Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (215)

Search Parameters:
Keywords = story drift

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 4234 KB  
Article
Quantitative Assessment of Seismic Retrofit Strategies for RC School Buildings Using Steel Exoskeletons and Localized Strengthening
by Armando La Scala
Infrastructures 2025, 10(10), 268; https://doi.org/10.3390/infrastructures10100268 - 9 Oct 2025
Viewed by 202
Abstract
This study offers a quantitative performance assessment of integrated seismic retrofit designs applied to an in-service 1960s reinforced concrete school structure in Central Italy. The research combines in-depth experimental material characterization with complex numerical simulations in order to estimate both the independent and [...] Read more.
This study offers a quantitative performance assessment of integrated seismic retrofit designs applied to an in-service 1960s reinforced concrete school structure in Central Italy. The research combines in-depth experimental material characterization with complex numerical simulations in order to estimate both the independent and interaction effects of external steel exoskeletons in conjunction with localized CAM (Cucitura Attiva dei Materiali) strengthening. The experimental investigation includes extensive material characterization through core drilling and non-destructive pacometric inspections to accurately define the existing concrete properties. The numerical analysis is performed with Finite Element modeling to estimate four different structural conditions: the original state, the condition with static strengthening, the condition with additional steel exoskeletons, and the condition with both exoskeletons and localized CAM reinforcements. The results quantitatively estimate the specific performance gains from the individual retrofit strategies. The steel exoskeletons show effective reduction in inter-story drifts but negligible effect on strength-oriented failure mechanisms. Localized CAM strengthening therefore stands out as necessary in reaching adequate safety levels in all the failure mechanisms. Economic analysis reveals that while steel exoskeletons provide the major cost component, the integrated approach with localized strengthening is essential for achieving comprehensive seismic safety enhancement. Full article
Show Figures

Figure 1

38 pages, 3996 KB  
Article
Deformation and Energy-Based Comparison of Outrigger Locations in RC and BRB-Core Tall Buildings Under Repetitive Earthquakes
by İlhan Emre İnam and Ahmet Anıl Dindar
Buildings 2025, 15(19), 3563; https://doi.org/10.3390/buildings15193563 - 2 Oct 2025
Viewed by 290
Abstract
The aim of this study is to investigate how the positioning of outrigger systems affects the seismic performance of high-rise buildings with either reinforced concrete (RC) shear walls or buckling-restrained braces (BRBs) in the core. Two important questions emerge as the focus and [...] Read more.
The aim of this study is to investigate how the positioning of outrigger systems affects the seismic performance of high-rise buildings with either reinforced concrete (RC) shear walls or buckling-restrained braces (BRBs) in the core. Two important questions emerge as the focus and direction of the study: (1) How does the structural performance change when outriggers are placed at various positions? (2) How do outrigger systems affect structural behavior under sequential earthquake scenarios? Nonlinear time history analyses were employed as the primary methodology to evaluate the seismic response of the two reinforced concrete buildings with 24 and 48 stories, respectively. Each building type was developed for two different core configurations: one with a reinforced concrete shear wall core and the other with a BRB core system. Each analysis model also includes outrigger systems constructed with BRBs positioned at different floor levels. Five sequential ground motion records were used to assess the effects of main- and aftershocks. The analysis results were evaluated not only based on displacement and force demands but also using a damage measure called the Park-Ang Damage Index. In addition, displacement-based metrics, particularly the maximum inter-story drift ratio (MISD), were also utilized to quantify lateral displacement demands under consecutive seismic loading. With the results obtained from this study, it is aimed to provide design-oriented insights into the most effective use of outrigger systems formed with BRB in high-rise RC buildings and their functions in increasing seismic resistance, especially in areas likely to experience consecutive seismic events. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

