultural development in fragile ecosystems. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

21 pages, 2930 KB  
Article
Residual Effects of Wood Ash, Biochar, and Paper Mill Sludge on Crop Yield and Soil Physico-Chemical Properties
by Bernard Gagnon and Noura Ziadi
Soil Syst. 2026, 10(2), 22; https://doi.org/10.3390/soilsystems10020022 - 26 Jan 2026
Viewed by 237
Abstract
The application of forest byproducts to cropland provides significant benefits, mitigating soil degradation, supplying essential nutrients, and increasing yields. Their impact is well known in the first years, but few studies have examined the effects several years after an application. A field study [...] Read more.
The application of forest byproducts to cropland provides significant benefits, mitigating soil degradation, supplying essential nutrients, and increasing yields. Their impact is well known in the first years, but few studies have examined the effects several years after an application. A field study was initiated in Québec, QC, Canada, to assess the effects of wood ash (10 and 20 Mg dry wt. ha−1), pine biochar (10 Mg dry wt. ha−1), paper mill sludge (PS) (12 Mg dry wt. ha−1), and a combination of wood ash and PS, relative to an untreated control and a mineral treatment, on crop yield and soil properties three to seven years after application in a temperate circumneutral loamy soil. The site was cropped to a maize (Zea mays L.)–soybean [Glycine max (L.) Merr.]–spring wheat (Triticum aestivum L.) rotation. Each crop received supplemental N and P from mineral fertilizers, when needed, according to local agronomic recommendations. Applying wood ash increased wheat yield by 0.25–0.44 Mg ha−1 three years after the addition, but no effect was detected in other cases and for the other amendments. Wood ash also resulted in the largest increases (p < 0.05) in soil pH and Mehlich-3 P, K, Ca, Mg, Zn, and Cd, alone or in combination with PS. Pine biochar promoted soil C sequestration after seven years, but did not affect other soil properties owing to its high stability and low nutrient content. This study revealed that wood ash was more advantageous than pine biochar for improving soil quality and crop productivity. Full article
Show Figures

Figure 1

17 pages, 4221 KB  
Article
Mining Thermotolerant Candidate Genes Co-Responsive to Heat Stress in Wheat Flag Leaves and Grains Using WGCNA Analysis
by Liangpeng Chen, Zhengcong Xu, Wensheng Lin, Junkang Rong and Xin Hu
Agronomy 2026, 16(3), 300; https://doi.org/10.3390/agronomy16030300 - 25 Jan 2026
Viewed by 217
Abstract
As a critically important global food crop, wheat has been increasingly threatened by the frequent occurrence of extreme high-temperature events, which impairs its growth and development, resulting in reduced seed-setting rate, compromised grain quality and diminished yield. Therefore, identifying heat-tolerant genes and enhancing [...] Read more.
As a critically important global food crop, wheat has been increasingly threatened by the frequent occurrence of extreme high-temperature events, which impairs its growth and development, resulting in reduced seed-setting rate, compromised grain quality and diminished yield. Therefore, identifying heat-tolerant genes and enhancing thermotolerance through molecular breeding are essential strategies for wheat improvement. In this study, we retrieved spatial transcriptomic data from the public database PRJNA427246, which captured gene expression profiles in flag leaves and grains of the heat-sensitive wheat cultivar Chinese Spring (CS) under 37 °C heat stress at time points of 0 min, 5 min, 10 min, 30 min, 1 h, and 4 h. Weighted Gene Co-expression Network Analysis (WGCNA) was used to construct co-expression networks for flag leaf and grain transcriptomes. One highly significant module was identified in each tissue, along with 35 hub genes that showed a strong temporal association with heat stress progression. Notably, both modules contained the previously characterized thermotolerance gene TaMBF1c, suggesting that additional heat-responsive genes may be present within these modules. Simultaneous analysis of the expression data from four groups (encompassing different tissues and high-temperature treatments) for the 35 core genes revealed that genes from the TaHSP20 family, TaMBF1c family, and other related genes exhibit coordinated expression patterns in terms of the temporal dynamics and tissue distribution of stress responses. Additionally, 27 genes of the small heat shock protein (HSP20) family are predicted to be involved in the endoplasmic reticulum-associated degradation (ERAD) pathway. They assist in clearing misfolded proteins induced by stress, thereby helping to maintain endoplasmic reticulum homeostasis and cellular functions under stress conditions. Finally, the expression levels of three core genes, TaHSP20-1, TaPCDP4, and TaMBF1c-D, were validated by qRT-PCR in two wheat cultivars with distinct thermotolerance: S116 (Zhehuamai 2008) and S128 (Yangmai 33). These findings provide new insights into the molecular mechanisms underlying heat tolerance in wheat and offer valuable genetic resources for breeding thermotolerant varieties. Full article
(This article belongs to the Special Issue Enhancing Wheat Yield Through Sustainable Farming Practices)
Show Figures

