Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = steepest ascent test

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5307 KB  
Article
Mechanical Characterization and Dual-Layer Discrete Element Modeling of Mactra veneriformis
by Bin Xu, Yazhou Yang, Hangqi Li, Guangcong Chen, Yizhi Chang, Feihong Guo, Hao Wu, Jixuan Zhao, Zijing Liu, Guochen Zhang, Xiuchen Li, Hanbing Zhang, Qian Zhang and Gang Mu
Fishes 2025, 10(9), 429; https://doi.org/10.3390/fishes10090429 - 1 Sep 2025
Viewed by 470
Abstract
The discrete element model of Mactra veneriformis currently employs an oversimplified multi-sphere approach using EDEM’s Hertz–Mindlin model, assuming uniform shell–flesh mechanical properties. This study developed an advanced dual-layer flexible bonding model through comprehensive biomechanical testing. Mechanical properties and shell morphology were experimentally characterized [...] Read more.
The discrete element model of Mactra veneriformis currently employs an oversimplified multi-sphere approach using EDEM’s Hertz–Mindlin model, assuming uniform shell–flesh mechanical properties. This study developed an advanced dual-layer flexible bonding model through comprehensive biomechanical testing. Mechanical properties and shell morphology were experimentally characterized to inform model development. Parameter optimization combined free-fall experiments with Plackett–Burman screening, steepest ascent method, and Box–Behnken RSM, yielding optimal contact parameters: flesh–flesh stiffness (X1) = 3.64 × 1011 N/m3, shell–flesh interface (X3) = 1.48×1013 N/m3, shell–shell tangential stiffness (X6) = 3.23 × 1012 N/m3, and normal strength (X7) = 8.35 × 106 Pa. Validation showed only 4.89% deviation between simulated and actual drop tests, with hydraulic impact tests confirming excellent model accuracy. The developed model accurately predicts mechanical behavior and shell fracture patterns during harvesting operations. This research provides a validated numerical tool for optimizing clam cultivation and harvesting equipment design, offering significant potential to reduce shell damage while improving harvesting efficiency in bivalve aquaculture systems. Full article
(This article belongs to the Section Aquatic Invertebrates)
Show Figures

Figure 1

16 pages, 1820 KB  
Article
Discrete Element Model of Different Moisture Hygroscopic Fertilizer Particles
by Xiongfei Chen, Zeyu Sun, Yize Shi, Muhua Liu, Jiajia Yu and Junan Liu
Appl. Sci. 2025, 15(17), 9425; https://doi.org/10.3390/app15179425 - 28 Aug 2025
Viewed by 530
Abstract
The discrete element computer simulation method is an effective tool that enables the study of the interaction mechanism between the fertilizer discharge device. However, the lack of accurate fertilizer models for hygroscopic fertilizer particles (HFP) has limited the application and development of the [...] Read more.
The discrete element computer simulation method is an effective tool that enables the study of the interaction mechanism between the fertilizer discharge device. However, the lack of accurate fertilizer models for hygroscopic fertilizer particles (HFP) has limited the application and development of the discrete element method in research precision fertilizer discharge device. Taking HFP as the research object, this research aims to establish the discrete element model of different moisture hygroscopic fertilizer particles, and to develop a method for predicting the discrete element parameters of HFP based on moisture content. The Hertz–Mindlin with JKR discrete element model was selected as the contact model for the HFP. The repose angle of HFP was used as the test index to select nine discrete element models for the HFP. Firstly, a mathematical model characterizing the relationship between fertilizer moisture content and the repose angle was established. Subsequently, the Plackett–Burman test identified the surface energy of hygroscopic fertilizer particles (HFP), the restitution coefficient between fertilizer and PC board, and the shear modulus as significant factors influencing the test index. The value range of the above parameters were determined by the steepest ascent test results. The Box–Behnken test obtained the regression model between the significant factors and the test index. The optimal combination of parameters of 2%, 4%, and 6% moisture contents of HFP were predicted based on the regression model and the HFP repose angle. The parameters were optimized using the repose angle error as the target. In order to further verify the accuracy of the HFP discrete element model, a fertilizer discharging simulation test was conducted. The results show that, compared with the actual fertilizer discharge amount, the simulation fertilizer discharge amount error of different moisture HFP was below 8.32%. The collective results indicated this method could reliably and precisely establish the discrete element model of various moisture content HFP. This model can be applied to the analysis of hygroscopic fertilizer discharging processes and the design of precision fertilizer discharge technology devices. Full article
Show Figures