28 pages, 3480 KB  
Article
Analysis on DDBD Method of Precast Frame with UHPC Composite Beams and HSC Columns
by Xiaolei Zhang, Kunyu Duan, Yanzhong Ju and Xinying Wang
Buildings 2025, 15(19), 3546; https://doi.org/10.3390/buildings15193546 - 2 Oct 2025
Viewed by 159
Abstract
Precast concrete frames integrating ultra-high-performance concrete (UHPC) beams and high-strength concrete (HSC) columns offer exceptional seismic resilience and construction efficiency. However, a performance-based seismic design methodology tailored for this hybrid structural system remains underdeveloped. This study aims to develop and validate a direct [...] Read more.
Precast concrete frames integrating ultra-high-performance concrete (UHPC) beams and high-strength concrete (HSC) columns offer exceptional seismic resilience and construction efficiency. However, a performance-based seismic design methodology tailored for this hybrid structural system remains underdeveloped. This study aims to develop and validate a direct displacement-based design (DDBD) procedure specifically for precast UHPC-HSC frames. A novel six-tier performance classification scheme (from no damage to severe damage) was established, with quantitative limit values of interstory drift ratio proposed based on experimental data and code calibration. The DDBD methodology incorporates determining the target displacement profile, converting the multi-degree-of-freedom system to an equivalent single-degree-of-freedom system, and utilizing a displacement response spectrum. A ten-story case study frame was designed using this procedure and rigorously evaluated through pushover analysis. The results demonstrate that the designed frame consistently met the predefined performance objectives under various seismic intensity levels, confirming the effectiveness and reliability of the proposed DDBD method. This work contributes a performance oriented seismic design framework that enhances the applicability and reliability of UHPC-HSC structures in earthquake regions, offering both theoretical insight and procedural guidance for engineering practice. Full article
Show Figures

Figure 1

23 pages, 3446 KB  
Article
Seismic Performance Evaluation of Low-Rise Reinforced Concrete Framed Buildings with Ready-to-Use Guidelines (RUD-NBC 205:2024) in Nepal
by Jhabindra Poudel, Prashidha Khatiwada and Subash Adhikari
CivilEng 2025, 6(3), 50; https://doi.org/10.3390/civileng6030050 - 18 Sep 2025
Viewed by 607
Abstract
Earthquakes remain among the most destructive natural hazards, causing severe loss of life and property in seismically active regions such as Nepal. Major events such as the 1934 Nepal–Bihar earthquake (Mw 8.2), the 2015 Gorkha earthquake (Mw 7.8), and the 2023 [...] Read more.
Earthquakes remain among the most destructive natural hazards, causing severe loss of life and property in seismically active regions such as Nepal. Major events such as the 1934 Nepal–Bihar earthquake (Mw 8.2), the 2015 Gorkha earthquake (Mw 7.8), and the 2023 Jajarkot earthquake (ML 6.4) have repeatedly exposed the vulnerability of Nepal’s built environment. In response, the Ready-to-Use Detailing (RUD) guideline (NBC 205:2024) was introduced to provide standardized structural detailing for low-rise reinforced concrete buildings without masonry infill, particularly for use in areas where access to professional engineering services is limited. This study was motivated by the need to critically assess the structural performance of buildings designed according to such rule-of-thumb detailing, which is widely applied through owner–builder practices. Nonlinear pushover analyses were carried out using finite element modelling for typical configurations on soil types C and D, under peak ground accelerations of 0.25 g, 0.30 g, 0.35 g, and 0.40 g. The response spectrum from NBC 105:2020 was adopted to determine performance points. The analysis focused on global response, capacity curves, storey drift, and hinge formation to evaluate structural resilience. The maximum story drift for the linear static analysis is found to be 0.56% and 0.86% for peak ground acceleration of 0.40 g, for both three and four-storied buildings. Also, from non-linear static analysis, it is found that almost all hinges formed in the beams and columns are in the Immediate Occupancy (IO) level. The findings suggest that the RUD guidelines are capable of providing adequate seismic performance for low-rise reinforced concrete buildings, given that the recommended material quality and construction standards are satisfied. Full article
Show Figures

