Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (768)

Search Parameters:
Keywords = static bending

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4746 KB  
Article
An Analytical Solution for Short Thin-Walled Beams with Monosymmetric Open Sections Subjected to Eccentric Axial Loading
by Branka Bužančić Primorac, Marko Vukasović, Radoslav Pavazza and Frane Vlak
Appl. Mech. 2025, 6(3), 68; https://doi.org/10.3390/applmech6030068 - 5 Sep 2025
Abstract
A simple analytic procedure for the linear static analysis of short thin-walled beams with monosymmetric open cross-sections subjected to eccentric axial loading is presented. Under eccentric compressive loading, the beam is subjected to compression/extension, to torsion with influence of shear with respect to [...] Read more.
A simple analytic procedure for the linear static analysis of short thin-walled beams with monosymmetric open cross-sections subjected to eccentric axial loading is presented. Under eccentric compressive loading, the beam is subjected to compression/extension, to torsion with influence of shear with respect to the principal pole and to bending with influence of shear in two principal planes. The approximate closed-form solutions for displacements consist of the general Vlasov’s solutions and additional displacements due to shear according to the theory of torsion with the influence of shear, as well as the theory of bending with the influence of shear. The internal forces and displacements for beams clamped at one end and simply supported on the other end, where eccentric loading is acting, are calculated using the method of initial parameters. The shear coefficients for the monosymmetric cross-sections introduced in these equations are provided. Solutions for normal stress and total displacements according to Vlasov’s general thin-walled beam theory, and those obtained with the proposed method taking shear influence into account, are compared with shell finite element solutions analyzing isotropic and orthotropic I-section beams. According to the results for normal stress relative differences, and Euclidean norm for displacements, it has been demonstrated that shear effects must be accounted for in the analysis of such structural problems. Full article
Show Figures

Figure 1

23 pages, 4352 KB  
Article
Quantifying Inter-Ply Friction and Clamping Effects via an Experimental–Numerical Framework: Advancing Non-Coherent Deformation Control of Uncured Metal–Fiber-Reinforced Polymer Laminates
by Yunlong Chen and Shichen Liu
Polymers 2025, 17(17), 2330; https://doi.org/10.3390/polym17172330 - 28 Aug 2025
Viewed by 381
Abstract
Pre-stacked uncured metal–fiber-reinforced polymer (FRP) laminates, which are critical for aerospace components like double-curved fuselage panels, wing ribs, and engine nacelles, exhibit better deformation behavior than their fully cured counterparts. However, accurate process simulation requires precise material characterization and process optimization to achieve [...] Read more.
Pre-stacked uncured metal–fiber-reinforced polymer (FRP) laminates, which are critical for aerospace components like double-curved fuselage panels, wing ribs, and engine nacelles, exhibit better deformation behavior than their fully cured counterparts. However, accurate process simulation requires precise material characterization and process optimization to achieve a defect-free structural design. This study focuses on two core material behaviors of uncured laminates—inter-ply friction at metal–prepreg interfaces and out-of-plane bending—and optimizes process parameters for their non-coherent deformation. Experimental tests included double-lap sliding tests (to quantify inter-ply friction) and clamped-beam bending tests (to characterize out-of-plane bending); a double-curved dome part was designed to assess the effects of the material constituent, fiber orientation, inter-ply friction, and clamping force, with validation via finite element modeling (FEM) in Abaqus software. The results indicate that the static–kinetic friction model effectively predicts inter-ply friction behavior, with numerical friction coefficient–displacement trends closely matching experimental data. Additionally, the flexural bending model showed that greater plastic deformation in metal layers increased bending force while reducing post-unloading spring-back depth. Furthermore, for non-coherent deformation, higher clamping forces improve FRP prepreg deformation and mitigate buckling, but excessive plastic deformation raises metal cracking risk. This work helps establish a combined experimental–numerical framework for the defect prediction and process optimization of complex lightweight components, which address the core needs of modern aerospace manufacturing. Full article
Show Figures