Figure 1

22 pages, 3480 KB  
Article
Comprehensive DEM Calibration Using Face Central Composite Design and Response Surface Methodology for Rice–PLA Interactions in Enhanced Bucket Elevator Performance
by Pirapat Arunyanart, Nithitorn Kongkaew and Supattarachai Sudsawat
AgriEngineering 2025, 7(7), 240; https://doi.org/10.3390/agriengineering7070240 - 17 Jul 2025
Viewed by 741
Abstract
This research presents a comprehensive methodology for calibrating Discrete Element Method (DEM) parameters governing rice grain interactions with biodegradable Polylactic Acid (PLA) components in agricultural bucket elevator systems. Rice grains, a critical global food staple requiring efficient post-harvest handling, were modeled as three-sphere [...] Read more.
This research presents a comprehensive methodology for calibrating Discrete Element Method (DEM) parameters governing rice grain interactions with biodegradable Polylactic Acid (PLA) components in agricultural bucket elevator systems. Rice grains, a critical global food staple requiring efficient post-harvest handling, were modeled as three-sphere clusters to accurately represent their physical dimensions (6.5 mm length), while the Hertz–Mindlin contact model provided the theoretical framework for particle interactions. The calibration process employed a multi-phase experimental design integrating Plackett–Burmann screening, steepest ascent method, and Face Central Composite Design to systematically identify and optimize critical micro-mechanical parameters for agricultural material handling. Statistical analysis revealed the coefficient of static friction between rice and PLA as the dominant factor, contributing 96.49% to system performance—significantly higher than previously recognized in conventional agricultural processing designs. Response Surface Methodology generated predictive models achieving over 90% correlation with experimental results from 3D-printed PLA shear box tests. Validation through comparative velocity profile analysis during bucket elevator discharge operations confirmed excellent agreement between simulated and experimental behavior despite a 20% discharge velocity variance that warrants further investigation into agricultural material-specific phenomena. The established parameter set enables accurate virtual prototyping of sustainable agricultural handling equipment, offering post-harvest processing engineers a powerful tool for optimizing bulk material handling systems with reduced environmental impact. This integrated approach bridges fundamental agricultural material properties with sustainable engineering design principles, providing a scalable framework applicable across multiple agricultural processing operations using biodegradable components. Full article
Show Figures

Graphical abstract

22 pages, 5702 KB  
Article
Calibration and Experimental Validation of Discrete Element Parameters of Fritillariae Thunbergii Bulbus
by Hang Zheng, Zhaowei Hu, Xianglei Xue, Yunxiang Ye, Tian Liu, Ning Ren, Fanyi Liu and Guohong Yu
Appl. Sci. 2025, 15(14), 7951; https://doi.org/10.3390/app15147951 - 17 Jul 2025
Viewed by 377
Abstract
The development of slicing equipment for Fritillariae Thunbergii Bulbus (FTB) has been constrained by the absence of precise and reliable simulation model parameters, which has hindered the optimization of structural design through simulation techniques. Taking FTB as the research object, this study aims [...] Read more.
The development of slicing equipment for Fritillariae Thunbergii Bulbus (FTB) has been constrained by the absence of precise and reliable simulation model parameters, which has hindered the optimization of structural design through simulation techniques. Taking FTB as the research object, this study aims to resolve this issue by conducting the calibration and experimental validation of the discrete element parameters for FTB. Both intrinsic and contact parameters were obtained through physical experiments, on the basis of which a discrete element model for FTB was established by using the Hertz–Mindlin with bonding model. To validate the calibrated bonding parameters of this model, the maximum shear force was selected as the evaluation index. Significant influencing factors were identified and analyzed through a single-factor test, a two-level factorial test, and the steepest ascent method. Response surface methodology was then applied for experimental design and parameter optimization. Finally, shear and compression tests were conducted to verify the accuracy of calibrated parameters. The results show that the mechanical properties of FTB are significantly affected by the normal stiffness per unit area, the tangential stiffness per unit area, and the bonding radius, with optimal values of 1.438 × 108 N·m−3, 0.447 × 108 N·m−3, and 1.362 mm, respectively. The relative errors in the shear and compression tests were all within 5.18%. The maximum error between the simulated and measured maximum shear force under three different types of blades was less than 5.11%. The percentages of the average shear force of the oblique blade were reduced by 52.23% and 29.55% compared with the flat and arc blades, respectively, while the force variation trends for FTB remained consistent. These findings confirm the reliability of the simulation parameters and establish a theoretical basis for optimizing the structural design of slicing equipment for FTB. Full article
Show Figures