Figure 1

20 pages, 5839 KB  
Article
Impact of Near-Fault Seismic Inputs on Building Performance: A Case Study Informed by the 2023 Maras Earthquakes
by Mehdi Öztürk and Mehmet Ali Karan
Appl. Sci. 2025, 15(18), 10142; https://doi.org/10.3390/app151810142 - 17 Sep 2025
Viewed by 382
Abstract
This study investigates the seismic performance of existing reinforced concrete (RC) buildings, focusing on the influence of near-fault ground motions caused by proximity to fault lines. Compared to ordinary or far-fault earthquakes, near-fault earthquakes may have diverse effects on the response of buildings [...] Read more.
This study investigates the seismic performance of existing reinforced concrete (RC) buildings, focusing on the influence of near-fault ground motions caused by proximity to fault lines. Compared to ordinary or far-fault earthquakes, near-fault earthquakes may have diverse effects on the response of buildings resulting from directivity and intense velocity pulses, which significantly amplify seismic demands. For this purpose, nonlinear time history analyses were carried out on a seven-story RC residential building that was subjected to near-fault effects and sustained heavy damage during the Kahramanmaraş earthquakes on 6 February 2023. The analyses used both near-fault and far-fault ground motion records, and four structural models were developed by gradually reducing the number of shear wall elements to assess the impact of diminishing lateral-load-resisting capacity. The results revealed that near-fault ground motions led to significant increases in base shear, inter-story drift ratios, and structural damage levels. Furthermore, a reduction in shear wall content resulted in a noticeable decline in seismic performance. These findings underscore the necessity of accounting for near-fault effects in seismic design and the critical role of lateral stiffness. The study emphasizes that considering near-fault characteristics is essential for ensuring the seismic resilience of RC buildings located in active seismic zones. Full article
(This article belongs to the Special Issue Advances in Earthquake Engineering and Seismic Resilience)
Show Figures

Figure 1

29 pages, 9409 KB  
Article
Seismic Performance of Space-Saving Special-Shaped Concrete-Filled Steel Tube (CFST) Frames with Different Joint Types: Symmetry Effects and Design Implications for Civil Transportation Buildings
by Liying Zhang and Jingfeng Xia
Symmetry 2025, 17(9), 1545; https://doi.org/10.3390/sym17091545 - 15 Sep 2025
Viewed by 450
Abstract
Special-shaped concrete-filled steel tube (CFST) frames can be embedded in partition walls to improve space utilization, but their frame-level seismic behavior across joint types remains under-documented. This study examines six two-story, single-bay frames with cruciform, T-, and L-shaped CFST columns and three joint [...] Read more.
Special-shaped concrete-filled steel tube (CFST) frames can be embedded in partition walls to improve space utilization, but their frame-level seismic behavior across joint types remains under-documented. This study examines six two-story, single-bay frames with cruciform, T-, and L-shaped CFST columns and three joint configurations: external hoops with vertical ribs, fully bolted joints, and fully bolted joints with replaceable flange plates. Low-cycle reversed loading tests were combined with validated ABAQUS and OpenSees models to interpret mechanisms and conduct parametric analyses. All frames exhibited stable spindle-shaped hysteresis with minor pinching; equivalent viscous damping reached 0.13–0.25, ductility coefficients 3.03–3.69, and drift angles 0.088–0.126 rad. Hooped-and-ribbed joints showed the highest capacity and energy dissipation, while replaceable joints localized damage for rapid repair. Parametric results revealed that increasing the steel grade and steel ratio (≈5–20%) improved seismic indices more effectively than raising the concrete strength. Recommended design windows include axial load ratio < 0.4–0.5, slenderness ≤ 30, stiffness ratio ≈ 0.36, and flexural-capacity ratio ≈ 1.0. These findings provide symmetry-based, repair-oriented guidance for transportation buildings requiring rapid post-earthquake recovery. Full article
Show Figures

Figure 1

22 pages, 6537 KB  
Article
Dynamic Simulation and Seismic Analysis of Hillside RC Buildings Isolated by High-Damping Rubber Bearings
by Abdul Ghafar Wahab, Zhong Tao, Hexiao Li, Ahmad Yamin Rasa, Tabasum Huma and Yuming Liang
Infrastructures 2025, 10(9), 239; https://doi.org/10.3390/infrastructures10090239 - 10 Sep 2025
Viewed by 1809
Abstract
Hillside buildings are particularly vulnerable to earthquakes owing to their structural configuration; however, research addressing this issue remains limited. This study investigates the effectiveness of high-damping rubber bearings (HDRBs) in enhancing the seismic resilience of hillside structures. Five numerical models were analyzed using [...] Read more.
Hillside buildings are particularly vulnerable to earthquakes owing to their structural configuration; however, research addressing this issue remains limited. This study investigates the effectiveness of high-damping rubber bearings (HDRBs) in enhancing the seismic resilience of hillside structures. Five numerical models were analyzed using non-linear time-history (NTH) analysis, including two flat-plane structures (one isolated and one with a fixed base) and three dropped-layer structures on hillside terrain (one with base isolation, one with inter-story isolation, and one with a fixed base). Deformation history integral (DHI) modeling was employed to simulate the HDRBs. Six earthquake ground motions from the PEER database and one scaled from 0.2–0.8 g were used to assess the seismic responses of the buildings. The results indicate that HDRBs significantly improved the seismic performance. The flat-plane isolated system (FIS) model achieved a nearly 90% reduction in peak roof acceleration compared to fixed-base structures. The dropped-layer isolated system (DIS) and dropped-layer inter-story isolated system (DIIS) models exhibited reductions of approximately 80% in the peak roof acceleration. Furthermore, the isolated structures demonstrated up to 78% reduction in the maximum inter-story drift, along with significant decreases in the story shear forces and overturning moments. Compared with non-isolated dropped-layer structures, the DIS and DIIS models showed reductions of 70% and 55% in the base shear force, respectively. The results highlight the efficacy of HDRBs in energy dissipation and their significant role in enhancing the seismic resilience of mountain structures. Full article
Show Figures