Figure 1

14 pages, 2716 KB  
Article
Buckling Configuration Design of Two Nested Elastic Rings Under Gravity for Rolling Soft Robot
by Fei Dang, Pengfei Yang, Kunyi Peng and Danyang Yao
Machines 2025, 13(9), 770; https://doi.org/10.3390/machines13090770 - 28 Aug 2025
Viewed by 366
Abstract
The design of the buckling configuration for a rolling soft robot has a significant effect on its rolling performance, but a thorough analysis remains lacking for many soft robot buckling configurations because of the difficulty of analyzing the buckling problem. This work comprehensively [...] Read more.
The design of the buckling configuration for a rolling soft robot has a significant effect on its rolling performance, but a thorough analysis remains lacking for many soft robot buckling configurations because of the difficulty of analyzing the buckling problem. This work comprehensively analyzes the static buckling morphology of two nested elastic rings under gravity based on a theoretical model using the minimum potential energy principle. Two nested rings present a tank-track-like buckling morphology under gravity, which depends on the length ratio, the bending stiffness ratio, and the gravity ratio of the inner ring to the outer ring. Increases in these three ratios lead to a lower tank-track-like buckling structure with an increased ground contact length and a reduced gravity moment on the slope. The tank-track-like buckling structures predicted using the theory agree well with Finite Element Method (FEM) simulations and experimental results. This work provides design guidance on achieving the maximum slope stability and the required robot configuration by tuning the geometrical and material parameters of rolling soft robots. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

28 pages, 12093 KB  
Article
Static and Free-Boundary Vibration Analysis of Egg-Crate Honeycomb Core Sandwich Panels Using the VAM-Based Equivalent Model
by Ruihao Li, Hui Yuan, Zhenxuan Cai, Zhitong Liu, Yifeng Zhong and Yuxin Tang
Materials 2025, 18(17), 4014; https://doi.org/10.3390/ma18174014 - 27 Aug 2025
Viewed by 254
Abstract
This study proposes a novel egg-crate honeycomb core sandwich panel (SP-EHC) that combines the structural advantages of conventional lattice and grid configurations while mitigating their limitations in stability and mechanical performance. The design employs chamfered intersecting grid walls to create a semi-enclosed honeycomb [...] Read more.
This study proposes a novel egg-crate honeycomb core sandwich panel (SP-EHC) that combines the structural advantages of conventional lattice and grid configurations while mitigating their limitations in stability and mechanical performance. The design employs chamfered intersecting grid walls to create a semi-enclosed honeycomb architecture, enhancing out-of-plane stiffness and buckling resistance and enabling ventilation and drainage. To facilitate efficient and accurate structural analysis, a two-dimensional equivalent plate model (2D-EPM) is developed using the variational asymptotic method (VAM). This model significantly reduces the complexity of three-dimensional elasticity problems while preserving essential microstructural characteristics. A Reissner–Mindlin-type formulation is derived, enabling local field reconstruction for detailed stress and displacement evaluation. Model validation is conducted through experimental testing and three-dimensional finite element simulations. The 2D-EPM demonstrates high accuracy, with static analysis errors in load–displacement response within 10% and a maximum modal frequency error of 10.23% in dynamic analysis. The buckling and bending analyses, with or without initial deformation, show strong agreement with the 3D-FEM results, with deviations in the critical buckling load not exceeding 5.23%. Local field reconstruction achieves stress and displacement prediction errors below 2.7%, confirming the model’s fidelity at both global and local scales. Overall, the VAM-based 2D-EPM provides a robust and computationally efficient framework for the structural analysis and optimization of advanced sandwich panels. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