Figure 1

27 pages, 3922 KB  
Article
Discrete Element Simulation Parameter Calibration of Wheat Straw Feed Using Response Surface Methodology and Particle Swarm Optimization–Backpropagation Hybrid Algorithm
by Zhigao Hu, Hao Li, Xuming Shi, Lingzhuo Kong, Xiang Tian, Shiguan An, Bin Feng and Juan Ma
Appl. Sci. 2025, 15(14), 7668; https://doi.org/10.3390/app15147668 - 8 Jul 2025
Viewed by 605
Abstract
To establish a fundamental property database for discrete elements targeting long-fiber materials and address the issue of response surface methodology (RSM) being prone to local optima in high-dimensional nonlinear optimization, this study conducted parameter calibration experiments and validated the calibrated parameters through a [...] Read more.
To establish a fundamental property database for discrete elements targeting long-fiber materials and address the issue of response surface methodology (RSM) being prone to local optima in high-dimensional nonlinear optimization, this study conducted parameter calibration experiments and validated the calibrated parameters through a combined approach of simulation and physical testing. The Plackett–Burman design and steepest ascent test were employed to screen significant factors. Using the angle of repose (42.3°) obtained from physical experiments as the response value, response surface methodology (RSM) and a particle swarm optimization–back propagation (PSO-BP) neural network model were independently applied to optimize and compare the critical parameters. The results demonstrated that the dynamic friction coefficient between wheat straw particles, the static friction coefficient between wheat straw and steel plate, and the JKR surface energy were the most influential factors on the simulated angle of repose. The PSO-BP model exhibited superior optimization performance compared to RSM, yielding an optimal parameter combination of 0.17, 0.46, and 0.03. The simulated repose angle under these conditions was 41.67°, exhibiting a relative error of only 1.5% compared to the physical experiment. These findings provide a robust theoretical foundation for discrete element simulations of wheat straw feedstock. Full article
Show Figures