Figure 1

20 pages, 4917 KB  
Article
Innovative Seismic Strengthening of Reinforced Concrete Frames with U-Shaped Precast Concrete Wall Panels: Experimental Performance Assessment
by Sookyoung Ha
Buildings 2025, 15(18), 3273; https://doi.org/10.3390/buildings15183273 - 10 Sep 2025
Viewed by 316
Abstract
Many existing reinforced concrete (RC) frames with brick infill walls are vulnerable to earthquake damage, particularly when the walls contain window openings that reduce the lateral resistance. This study aims to examine the seismic performance of RC frames strengthened with U-shaped precast concrete [...] Read more.
Many existing reinforced concrete (RC) frames with brick infill walls are vulnerable to earthquake damage, particularly when the walls contain window openings that reduce the lateral resistance. This study aims to examine the seismic performance of RC frames strengthened with U-shaped precast concrete (PC) wall panels. In the proposed method, the window-containing brick infill walls within the RC frames are replaced with factory-fabricated U-shaped PC wall panels, thereby converting the infill into a strong and rigid structural element while preserving the openings. The panels are anchored to the RC frame using post-installed anchors inserted through predrilled holes, allowing for rapid and secure installation with minimal on-site work. To validate the method, five full-scale, one-bay, one-story RC frames were constructed and tested under reversed cyclic lateral loading. Three frames were strengthened with U-shaped PC wall panels of varying thicknesses and large openings. Displacement-controlled cycles following ACI 374.1-05 (R7.0) were applied, with three cycles at each drift ratio stage, and no axial load was applied to the columns. Compared with the reference specimen with a U-shaped brick wall, the strengthened frames exhibited up to 3.29 times higher lateral strength, 4.39 times higher initial stiffness, and 4.33 times greater energy dissipation capacity. These findings demonstrate that the proposed strengthening technique significantly enhances seismic resistance while maintaining the architectural openings, offering a practical and efficient solution for upgrading low-rise RC buildings. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 3955 KB  
Article
Seismic Retrofitting of RC Frames Using Viscous Dampers: Numerical Simulation and Nonlinear Response Analysis
by Pengfei Ma and Shangke Yuan
Infrastructures 2025, 10(9), 235; https://doi.org/10.3390/infrastructures10090235 - 6 Sep 2025
Viewed by 638
Abstract
Reinforced concrete (RC) frame structures in high-seismicity regions often exhibit vulnerability under strong earthquakes, necessitating effective retrofitting solutions. This study evaluates viscous fluid dampers (VFDs) as a solution for seismic retrofitting of an existing four-story RC school building in China’s high-seismicity zone. Nonlinear [...] Read more.
Reinforced concrete (RC) frame structures in high-seismicity regions often exhibit vulnerability under strong earthquakes, necessitating effective retrofitting solutions. This study evaluates viscous fluid dampers (VFDs) as a solution for seismic retrofitting of an existing four-story RC school building in China’s high-seismicity zone. Nonlinear time-history analyses were conducted using ETABS under frequent earthquakes (FEs) and the maximum considered earthquake (MCE), comparing structural responses before and after retrofitting. The results demonstrate that VFDs reduced inter-story drift ratios by 10–40% (FEs) and 33–37% (MCE), ensuring compliance with code limits (1/50 under MCE). Base shear decreased by 34.6% (X-direction) and 32.3% (Y-direction), while dampers contributed 66.7% (X) and 40% (Y) of total energy dissipation under FEs, increasing to 74% (X) and 47% (Y) under the MCE. Additional damping ratios reached 3.3–3.7% (X) and 2.0–2.4% (Y), significantly mitigating plastic hinge formation. This study validates VFDs as a high-performance retrofitting solution for RC frames, offering superior energy dissipation compared to traditional methods. Full article
Show Figures