18 pages, 13905 KB  
Article
UAV-Based Multispectral Assessment of Wind-Induced Damage in Norway Spruce Crowns
by Endijs Bāders, Andris Seipulis, Dārta Kaupe, Jordane Jean-Claude Champion, Oskars Krišāns and Didzis Elferts
Forests 2025, 16(8), 1348; https://doi.org/10.3390/f16081348 - 19 Aug 2025
Viewed by 450
Abstract
Climate change has intensified the frequency and severity of forest disturbances globally, including windthrow, which poses substantial risks for both forest productivity and ecosystem stability. Rapid and precise assessment of wind-induced tree damage is essential for effective management, yet many injuries remain visually [...] Read more.
Climate change has intensified the frequency and severity of forest disturbances globally, including windthrow, which poses substantial risks for both forest productivity and ecosystem stability. Rapid and precise assessment of wind-induced tree damage is essential for effective management, yet many injuries remain visually undetectable in the early stages. This study employed drone-based multispectral imaging and a simulated wind stress experiment (static pulling) on Norway spruce (Picea abies (L.) Karst.) to investigate the detectability of physiological and structural changes over four years. Multispectral data were collected at multiple time points (2023–2024), and a suite of vegetation indices (the Normalised Difference Vegetation Index (NDVI), the Structure Insensitive Pigment Index (SIPI), the Difference Vegetation Index (DVI), and Red Edge-based indices) were calculated and analysed using mixed-effects models. Our results demonstrate that trees subjected to mechanical bending (“Bent”) exhibit substantial reductions in the near-infrared (NIR)-based indices, while healthy trees maintain higher and more stable index values. Structure- and pigment-sensitive indices (e.g., the Modified Chlorophyll Absorption Ratio Index (MCARI 2), the Transformed Chlorophyll Absorption in Reflectance Index/Optimised Soil-Adjusted Vegetation Index (TCARI/OSAVI), and RDVI) showed the highest diagnostic value for differentiating between damaged and healthy trees. We found the clear identification of group- and season-specific patterns, revealing that the most pronounced physiological decline in Bent trees emerged only several seasons after the disturbance. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

19 pages, 4183 KB  
Article
Centrifuge and Numerical Investigations on Responses of Monopile-Supported Offshore Wind Turbines with Riprap Scour Protection Under Earthquakes
by Hao Zhang, Xiaojing Jia, Fayun Liang and Zhouchi Yuan
J. Mar. Sci. Eng. 2025, 13(8), 1532; https://doi.org/10.3390/jmse13081532 - 10 Aug 2025
Viewed by 378
Abstract
Riprap scour protection is commonly employed to protect against local scour around large-diameter monopile foundations for offshore wind turbines (OWTs), and considering its influence on the static and dynamic behavior of monopiles may also provide the opportunity for further optimization of monopile design. [...] Read more.
Riprap scour protection is commonly employed to protect against local scour around large-diameter monopile foundations for offshore wind turbines (OWTs), and considering its influence on the static and dynamic behavior of monopiles may also provide the opportunity for further optimization of monopile design. However, only limited studies have gradually begun to investigate the contribution of scour protection to monopile bearing capacity, while its effects on the seismic responses of monopile-supported OWTs deployed in seismic zones have attracted even less attention. In this study, a series of centrifuge shaking table tests were conducted on large-diameter monopile foundations under both initial and scour protection conditions. Then, to further investigate the effects of scour protection parameters on the seismic response of offshore wind turbines, a three-dimensional finite element model was developed and validated based on experimental results. The results demonstrate that the presence of scour protection not only slightly increases the first natural frequency but also alters seismic responses of the OWT. Lower peak responses at the lumped mass are observed under Chi-Chi excitation, while lower peak bending moments of the pile occur under Kobe excitation. Additionally, seismic responses are more sensitive to variations in the scour protection length than its elastic modulus. Therefore, compared to material selection, greater emphasis should be placed on optimizing the scour protection length by comprehensively considering environmental loads, site conditions, and turbine dynamic characteristics. This study quantifies the effects of scour protection on the seismic responses of monopile-supported offshore wind turbines, which can provide new insights into seismic design optimization of offshore wind turbines with riprap scour protection. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