Figure 1

17 pages, 4281 KB  
Article
Development and Validation of a Discrete Element Simulation Model for Pressing Holes in Sowing Substrates
by Hongmei Xia, Chuheng Deng, Teng Yang, Runxin Huang, Jianhua Ou, Lingjin Dong, Dewen Tao and Long Qi
Agronomy 2025, 15(4), 971; https://doi.org/10.3390/agronomy15040971 - 17 Apr 2025
Viewed by 832
Abstract
To conduct DEM simulation research on the collision characteristics between seeds and pressed substrate holes, a discrete element model of mechanically pressed holes in sowing substrates was developed in this study. The geometric DEM models of sowing substrate particles were established based on [...] Read more.
To conduct DEM simulation research on the collision characteristics between seeds and pressed substrate holes, a discrete element model of mechanically pressed holes in sowing substrates was developed in this study. The geometric DEM models of sowing substrate particles were established based on the sieve test, and the Hertz–Mindlin with JKR contact model was utilized for simulating of the fine, moist, and cohesive substrate particles. The angle of repose measured by the funnel method was served as the target, Plackett–Burman experiments were conducted to screen significant contact mechanical parameters, while steepest ascent and Box–Behnken experiments were employed to define their value ranges. A neural network model for predicting the angle of repose was constructed, and a genetic algorithm was applied to optimize the significant contact mechanical parameters. The cross-sectional profiles of the pressing hole were obtained through image profile feature extraction in simulation and 3D scanning projection methods in the experiment. The calibrated inter-particle dynamic friction coefficient, inter-particle coefficient of restitution, dynamic friction coefficient between particles and stainless steel, and JKR surface energy of the substrate were 0.0349, 0.5448, 0.0233, and 0.4279, respectively. The deviation of the simulated angle of repose utilizing the optimized contact parameters was 0.4°. The shapes of the pressed holes obtained from simulation and experiment showed good consistency. The pressing speed had no significant effect on the mean depth of all sampling points, suggesting that a higher pressing speed should be set to improve the operation efficiency. The pressing depth has a highly significant effect on the mean depth of all sampled points, but no significant effect on the deviation between the simulated and experimental mean depths. The maximum difference in the mean depth deviation between simulated and experimental sampled points is 1.308 mm. It demonstrates that the established discrete element model can efficiently and accurately simulate the deformation of the pressing hole in sowing substrate. It provides an applicable simulation model for fast optimization design of the pressing hole and sowing equipment. Full article
Show Figures

Figure 1

19 pages, 7260 KB  
Article
Calibration of Parameters for Leaf-Stem-Cutting Model of Tuber Mustard (Brassica juncea L.) Based on Discrete Element Method
by Man Gu, Haiyang Shen, Weiwen Luo, Jie Ling, Bokai Wang, Fengwei Gu, Shumin Song, Liang Pan and Zhichao Hu
Agriculture 2025, 15(7), 773; https://doi.org/10.3390/agriculture15070773 - 2 Apr 2025
Viewed by 606
Abstract
The cutting of leaf stems is a critical step in the mechanized harvesting of tuber mustard (Brassica juncea L.). This study focuses on the calibration of parameters for the discrete element model of mustard leaf stems to visualize the cutting process and [...] Read more.
The cutting of leaf stems is a critical step in the mechanized harvesting of tuber mustard (Brassica juncea L.). This study focuses on the calibration of parameters for the discrete element model of mustard leaf stems to visualize the cutting process and facilitate numerical simulations. Intrinsic material properties were measured based on mechanical testing, and EDEM2022 simulation software was utilized to calibrate the model parameters. The Hertz–Mindlin (no-slip) model was employed to simulate the stacking angle of mustard leaf stems, and the contact parameters for the discrete element model were determined using a combination of two-level factorial design, steepest ascent, and CCD (central composite design) tests. The results showed that the coefficient of restitution, coefficient of static friction, and coefficient of rolling friction for the leaf stems were 0.45, 0.457, and 0.167, respectively, while for interactions between the leaf stems and the working parts, these values were 0.45, 0.55, and 0.175, respectively. Based on the Hertz–Mindlin with bonding model, the primary bonding parameters were calculated, and a BBD (Box–Behnken design) test was applied for optimization. The comparison between the simulation and experimental results showed that the relative error in the maximum shear force was within 5%, indicating that the calibrated model can serve as a reliable theoretical reference for the design and optimization of tuber mustard harvesting and cutting equipment. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