Figure 1

24 pages, 43005 KB  
Article
Accurate Estimation of Spring Maize Aboveground Biomass in Arid Regions Based on Integrated UAV Remote Sensing Feature Selection
by Fengxiu Li, Yanzhao Guo, Yingjie Ma, Ning Lv, Zhijian Gao, Guodong Wang, Zhitao Zhang, Lei Shi and Chongqi Zhao
Agronomy 2026, 16(2), 219; https://doi.org/10.3390/agronomy16020219 - 16 Jan 2026
Viewed by 282
Abstract
Maize is one of the top three crops globally, ranking only behind rice and wheat, making it an important crop of interest. Aboveground biomass is a key indicator for assessing maize growth and its yield potential. This study developed an efficient and stable [...] Read more.
Maize is one of the top three crops globally, ranking only behind rice and wheat, making it an important crop of interest. Aboveground biomass is a key indicator for assessing maize growth and its yield potential. This study developed an efficient and stable biomass prediction model to estimate the aboveground biomass (AGB) of spring maize (Zea mays L.) under subsurface drip irrigation in arid regions, based on UAV multispectral remote sensing and machine learning techniques. Focusing on typical subsurface drip-irrigated spring maize in arid Xinjiang, multispectral images and field-measured AGB data were collected from 96 sample points (selected via stratified random sampling across 24 plots) over four key phenological stages in 2024 and 2025. Sixteen vegetation indices were calculated and 40 texture features were extracted using the gray-level co-occurrence matrix method, while an integrated feature-selection strategy combining Elastic Net and Random Forest was employed to effectively screen key predictor variables. Based on the selected features, six machine learning models were constructed, including Elastic Net Regression (ENR), Gradient Boosting Decision Trees (GBDT), Gaussian Process Regression (GPR), Partial Least Squares Regression (PLSR), Random Forest (RF), and Extreme Gradient Boosting (XGB). Results showed that the fused feature set comprised four vegetation indices (GRDVI, RERVI, GRVI, NDVI) and five texture features (R_Corr, NIR_Mean, NIR_Vari, B_Mean, B_Corr), thereby retaining red-edge and visible-light texture information highly sensitive to AGB. The GPR model based on the fused features exhibited the best performance (test set R2 = 0.852, RMSE = 2890.74 kg ha−1, MAE = 1676.70 kg ha−1), demonstrating high fitting accuracy and stable predictive ability across both the training and test sets. Spatial inversions over the two growing seasons of 2024 and 2025, derived from the fused-feature GPR optimal model at four key phenological stages, revealed pronounced spatiotemporal heterogeneity and stage-dependent dynamics of spring maize AGB: the biomass accumulates rapidly from jointing to grain filling, slows thereafter, and peaks at maturity. At a constant planting density, AGB increased markedly with nitrogen inputs from N0 to N3 (420 kg N ha−1), with the high-nitrogen N3 treatment producing the greatest biomass; this successfully captured the regulatory effect of the nitrogen gradient on maize growth, provided reliable data for variable-rate fertilization, and is highly relevant for optimizing water–fertilizer coordination in subsurface drip irrigation systems. Future research may extend this integrated feature selection and modeling framework to monitor the growth and estimate the yield of other crops, such as rice and cotton, thereby validating its generalizability and robustness in diverse agricultural scenarios. Full article
Show Figures