19 pages, 5535 KB  
Article
Comparison of Stiffness Measurements of Wooden Rods Using Acoustic Guided Wave and Static Bending Test Techniques
by Adli Hasan Abu Bakar, Mathew Legg, Khalid Mahmood Arif, Daniel Konings and Fakhrul Alam
Sensors 2025, 25(16), 4930; https://doi.org/10.3390/s25164930 - 9 Aug 2025
Viewed by 318
Abstract
Traditionally, mechanical bending tests are used to measure the stiffness of lumber, which is generally represented by the static modulus of elasticity (MoE). However, it is desirable to measure the stiffness of wood before it is processed into lumber. Acoustic nondestructive testing techniques [...] Read more.
Traditionally, mechanical bending tests are used to measure the stiffness of lumber, which is generally represented by the static modulus of elasticity (MoE). However, it is desirable to measure the stiffness of wood before it is processed into lumber. Acoustic nondestructive testing techniques are therefore the main techniques used by the wood industry to estimate the dynamic MoE of wood. The acoustic resonance technique is employed for measuring the MoE in felled logs and lumber. In contrast, the acoustic time-of-flight (ToF) technique is traditionally used for MoE measurements on standing trees and seedlings. However, the ToF technique overestimates stiffness compared to both resonance and static bending tests (considered the gold standard). In this work, a guided wave technique is used to measure the stiffness of wooden rods. This work is the first to compare the MoE values obtained using static bending tests (gold standard) with those obtained using acoustic resonance, ToF, and guided wave methods. Measurements were performed on 16 mm diameter radiata pine wooden rods. For comparison, measurements were also performed on acetal, aluminium, and steel rods of similar dimensions. The findings show that stiffness measurements obtained using the proposed guided wave method are more accurate than those obtained using the traditional ToF method and closely match those of the resonance method across all materials. The measurements from the ToF method were overestimated compared to resonance, guided wave, and static bending methods. The findings show the potential for the guided wave method to be used as an alternative method to provide more accurate stiffness measurements in juvenile trees/seedlings compared with the traditional ToF technique. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

14 pages, 3113 KB  
Article
Development of the Biofidelic Instrumented Neck Surrogate (BINS) with Tunable Stiffness and Embedded Kinematic Sensors for Application in Static Tests and Low-Energy Impacts
by Giuseppe Zullo, Elisa Baldoin, Leonardo Marin, Andrey Koptyug and Nicola Petrone
Sensors 2025, 25(16), 4925; https://doi.org/10.3390/s25164925 - 9 Aug 2025
Viewed by 405
Abstract
Road accidents could result in severe or fatal neck injuries. A few surrogate necks are available to develop and test neck protectors as countermeasures, but each has its own limitations. The objective of this study was to develop a surrogate neck compatible with [...] Read more.
Road accidents could result in severe or fatal neck injuries. A few surrogate necks are available to develop and test neck protectors as countermeasures, but each has its own limitations. The objective of this study was to develop a surrogate neck compatible with the Hybrid III dummy, focused on tunable flexural stiffness and integrated angular sensors for kinematic feedback during impact tests. The neck features six 3D-printed surrogate vertebral bodies interconnected by rubber surrogate discs, providing a baseline flexibility to the surrogate fundamental spinal units. An adjustable inner cable and elastic elements hooked on the sides of vertebral elements allow to increase the flexural stiffness of the surrogate and to simulate the asymmetric behavior of the human neck. Neck flexural angles and axial compression are measured using a novel system made of wires, pulleys, and rotary potentiometers embedded in the neck base. A motion capture system and a load cell were used to determine the bending and torsional stiffness of the neck and to calibrate the sensors. Results showed that the neck flexural stiffness can be tuned between 3.29 and 5.76 Nm/rad. Torsional stiffness was 1.01 Nm/rad and compression stiffness can be tuned from 39 to 193 N/mm. Sensor flexural angles were compared with motion capture angles, showing an RMSE error of 1.35° during static testing and of 3° during dynamic testing. The developed neck could be a viable tool for investigating neck braces from a kinematic and kinetic perspective due to its inbuilt sensing ability and its tunable stiffness. Full article
(This article belongs to the Special Issue Applications of Body Worn Sensors and Wearables)
Show Figures