22 pages, 8432 KB  
Article
The Establishment of a High-Moisture Corn Ear Model Based on the Discrete Element Method and the Calibration of Bonding Parameters
by Chunrong Li, Zhounan Liu, Ligang Geng, Tianyue Xu, Weizhi Feng, Min Liu, Da Qiao, Yang Wang and Jingli Wang
Agriculture 2025, 15(7), 752; https://doi.org/10.3390/agriculture15070752 - 31 Mar 2025
Viewed by 439
Abstract
Establishing an accurate high-moisture corn ear fragmentation model using the Discrete Element Method is crucial for studying the processing and fragmentation of high-moisture corn ears. This study focuses on high-moisture corn ears during the early harvest stage, developing a fragmentable corn ear model [...] Read more.
Establishing an accurate high-moisture corn ear fragmentation model using the Discrete Element Method is crucial for studying the processing and fragmentation of high-moisture corn ears. This study focuses on high-moisture corn ears during the early harvest stage, developing a fragmentable corn ear model and calibrating its bonding parameters. First, based on the Hertz–Mindlin method in the Discrete Element Method, a three-layer corn cob bonding model consisting of pith, woody ring structure, and glume was established. Through a combined experimental and simulation calibration approach, the bonding parameters of the cob were determined using Plackett–Burman tests, the steepest ascent tests, and Box–Behnken tests. Subsequently, the same method was applied to establish a corn kernel bonding model, with the kernel bonding parameters calibrated through the steepest ascent and Box–Behnken tests. In order to arrange the kernel models on the cob model to achieve the construction of a complete ear model, this paper proposes a “matrix coordinate positioning method”. Through calculations, this method enables the uniform arrangement of corn kernels on the cob, thereby accomplishing the establishment of a composite model for the high-moisture corn ear. The bonding parameters between the cob and kernels were determined through compression tests. Finally, the reliability of the model was partially validated through shear testing; however, potential confounding variables remain unaccounted for in the experimental analysis. While this study establishes a theoretical framework for the design and optimization of machinery dedicated to high-moisture corn ear fragmentation processes, questions persist regarding the comprehensiveness of variable inclusion during parametric evaluation. This analytical approach exhibits characteristics analogous to incomplete system modeling, potentially limiting the generalizability of the proposed methodology. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

14 pages, 6941 KB  
Article
Calibration and Verification of Coated Caragana korshinskii Seeds Based on Discrete Element Method
by Zhongkai Tai, Xin Tong, Hongli Xu, Haoran Hu, Pengyu Bao and Bing Jia
Coatings 2025, 15(4), 387; https://doi.org/10.3390/coatings15040387 - 26 Mar 2025
Viewed by 437
Abstract
The accurate modeling of seed motion characteristics is crucial for optimizing seed-metering devices in agricultural machinery. This study investigated the physical properties and contact parameters of coated Caragana korshinskii seeds through a combined approach of calibration experiments and verification tests. Physical experiments were [...] Read more.
The accurate modeling of seed motion characteristics is crucial for optimizing seed-metering devices in agricultural machinery. This study investigated the physical properties and contact parameters of coated Caragana korshinskii seeds through a combined approach of calibration experiments and verification tests. Physical experiments were conducted to measure basic parameters including seed dimensions, density, moisture content, and angle of repose. The Plackett–Burman experimental design was employed to screen significant parameters affecting seed motion, followed by the Path of Steepest Ascent method and Response Surface Methodology to establish optimal parameter combinations. Results identified three key parameters: seed-to-seed coefficient of restitution (0.221), seed-to-seed static friction coefficient (0.337), and seed-to-aluminum static friction coefficient (0.117). Verification tests using a 4BQD-40 broadcast seeder demonstrated good agreement between simulation and physical experiments, with relative errors of 1.56% for the angle of repose. Seeding efficiency showed consistent results between calibration (354 g/min) and verification tests (347 g/min), while breakage rates remained within acceptable ranges (2.3% predicted vs. 4.1% actual). The established parameter set provides a reliable foundation for discrete element simulation of coated Caragana korshinskii seed motion in metering devices, contributing to the optimization of seeding equipment design. Full article
Show Figures