Figure 1

17 pages, 4231 KB  
Article
The Impact of Soil Tillage Systems and Fertilization Strategies on Winter Wheat Yield Under the Variable Weather Conditions of the Transylvanian Plain
by Felicia Chețan, Cornel Chețan, Alina Șimon, Ovidiu Adrian Ceclan, Diana Hirișcău, Raluca Rezi, Alin Popa, Marius Bărdaș, Camelia Urdă, Roxana Elena Călugăr, Paula Ioana Moraru and Teodor Rusu
Nitrogen 2026, 7(1), 12; https://doi.org/10.3390/nitrogen7010012 - 15 Jan 2026
Viewed by 124
Abstract
Agronomic systems that can guarantee consistent and sufficient crop yields must be developed and implemented in order to address the problems presented by climate change, especially the increase in average annual temperatures and the unequal distribution of precipitation. Over the course of five [...] Read more.
Agronomic systems that can guarantee consistent and sufficient crop yields must be developed and implemented in order to address the problems presented by climate change, especially the increase in average annual temperatures and the unequal distribution of precipitation. Over the course of five successive growing seasons (2019–2024), a Poly-Factorial field experiment was carried out at the Agricultural Research and Development Station (ARDS) Turda, Romania, which is situated in the hilly region of the Transylvanian Plain. The study investigated the combined effects of soil tillage system (conventional tillage—CS; no-tillage—NT) and fertilization strategies (N48P48K48 at sowing vs. N48P48K48 at sowing + N40.5CaO10.5MgO7 applied in early spring at the growth resumption) on the quantitative and qualitative performance of winter wheat (Triticum aestivum L.). Results showed a modest yield difference of 206 kg ha−1 between the two tillage systems, favoring conventional tillage. However, the application of additional early-spring fertilization resulted in a significant average yield increase of 338 kg ha−1. Yield variability across the five years ranged from 262 to 1797 kg ha−1, highlighting the strong influence of climatic conditions on crop performance and emphasizing the need for adaptive management practices under changing environmental conditions. Full article
Show Figures

Figure 1

16 pages, 509 KB  
Article
Residual Effects of Cover Crop Species, Tillage, and Manure Application on Corn Yield and Soil Nitrogen Dynamics in Organic Management Systems
by Emily E. Evans, Mary Wiedenhoeft, Marcelo Carvalho Minhoto Teixeira Filho, Bhim Bahadur Ghaley and Paulo H. Pagliari
Agronomy 2026, 16(2), 195; https://doi.org/10.3390/agronomy16020195 - 13 Jan 2026
Viewed by 358
Abstract
Nitrogen (N) management remains a primary challenge in organic grain systems, particularly in rotations where heavy N-consuming crops, such as corn and wheat, follow one another. Daikon radish (Raphanus sativus L.) is widely adopted for its ability to scavenge residual soil nitrate [...] Read more.
Nitrogen (N) management remains a primary challenge in organic grain systems, particularly in rotations where heavy N-consuming crops, such as corn and wheat, follow one another. Daikon radish (Raphanus sativus L.) is widely adopted for its ability to scavenge residual soil nitrate between cash crops; yet the subsequent availability of scavenged N to the following crop is inconsistent and often negligible. This 4-year field study (2014–2017) at the University of Minnesota Southwest Research and Outreach Center evaluated whether planting daikon radish in polyculture with berseem clover, and either annual oats or winter rye could improve N retention and timed release compared to daikon radish monoculture. Three cover crop treatments were tested across three common organic management systems: no manure with no tillage, manure with tillage, and manure plus shallow tillage incorporation before cover crop seeding. Polycultures, especially those including winter rye, produced significantly more fall biomass (up to 6435 kg ha−1) than daikon radish monoculture (573–1272 kg ha−1). Manure incorporation consistently increased total and daikon radish biomass, as well as the percent living cover. Despite substantial biomass differences, mid-season and fall soil inorganic N, potentially mineralizable N, permanganate-oxidizable C, and enzyme activities showed few consistent treatment effects. Corn grain yield was highest following manure with tillage incorporation but was significantly reduced after the winter rye polyculture in all years, likely due to N immobilization and delayed corn planting caused by late rye termination under wet spring conditions. Results indicate that while polycultures with winter rye maximize biomass and soil cover, they do not reliably enhance N recycling to the subsequent organic corn crop and can reduce yield. Full article
Show Figures