Figure 1

19 pages, 4202 KB  
Article
Effect of Plate Thickness on Residual Stress Distribution of GH3039 Superalloy Subjected to Laser Shock Peening
by Yandong Ma, Maozhong Ge and Yongkang Zhang
Materials 2025, 18(15), 3682; https://doi.org/10.3390/ma18153682 - 5 Aug 2025
Viewed by 323
Abstract
To accurately assess the effect of different plate thicknesses on the residual stress field of laser shock peened GH3039 superalloy, residual stress measurements were performed on GH3039 alloy plates with thicknesses of 2 mm and 5 mm after laser shock peening (LSP) treatment. [...] Read more.
To accurately assess the effect of different plate thicknesses on the residual stress field of laser shock peened GH3039 superalloy, residual stress measurements were performed on GH3039 alloy plates with thicknesses of 2 mm and 5 mm after laser shock peening (LSP) treatment. Both quasi-static and high strain rate mechanical tests of GH3039 were conducted, and the Johnson-Cook (J-C) constitutive equation for GH3039 alloy at specific strain rates was fitted based on the experimental results. To obtain the parameter C in the J-C constitutive equation of GH3039 alloy under ultra-high strain rates, a modified method was proposed based on LSP experiment and finite element simulation results. Using the modified GH3039 alloy J-C constitutive equation, numerical simulations and comparative analyses of the residual stress field of GH3039 alloy plates of different thicknesses under LSP were carried out using ABAQUS software. The simulated residual stress fields of laser-shocked GH3039 alloy plates of different thicknesses were in good agreement with the experimental measurements, indicating that the modified GH3039 alloy J-C constitutive equation can accurately predict the mechanical behavior of GH3039 alloy under ultra-high strain rates. Based on the modified GH3039 alloy J-C constitutive equation, the effect of different plate thicknesses on the residual stress distribution of laser-shocked GH3039 alloy was studied, along with the underlying mechanisms. The unique distribution characteristics of residual stresses in laser-shocked GH3039 plates with varying thicknesses are primarily attributed to differences in plate bending stiffness and the detrimental coupling effects of reflected tensile waves. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

26 pages, 11494 KB  
Article
Establishment of Hollow Flexible Model with Two Types of Bonds and Calibration of the Contact Parameters for Wheat Straw
by Huinan Huang, Yan Zhang, Guangyu Hou, Baohao Su, Hao Yin, Zijiang Fu, Yangfan Zhuang, Zhijun Lv, Hui Tian and Lianhao Li
Agriculture 2025, 15(15), 1686; https://doi.org/10.3390/agriculture15151686 - 4 Aug 2025
Viewed by 382
Abstract
In view of the lack of accurate model in the discrete element study during straw comprehensive utilization (crushing, mixing, and baling), wheat straw was taken as the research object to calibrate the simulation parameters using EDEM 2023. The intrinsic and contact mechanical parameters [...] Read more.
In view of the lack of accurate model in the discrete element study during straw comprehensive utilization (crushing, mixing, and baling), wheat straw was taken as the research object to calibrate the simulation parameters using EDEM 2023. The intrinsic and contact mechanical parameters of wheat straw were measured, and a test of the angle of repose (AOR), extrusion test and bending test were carried out. On this basis, a discrete element model (DEM) of hollow flexibility by using cylindrical particles was developed. The optimal combination of contact mechanical parameters was obtained through AOR tests based on the Box–Behnken design (BBD), coefficients of static friction, rolling friction, and restitution between wheat straw and wheat straw-45 steel are separately 0.227, 0.136, 0.479, 0.271, 0.093, and 0.482, AOR is 18.66°. Meanwhile, optimal combinations of bond contact parameters were determined by the BBD. The calibrated parameters were used to conduct extrusion and bending tests. Results show that the average values of peak extrusion force and peak bending pressure are 23.20 N and 3.92 N, which have relative discrepancy of 3.25% and 3.59% compared to physical test measurements. The results can provide model reference for the optimization design such as feed processing equipment, baler, and mixer. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