Figure 1

16 pages, 5731 KB  
Article
Calibration and Analysis of Seeding Parameters of Soaked Cyperus esculentus L. Seeds
by Jianguo Yan, Zhenyu Liu and Fei Liu
Appl. Sci. 2025, 15(6), 2951; https://doi.org/10.3390/app15062951 - 9 Mar 2025
Cited by 1 | Viewed by 849
Abstract
The seeds of Cyperus esculentus L. exhibit an uneven surface and irregular shape, which adversely affect precision seeding. Pre-sowing seed soaking treatment not only improves seeding performance, but also enhances the germination capability of C. esculentus seeds. However, the intrinsic parameters of the [...] Read more.
The seeds of Cyperus esculentus L. exhibit an uneven surface and irregular shape, which adversely affect precision seeding. Pre-sowing seed soaking treatment not only improves seeding performance, but also enhances the germination capability of C. esculentus seeds. However, the intrinsic parameters of the seeds undergo significant changes after soaking in terms of their physical properties, such as volume, weight, and density. These changes directly influence the fluidity and positioning accuracy of the seeds during the seeding process. Additionally, contact parameters, such as the coefficient of friction and the contact area between the seeds and the seeding apparatus, are altered by soaking. These parameters are crucial for designing efficient seeding devices. Therefore, it is necessary to measure the intrinsic parameters of soaked C. esculentus seeds and their contact parameters with the seeding apparatus to provide parameter support for the precision seeding analysis of pre-soaked C. esculentus. This study focuses on the calibration and experimental investigation of discrete element parameters for soaked C. esculentus seeds. Free-fall collision tests, static friction tests, and rolling friction tests were conducted to calibrate the contact parameters between soaked C. esculentus seeds and between the seeds and steel materials. Using Design-Expert, Plackett–Burman tests, steepest ascent tests, and Box–Behnken response surface tests were designed to obtain the optimal parameter combination for the C. esculentus contact model. The optimal parameters were validated through angle of repose simulation tests and physical experiments. The results indicate that the rolling friction coefficient (F) between seeds, the static friction coefficient (E) between seeds, and the rolling friction coefficient (J) between seeds and steel plates significantly affect the angle of repose. The optimal combination of discrete element parameters is as follows: the static friction coefficient (E) between seeds is 0.675, the rolling friction coefficient (F) between seeds is 0.421, and the rolling friction coefficient (J) between seeds and steel plates is 0.506. Using the calibrated parameters for simulation, the average angle of repose was 32.31°, with a relative error of 1.1% compared to the physical experiments. Full article
Show Figures

Figure 1

20 pages, 10896 KB  
Article
Calibration of DEM Polyhedron Model for Wheat Seed Based on Angle of Repose Test and Semi-Resolved CFD-DEM Coupling Simulation
by Longbao Wang, Hanyu Yang, Zhinan Wang, Qingjie Wang, Caiyun Lu, Chao Wang and Jin He
Agriculture 2025, 15(5), 506; https://doi.org/10.3390/agriculture15050506 - 26 Feb 2025
Cited by 4 | Viewed by 884 | Correction
Abstract
The shape of particles is a critical determinant that significantly influences the accuracy of discrete element simulations. To reduce the discrepancies between the discrete element model of wheat seeds and the actual particle shapes, and to enhance the accuracy of Computational Fluid Dynamics-Discrete [...] Read more.
The shape of particles is a critical determinant that significantly influences the accuracy of discrete element simulations. To reduce the discrepancies between the discrete element model of wheat seeds and the actual particle shapes, and to enhance the accuracy of Computational Fluid Dynamics-Discrete Element Method (CFD-DEM) coupling simulations in gas–solid two-phase flow studies, We employed laser scanning and inverse modeling techniques to develop a three-dimensional (3D) reconstruction of the wheat seed. Subsequently, we employed Rocky DEM simulation software to develop a polyhedron model and an Angle of Repose (AOR) test model. The interval range of material parameters was determined through a series of physical experiments and subsequently employed to delineate the high and low levels of parameters for the simulation tests. The simulation parameters were calibrated using data from AOR simulation tests. The Plackett–Burman test, Steepest-Ascent test, and Box–Behnken test were conducted sequentially to determine the optimal parameter configuration. A test bench for wheat gas-assisted seeding was constructed, and a semi-resolved CFD-DEM coupling simulation model was developed to perform comparative analysis. The results demonstrated that the optimal parameters were as follows: the static friction coefficient of wheat seed was 0.15, the dynamic friction coefficient of wheat seed was 0.11694, and the dynamic friction coefficient between wheat seed and resin was 0.0797. In this scenario, the relative error of AOR was 2.3% and the maximum relative error of ejection velocity observed was 4.1%. The reliability of the polyhedron model and its calibration parameters was rigorously validated, thereby providing a robust reference for studies on gas–solid two-phase flows. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