Figure 1

23 pages, 7071 KB  
Article
Role of Morpho-Phenological Traits in Passive Resistance to Fusarium Head Blight in Wheat
by Shayan Syed, Žilvinas Liatukas and Andrii Gorash
Agriculture 2026, 16(2), 188; https://doi.org/10.3390/agriculture16020188 - 12 Jan 2026
Viewed by 228
Abstract
Fusarium head blight (FHB) is a serious concern for wheat production worldwide. The current study was conducted to identify morpho-phenological traits that contribute to passive resistance against FHB. For this purpose, a set of 332 spring wheat genotypes from different origins was used. [...] Read more.
Fusarium head blight (FHB) is a serious concern for wheat production worldwide. The current study was conducted to identify morpho-phenological traits that contribute to passive resistance against FHB. For this purpose, a set of 332 spring wheat genotypes from different origins was used. Eight morpho-phenological traits and FHB severity were evaluated using spray inoculation under field conditions in 2022 and 2023. A non-parametric test was performed to evaluate genotypic variation for all studied traits, revealing significant differences among genotypes across the two years. Correlation analysis demonstrated a strong negative association between FHB severity and phenological traits: days to heading (r = −0.43, p < 0.001), days to flowering (r = −0.39, p < 0.001) and a low to medium negative correlation between FHB resistance and spike length (r = −0.29, p < 0.001) and spikelets per spike (r = −0.26, p < 0.001) on average across two years. Furthermore, there was a significant negative but weak association between anther extrusion and FHB severity (r = −0.21, p < 0.001). Random forest regression analysis demonstrated that a complex of eight morpho-phenological traits predicted FHB severity with an accuracy of 65% in 2023 and 57% in cross-validation sets across two years. According to permutation importance analysis, days to flowering, heading, and anther extrusion had the highest contribution to FHB severity, and all three traits had a significant effect on FHB prediction. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

10 pages, 1229 KB  
Communication
Effect of New Water-Soluble Organosilicon Derivatives of Cartolin-2 on the Germination of Spring Common Wheat Seeds (Triticum aestivum L.)
by Konstantin A. Kochetkov, Olga N. Gorunova, Nataliya A. Bystrova and Maxim S. Oshchepkov
Int. J. Mol. Sci. 2026, 27(1), 469; https://doi.org/10.3390/ijms27010469 - 1 Jan 2026
Viewed by 324
Abstract
The development of innovative technologies aimed at increasing agricultural crop yields through the use of growth regulators that incorporate various biologically active chemical moieties is a key focus in modern global agroscience. In this context, novel water-soluble silicon-organic compounds derived from carbamate ( [...] Read more.
The development of innovative technologies aimed at increasing agricultural crop yields through the use of growth regulators that incorporate various biologically active chemical moieties is a key focus in modern global agroscience. In this context, novel water-soluble silicon-organic compounds derived from carbamate (I) and oxamate (II) have been synthesised by the introduction of an organo-silicone fragment into these biologically active molecules. The compounds are O-isopropyl-N-(2-trimethylsilyloxyethyl)carbamate (III) and O-isopropyl-N-(2-trimethylsilyloxyethyl)oxamate (IV). It has been found that the 1 × 10−5 M water solutions of the compounds IIV exhibited growth-regulating activity on the seeds of spring common wheat (Triticum aestivum L.). Laboratory studies demonstrated that the new silicon-containing compounds III and IV had a positive influence on the following: the germination potential, the seed germination, the length of roots, and the growth and development of shoots. Field tests revealed that spring wheat treatment with the compounds III and IV yielded an augmentation in spike length, an elevated quantity of grains per spike, and a grain mass per spike in comparison to the control. The application of compounds IIV resulted in a significant enhancement in spring wheat yield. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Graphical abstract