20 pages, 4901 KB  
Article
Study on the Adaptability of FBG Sensors Encapsulated in CNT-Modified Gel Material for Asphalt Pavement
by Tengteng Guo, Xu Guo, Yuanzhao Chen, Chenze Fang, Jingyu Yang, Zhenxia Li, Jiajie Feng, Jiahua Kong, Haijun Chen, Chaohui Wang, Qian Chen and Jiachen Wang
Gels 2025, 11(8), 590; https://doi.org/10.3390/gels11080590 - 31 Jul 2025
Viewed by 284
Abstract
To prolong the service life of asphalt pavement and reduce its maintenance cost, a fiber Bragg grating (FBG) sensor encapsulated in carboxylated carbon nanotube (CNT-COOH)-modified gel material suitable for strain monitoring of asphalt pavement was developed. Through tensile and bending tests, the effects [...] Read more.
To prolong the service life of asphalt pavement and reduce its maintenance cost, a fiber Bragg grating (FBG) sensor encapsulated in carboxylated carbon nanotube (CNT-COOH)-modified gel material suitable for strain monitoring of asphalt pavement was developed. Through tensile and bending tests, the effects of carboxylated carbon nanotubes on the mechanical properties of gel materials under different dosages were evaluated and the optimal dosage of carbon nanotubes was determined. Infrared spectrometer and scanning electron microscopy were used to compare and analyze the infrared spectra and microstructure of carbon nanotubes before and after carboxyl functionalization and modified gel materials. The results show that the incorporation of CNTs-COOH increased the tensile strength, elongation at break, and tensile modulus of the gel material by 36.2%, 47%, and 17.2%, respectively, and increased the flexural strength, flexural modulus, and flexural strain by 89.7%, 7.5%, and 63.8%, respectively. Through infrared spectrum analysis, it was determined that carboxyl (COOH) and hydroxyl (OH) were successfully introduced on the surface of carbon nanotubes. By analyzing the microstructure, it can be seen that the carboxyl functionalization of CNTs improved the agglomeration of carbon nanotubes. The tensile section of the modified gel material is rougher than that of the pure epoxy resin, showing obvious plastic deformation, and the toughness is improved. According to the data from the calibration experiment, the strain and temperature sensitivity coefficients of the packaged sensor are 1.9864 pm/μm and 0.0383 nm/°C, respectively, which are 1.63 times and 3.61 times higher than those of the bare fiber grating. The results of an applicability study show that the internal structure strain of asphalt rutting specimen changed linearly with the external static load, and the fitting sensitivity is 0.0286 με/N. Combined with ANSYS finite element analysis, it is verified that the simulation analysis results are close to the measured data, which verifies the effectiveness and monitoring accuracy of the sensor. The dynamic load test results reflect the internal strain change trend of asphalt mixture under external rutting load, confirming that the encapsulated FBG sensor is suitable for the long-term monitoring of asphalt pavement strain. Full article
(This article belongs to the Special Issue Synthesis, Properties, and Applications of Novel Polymer-Based Gels)
Show Figures