22 pages, 5112 KB  
Article
Parameter Calibration Method for Discrete Element Simulation of Soil–Wheat Crop Residues in Saline–Alkali Coastal Land
by Jie Liu, Tong Lu, Shuai Zheng, Yu Tian, Miaomiao Han, Muhao Tai, Xiaoning He, Hongxiu Li, Dongwei Wang and Zhuang Zhao
Agriculture 2025, 15(2), 129; https://doi.org/10.3390/agriculture15020129 - 9 Jan 2025
Cited by 2 | Viewed by 991
Abstract
After wheat harvesting in coastal saline–alkali land, when the straw is returned to the field and the soil is rotary tilled, the lack of reliable discrete element simulation parameter models restricts the optimization and improvement of special tillage and land preparation equipment for [...] Read more.
After wheat harvesting in coastal saline–alkali land, when the straw is returned to the field and the soil is rotary tilled, the lack of reliable discrete element simulation parameter models restricts the optimization and improvement of special tillage and land preparation equipment for saline–alkali land to some extent. In this study, the Hertz–Mindlin with JKR model was used to calibrate the discrete element simulation parameters. Taking the soil-wheat crop residue mixture’s angle of repose as the test index, four groups of parameters that significantly affect the angle of repose and their optimal value ranges were screened out through the Plackett–Burman test and the steepest ascent test. Then, the Box–Behnken test was conducted to obtain the quadratic regression model of the significant parameters and the angle of repose, and the optimal values of the significant parameters were obtained. The optimal parameter combination was used for simulation tests, and the relative errors between the measured values and the simulation test values of the angle of repose and the wheat residue coverage rate were 0.74% and 1.34%. The reliable parameters provide a theoretical basis for the optimization and improvement of the equipment for soil preparation in saline–alkali land. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

19 pages, 5197 KB  
Article
Calibration and Testing of Discrete Element Simulation Parameters for Ultrasonic Vibration-Cutter-Soil Interaction Model
by Yang Qiao, Shenghai Huang, Chengyi Yang, Songlin Liu, Kailun Wang, Yunpeng Lu and Jiasheng Wang
Agriculture 2025, 15(1), 20; https://doi.org/10.3390/agriculture15010020 - 25 Dec 2024
Cited by 3 | Viewed by 1131
Abstract
This paper established an accurate discrete element for ultrasonic vibration-cutter-soil interaction model to study the interaction mechanism between the soil-engaging component and the soil. In order to reduce the interaction between calibration parameters and improve the calibration accuracy, it is proposed that the [...] Read more.
This paper established an accurate discrete element for ultrasonic vibration-cutter-soil interaction model to study the interaction mechanism between the soil-engaging component and the soil. In order to reduce the interaction between calibration parameters and improve the calibration accuracy, it is proposed that the soil constitutive, contact parameters, and bonding parameters be calibrated by combining the soil repose angle experiment and the soil resistance experiment of ultrasonic vibration cutting. The study adopts the Hertz-Mindlin (no slip) contact model used in EDEM, to explore soil particle interactions. The central composite design is used to achieve systematic investigation. 3-factor 3-level orthogonal design experiment was employed using the coefficient of restitution, the coefficient of static friction, and the coefficient of rolling friction as key test factors and soil’s repose angle as the response index. Based on the Hertz-Mindlin with bonding contact model, Design-Expert 13.0 software was used to design the Plackett-Burman experiment, the steepest ascent, and the Box-Behnken experiment. With the maximum soil cutting resistance in ultrasonic vibration cutting experiment used as the response value, the adhesion parameters were optimized, and the optimal solution combination was obtained as: Normal Stiffness = 4.635 × 106 N/m, Shear Stiffness = 3.401 × 106 N/m, and Bonded Disk Radius = 2.57 mm. The optimal parameter combinations obtained from the calibration experiments were verified in two ways: ultrasonic vibration cutting and non-ultrasonic vibration cutting. The results showed that the errors between the simulation values and the actual values of the two comparative experiments were less than 5%, and the model calibrated for the three parameters can be used to study the drag reduction mechanism of ultrasonic vibration cutting in soil. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