18 pages, 758 KB  
Article
Effect of Reduced Tillage and Weather Conditions on the Yield Formation of Selected Ancient and Modern Wheat Species
by Małgorzata Szczepanek and Rafał Nowak
Agronomy 2026, 16(1), 96; https://doi.org/10.3390/agronomy16010096 - 29 Dec 2025
Viewed by 292
Abstract
A sustainable approach to agricultural production and increasing interest in alternative wheat species have intensified research on simplified soil management systems under changing climatic conditions. A three-year field experiment (2018–2020) was conducted to evaluate the effects of tillage methods (plowing, shallow tillage, and [...] Read more.
A sustainable approach to agricultural production and increasing interest in alternative wheat species have intensified research on simplified soil management systems under changing climatic conditions. A three-year field experiment (2018–2020) was conducted to evaluate the effects of tillage methods (plowing, shallow tillage, and strip-till) and hydrothermal conditions on yield formation and yield components in three wheat species: Triticum sphaerococcum, Triticum persicum, and Triticum aestivum ssp. vulgare. The results showed that weather conditions during the growing season strongly modulated species responses to tillage systems. Multivariate analyses confirmed that grain yield was mainly determined by fertile generative tiller density and grain number per spike, whereas thousand-grain weight played a secondary or compensatory role. In T. sphaerococcum, clear tillage effects occurred only in the most favorable year, when shallow tillage enhanced yield. T. persicum consistently responded positively to strip-till across all years, increasing grain yield by 35.5% compared with plowing. In T. aestivum, the direction of tillage effects depended on weather conditions, with shallow tillage being most beneficial under favorable moisture and plowing under drier conditions. Overall, simplified tillage systems can enhance the productivity of ancient wheat species without reducing the performance of common wheat, provided that soil management is aligned with prevailing hydrothermal conditions. Full article
Show Figures

Figure 1

19 pages, 913 KB  
Article
Effect of a Long-Term Integrated Multi-Crop Rotation and Cattle Grazing on No-Till Hard Red Spring Wheat (Triticum aestivum L.) Production, Soil Health, and Economics
by Songul Senturklu, Douglas Landblom and Larry J. Cihacek
Agriculture 2026, 16(1), 73; https://doi.org/10.3390/agriculture16010073 - 29 Dec 2025
Viewed by 306
Abstract
Integrated crop grazing systems can improve farm profitability due to enterprise complementarity. Utilizing the supply of N from legumes, livestock manure, and plant residues will result in improving grain yield and quality. A long-term 12-year integrated systems study evaluated continuous spring wheat (HRSW-CTRL) [...] Read more.
Integrated crop grazing systems can improve farm profitability due to enterprise complementarity. Utilizing the supply of N from legumes, livestock manure, and plant residues will result in improving grain yield and quality. A long-term 12-year integrated systems study evaluated continuous spring wheat (HRSW-CTRL) with spring wheat (HRSW-ROT) grown in a five-crop rotation: (1) spring wheat, (2) seven-species cover crop, (3) forage corn, (4) field pea/forage barley mix, and (5) sunflower. Yearling beef cattle steers grazed the field pea/forage barley mix, unharvested corn, and a seven-species cover crop. Spring wheat was marketed as a cash crop. Contrary to expectations, HRSW-ROT did not significantly increase grain yield or improve quality over HRSW-CTRL. Improved soil fertility was observed in the HRSW-ROT plots throughout the study relative to SOM, N, P, and K. However, the rotation with grazing management significantly reduced input costs but resulted in negligible gross and net returns over the 12-year period. Year-to-year weather variability was the cause of the differences between the two production management methods. Full article
Show Figures