Figure 1

41 pages, 3195 KB  
Article
A Stress Analysis of a Thin-Walled, Open-Section, Beam Structure: The Combined Flexural Shear, Bending and Torsion of a Cantilever Channel Beam
by David W. A. Rees
Appl. Sci. 2025, 15(15), 8470; https://doi.org/10.3390/app15158470 - 30 Jul 2025
Viewed by 617
Abstract
Channels with three standard symmetrical sections and one asymmetric section are mounted as cantilever beams with the web oriented vertically. A classical solution to the analysis of stress in each thin-walled cantilever channel is provided using the principle of wall shear flow superposition. [...] Read more.
Channels with three standard symmetrical sections and one asymmetric section are mounted as cantilever beams with the web oriented vertically. A classical solution to the analysis of stress in each thin-walled cantilever channel is provided using the principle of wall shear flow superposition. The latter is coupled with a further superposition between axial stress arising from bending and from the constraint placed on free warping imposed at the fixed end. Closed solutions for design are tabulated for the net shear stress and the net axial stress at points around any section within the length. Stress distributions thus derived serve as a benchmark structure for alternative numerical solutions and for experimental investigations. The conversion of the transverse free end-loading applied to a thin-walled cantilever channel into the shear and axial stress that it must bear is outlined. It is shown that the point at which this loading is applied within the cross-section is crucial to this stress conversion. When a single force is applied to an arbitrary point at the free-end section, three loading effects arise generally: bending, flexural shear and torsion. The analysis of each effect requires that this force’s components are resolved to align with the section’s principal axes. These forces are then considered in reference to its centroid and to its shear centre. This shows that axial stress arises directly from bending and from the constraint imposed on free warping at the fixed end. Shear stress arises from flexural shear and also from torsion with a load offset from the shear centre. When the three actions are combined, the net stresses of each action are considered within the ability of the structure to resist collapse from plasticity and buckling. The novelty herein refers to the presentation of the shear flow calculations within a thin wall as they arise from an end load offset from the shear centre. It is shown how the principle of superposition can be applied to individual shear flow and axial stress distributions arising from flexural bending, shear and torsion. Therein, the new concept of a ‘trans-moment’ appears from the transfer in moments from their axes through centroid G to parallel axes through shear centre E. The trans-moment complements the static equilibrium condition, in which a shift in transverse force components from G to E is accompanied by torsion and bending about the flexural axis through E. Full article
Show Figures

Figure 1

16 pages, 2280 KB  
Article
Mechanical Properties of Korla Fragrant Pear Fruiting Branches and Pedicels: Implications for Non-Destructive Harvesting
by Yanwu Jiang, Jun Chen, Zhiwei Wang, Jianguo Zhou and Guangrui Hu
Horticulturae 2025, 11(8), 880; https://doi.org/10.3390/horticulturae11080880 - 29 Jul 2025
Viewed by 433
Abstract
The Korla fragrant pear is a highly valued economic fruit in China’s Xinjiang region. However, biomechanical data on the fruit-bearing branches and pedicels of this species remain incomplete, which to some extent hinders the advancement of harvesting equipment and techniques. Therefore, refining these [...] Read more.
The Korla fragrant pear is a highly valued economic fruit in China’s Xinjiang region. However, biomechanical data on the fruit-bearing branches and pedicels of this species remain incomplete, which to some extent hinders the advancement of harvesting equipment and techniques. Therefore, refining these data is of great significance for the development of efficient and non-destructive harvesting strategies. This study aims to elucidate the mechanical properties of the fruiting branches and peduncles of Korla fragrant pears, thereby establishing a theoretical foundation for the future development of intelligent harvesting technology for this variety. The research utilized axial and radial compression tests, along with three-point bending test methods, to quantitatively analyze the elastic modulus and shear modulus of the branches and peduncles. The test results reveal that the elastic modulus of the fruiting branches under axial compression is 263.51 ± 76.51 MPa, while under radial compression, it measures 135.53 ± 73.73 MPa (where ± represents the standard deviation). In comparison, the elastic modulus of the peduncles is recorded at 152.96 ± 119.95 MPa. Additionally, the three-point bending test yielded a shear modulus of 75.48 ± 32.84 MPa for the branches and 30.23 ± 8.50 MPa for the peduncles. Using finite element static structural analysis, the simulation results aligned closely with the experimental data, falling within an acceptable error range, thus validating the reliability of the testing methods and outcomes. The mechanical parameters obtained in this study are critical for modeling the stress and deformation behaviors of pear-bearing structures during mechanical harvesting. These findings provide valuable theoretical support for the optimization of harvesting device design and operational strategies, with the aim of reducing fruit damage and improving harvesting efficiency in pear orchards. Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
Show Figures