24 pages, 7420 KB  
Article
Development of Composite Microbial Products for Managing Pine Wilt Disease in Infected Wood Stumps
by Yanzhi Yuan, Yanna Wang, Yong Li, Laifa Wang, Lu Yu, Jian Hu, Xiangchen Cheng, Shan Han and Xizhuo Wang
Microorganisms 2024, 12(12), 2621; https://doi.org/10.3390/microorganisms12122621 - 18 Dec 2024
Viewed by 1055
Abstract
Wood-decay fungi, including white- and brown-decay fungi, are well known for their ability to degrade lignin and cellulose, respectively. The combined use of these fungi can increase the decomposition of woody substrates. Research has indicated that these fungi also exhibit inhibitory effects against [...] Read more.
Wood-decay fungi, including white- and brown-decay fungi, are well known for their ability to degrade lignin and cellulose, respectively. The combined use of these fungi can increase the decomposition of woody substrates. Research has indicated that these fungi also exhibit inhibitory effects against Bursaphelenchus xylophilus, the causative agent of pine wilt disease (PWD). In this study, we investigated a composite microbial formulation that efficiently decomposes pine wood while inhibiting B. xylophilus. We initially established a correlation between the degradation rate of wood blocks and fungal biomass, underscoring the necessity of optimizing biomass for effective treatment. A systematic approach involving a one-way test, a Plackett–Burman design, a steepest ascent experiment, and a Box–Behnken design, was employed to optimize the fermentation process. Validation trials were conducted in a 10-L fermenter. The bioagent’s efficacy and safety were assessed through field applications in a forest, with a focus on wood degradation capacity and B. xylophilus mortality rate. Additionally, the environmental impact of the microbial products was evaluated by analysing soil quality around treated areas to ensure that the formulation did not adversely affect soil health. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Graphical abstract

18 pages, 6632 KB  
Article
Efficient and Accurate Calibration of Discrete Element Method Parameters for Black Beans
by Xuezhen Wang, Qinghang Zhai, Shihao Zhang, Qianwen Li and Hanmi Zhou
Agronomy 2024, 14(12), 2803; https://doi.org/10.3390/agronomy14122803 - 25 Nov 2024
Cited by 3 | Viewed by 830
Abstract
Discrete element parameters of the black bean (BLB) are key to developing high-performance BLB machineries (e.g., seeders and shellers), which are still lacking in previous literature. In this study, the effects of the radius and lifting speed of cylinder-in-cylinder lifting method (CLM) simulations [...] Read more.
Discrete element parameters of the black bean (BLB) are key to developing high-performance BLB machineries (e.g., seeders and shellers), which are still lacking in previous literature. In this study, the effects of the radius and lifting speed of cylinder-in-cylinder lifting method (CLM) simulations were investigated to efficiently and accurately obtain the repose angle. Discrete element method (DEM) parameters of the BLB were determined by combining the Plackett–Burman Design test, the steepest ascent design test, and the central composite design test. The results show that the measurement moment (i.e., 12 s) of repose angles should be determined when kinetic energy reaches the minimal threshold (1 × 10−6 J) to efficiently and accurately obtain repose angles; too early or too late a measurement can result in inaccurate repose angles or excessive computation time of the computer, respectively. The lifting speed and cylinder radius affected the lateral displacements of BLBs and came at the cost of higher computation time and memory usage. A lifting speed of 0.015 m·s−1 and a radius of 40 mm of the cylinder were determined in CLM simulations. The static friction coefficient and rolling friction coefficient between BLBs significantly affected the repose angles. A static friction coefficient of 0.202 and rolling friction coefficient of 0.0104 between BLBs were obtained based on the optimization results. A low relative error (0.74%) and insignificant difference (p > 0.05) between the simulated and measured repose angles were found. The suggested method can be potentially used to calibrate the DEM parameters of BLBs with good accuracy. The results from this study can provide implications for investigating interactions of BLBs and various BLB processing machines and for the efficient and accurate determination of DEM parameters of crop grains. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

Back to TopTop