Figure 1

16 pages, 969 KB  
Article
Effect of Maize Residual Nitrogen on Grain Yield and Composition of Subsequent Wheat Crops
by Piotr Szulc, Robert Idziak, Katarzyna Ambroży-Deręgowska, Przemysław Strażyński, Roman Wąsala and Krzysztof Górecki
Appl. Sci. 2026, 16(1), 113; https://doi.org/10.3390/app16010113 - 22 Dec 2025
Viewed by 276
Abstract
Common wheat (Triticum aestivum ssp. vulgare) is one of the three basic cereal crops worldwide that plays a key role in global food security. A key factor affecting the yield and traits of common wheat is an adequate nitrogen supply. Improving [...] Read more.
Common wheat (Triticum aestivum ssp. vulgare) is one of the three basic cereal crops worldwide that plays a key role in global food security. A key factor affecting the yield and traits of common wheat is an adequate nitrogen supply. Improving the efficiency of soil nitrogen use can be achieved through the application of appropriate mineral fertilizers and the proper selection of cultivars. The aim of this study was to determine the impact of residual nitrogen (Nres) after maize cultivation (the preceding crop) on the yield and chemical composition of winter and spring wheat grain. It was shown that both the variety selection and the type of nitrogen carrier had a significant impact on the characteristics related to wheat yield and grain quality. The most stable effect of the type of nitrogen, regardless of the type of corn variety, was recorded for ammonium nitrate with N-Lock. The average yield was approximately 6.1 t ha−1. With the exception of the variant with N-Lock, the most progressive reaction to the type of fertilizer occurred in the stand with a three-line corn hybrid (TC, stay green). The advantage of this corn variety as a winter wheat forecrop results from the value of the site in a site without nitrogen. In the nitrogen control, the increase in yield compared to the single corn hybrid (SC) was 14%. However, in the U + N-Lock variant, it was 17%, and SG Stabilo as much as 32%. The increase in the weight of 1000 wheat grains in the stands after the SC and TC hybrid compared to stay green + roots power indicates a compensatory mechanism that became visible in the grain filling phase. Current challenges in agriculture caused by population growth and the need to ensure sufficient food production require greater awareness and knowledge regarding improved nitrogen management, including recognizing the role of residual nitrogen remaining in the soil after the preceding crop. A major advantage of slow-release fertilizers is that the nutrient (N) is released in response to the dynamic demand of the crop. This, on the one hand, increases grain yield and, on the other, does not negatively impact the agrosystem (eutrophication). Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

21 pages, 1893 KB  
Article
Improving Nitrogen and Water Use Efficiency in Intensive Cropping by Optimized Management and Crop Rotations
by Huanxuan Chen, Jiawen Qi, Shangyu Guo, Xinsheng Niu, Robert M. Rees, Chong Zhang and Xiaotang Ju
Plants 2026, 15(1), 7; https://doi.org/10.3390/plants15010007 - 19 Dec 2025
Viewed by 494
Abstract
Nitrogen (N) and water are key resources for crop production and improving the efficiency with which they are used remains a major global challenge in intensive cropping systems. Here, we report how crop yield, N and water use efficiency, N surplus, and economic [...] Read more.
Nitrogen (N) and water are key resources for crop production and improving the efficiency with which they are used remains a major global challenge in intensive cropping systems. Here, we report how crop yield, N and water use efficiency, N surplus, and economic benefits can be improved from optimized management and crop rotations. A conventional winter wheat–summer maize double cropping (CN/WM) rotation in a three-year field experiment in the North China Plain is compared with alternative optimized rotations. The first three optimized treatments were wheat–summer maize rotation with optimized N and irrigation rates, tillage and straw management (ON/WM), and partial manure substitution (ONM/WM) or biochar addition (ONB/WM); the fourth optimized treatment was winter wheat–summer maize–spring maize producing three harvests in two years (ON/WMM); and the last was spring maize incorporating green manure during the fallow season for one harvest per year (ON/GM). The results showed that the ON/WM, ONM/WM, and ONB/WM had comparable yields to CN/WM, but significantly increased N use efficiency by 19–41% and water use efficiency by 13–20% and reduced N surplus to 353–531 kg N ha−1 2yr−1. From these three optimized treatments, the ONM/WM performed better, with a comprehensive evaluation index of 0.66 and the highest economic benefits. The ON/WMM and ON/GM treatments also significantly increased N and water use efficiency but resulted in relatively low crop yields and profits; nevertheless, they significantly reduced water use and are suitable for water saving cropping systems. We concluded that optimized management-combined manure with synthetic N fertilization in wheat–summer maize rotations can achieve high crop productivity, environmental, and economic benefits, which contribute to a more sustainable crop production. Full article
(This article belongs to the Special Issue Macronutrients and Micronutrients in Plant Growth and Development)
Show Figures

Figure 1

Back to TopTop