Figure 1

18 pages, 1519 KB  
Article
Static and Vibration Analysis of Imperfect Thermoelastic Laminated Plates on a Winkler Foundation
by Jiahuan Liu, Yunying Zhou, Yipei Meng, Hong Mei, Zhijie Yue and Yan Liu
Materials 2025, 18(15), 3514; https://doi.org/10.3390/ma18153514 - 26 Jul 2025
Viewed by 347
Abstract
This study introduces an analytical framework that integrates the state-space method with generalized thermoelasticity theory to obtain exact solutions for the static and dynamic behaviors of laminated plates featuring imperfect interfaces and resting on a Winkler foundation. The model comprehensively accounts for the [...] Read more.
This study introduces an analytical framework that integrates the state-space method with generalized thermoelasticity theory to obtain exact solutions for the static and dynamic behaviors of laminated plates featuring imperfect interfaces and resting on a Winkler foundation. The model comprehensively accounts for the foundation-structure interaction, interfacial imperfection, and the coupling between the thermal and mechanical fields. A parametric analysis explores the impact of the dimensionless foundation coefficient, interface flexibility coefficient, and thermal conductivity on the static and dynamic behaviors of the laminated plates. The results indicate that a lower foundation stiffness results in higher sensitivity of structural deformation with respect to the foundation parameter. Furthermore, an increase in interfacial flexibility significantly reduces the global stiffness and induces discontinuities in the distribution of stress and temperature. Additionally, thermal conductivity governs the continuity of interfacial heat flux, while thermo-mechanical coupling amplifies the variations in specific field variables. The findings offer valuable insights into the design and reliability evaluation of composite structures operating in thermally coupled environments. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

16 pages, 3207 KB  
Article
Determining Vibration Characteristics and FE Model Updating of Friction-Welded Beams
by Murat Şen
Machines 2025, 13(8), 653; https://doi.org/10.3390/machines13080653 - 25 Jul 2025
Cited by 1 | Viewed by 390
Abstract
This study aimed to investigate the dynamic characteristics of shafts joined by friction welding and to update their finite element models. The first five bending mode resonance frequencies, damping ratios, and mode shapes of SAE 304 steel beams, friction-welded at three different rotational [...] Read more.
This study aimed to investigate the dynamic characteristics of shafts joined by friction welding and to update their finite element models. The first five bending mode resonance frequencies, damping ratios, and mode shapes of SAE 304 steel beams, friction-welded at three different rotational speeds (1200, 1500, and 1800 rpm), were determined using the Experimental Modal Analysis method. This approach allowed for an examination of how the dynamic properties of friction-welded beams change at varying rotational speeds. A slight decrease in resonance frequency values was observed with the transition from lower to higher rotational speeds. The largest difference of 3.28% was observed in the first mode, and the smallest difference of 0.19% was observed in the second mode. Different trends in damping ratios were observed for different modes. In the first, second, and fourth modes, damping ratios tended to increase with increasing rotational speeds, while they tended to decrease in the third and fifth modes. The largest difference was calculated as 52.83% in the third vibration mode. However, no significant change in mode shapes was observed for different rotational speeds. Based on the examined Modal Assurance Criterion (MAC) results, cross-comparisons of the mode shapes obtained for all three different speeds yielded a minimum similarity of 93.8%, reaching up to 99.9%. For model updating, a Frequency Response Assurance Criterion (FRAC)-based method utilizing frequency response functions (FRFs) was employed. Initially, a numerical model of the welded shaft was created using MATLAB-R2015a, based on the Euler–Bernoulli beam theory. Since rotational coordinates were not used in the EMA analyses, static model reduction was performed on the numerical model to reduce the effect of rotational coordinates to translational coordinates. For model updating, experimentally obtained FRFs from EMA and FRFs from the numerical model were used. The equivalent modulus of elasticity and equivalent density of the friction weld region were used as updating parameters. Successful results were achieved by developing an algorithm that ensured the convergence of the numerical model’s FRFs and natural frequencies. Full article
(This article belongs to the Special Issue Advances in Noise and Vibrations for Machines)
Show Figures

Figure 1

Back to TopTop