Figure 1

17 pages, 2171 KB  
Article
Seismic Damage Assessment of SRC Frame-RC Core Tube High-Rise Structure Under Long-Period Ground Motions
by Lianjie Jiang, Guoliang Bai, Lu Guo and Fumin Li
Buildings 2025, 15(17), 3106; https://doi.org/10.3390/buildings15173106 - 29 Aug 2025
Cited by 1 | Viewed by 393
Abstract
To accurately assess the seismic damage of high-rise structures under long-period ground motions (LPGMs), a 36-story SRC frame-RC core tube high-rise structure was designed. Twelve groups of LPGMs and twelve groups of ordinary ground motions (OGMs) were selected and bidirectionally input into the [...] Read more.
To accurately assess the seismic damage of high-rise structures under long-period ground motions (LPGMs), a 36-story SRC frame-RC core tube high-rise structure was designed. Twelve groups of LPGMs and twelve groups of ordinary ground motions (OGMs) were selected and bidirectionally input into the structure. The spectral acceleration S90c considering the effect of higher-order modes was adopted as the intensity measure (IM) of ground motions, and the maximum inter-story drift angle θmax under bidirectional ground motions was taken as the engineering demand parameter (EDP). Structural Incremental Dynamic Analysis (IDA) was conducted, the structural vulnerability was investigated, and seismic vulnerability curves, damage state probability curves, vulnerability index curves, as well as the probabilities of exceeding performance levels and vulnerability index of the structure during 8-degree frequent, design, and rare earthquakes were obtained, respectively. The results indicate that structural damage is significantly aggravated under LPGMs, and the exceeding probabilities for all performance levels are greater than those under OGMs, failing to meet the seismic fortification target specified in the code. When encountering an 8-degree frequent earthquake, the structure is in a moderate or severe damage state under LPGMs and is basically intact or in a slight damage state under OGMs. When encountering an 8-degree design earthquake, the structure is in a severe damage or near-collapse state under LPGMs and is in a moderate damage state under OGMs. When encountering an 8-degree rare earthquake, the structure is in a near-collapse state under LPGMs and in a severe damage state under OGMs. Full article
(This article belongs to the Special Issue Building Safety Assessment and Structural Analysis)
Show Figures

Figure 1

15 pages, 5980 KB  
Article
Seismic Performance of Cladding-Panel-Equipped Frames with Novel Friction-Energy-Dissipating Joints
by Xi-Long Chen, Xian Gao, Li Xu, Jian-Wen Zhao and Lian-Qiong Zheng
Buildings 2025, 15(15), 2618; https://doi.org/10.3390/buildings15152618 - 24 Jul 2025
Viewed by 399
Abstract
Based on the need to enhance the seismic performance of point-supported steel frame precast cladding panel systems, this study proposes a novel friction-energy-dissipating connection joint. Through establishing refined finite element models, low-cycle reversed loading analyses and elastoplastic time-history analyses were conducted on three [...] Read more.
Based on the need to enhance the seismic performance of point-supported steel frame precast cladding panel systems, this study proposes a novel friction-energy-dissipating connection joint. Through establishing refined finite element models, low-cycle reversed loading analyses and elastoplastic time-history analyses were conducted on three frame systems. These included a benchmark bare frame and two cladding-panel-equipped frame structures configured with energy-dissipating joints using different specifications of high-strength bolts (M14 and M20, respectively). The low-cycle reversed loading results demonstrate that the friction energy dissipation of the novel joints significantly improved the seismic performance of the frame structures. Compared to the bare frame, the frames equipped with cladding panels using M14 bolts demonstrated 10.9% higher peak lateral load capacity, 17.6% greater lateral stiffness, and 45.6% increased cumulative energy dissipation, while those with M20 bolts showed more substantial improvements of 22.8% in peak load capacity, 32.0% in lateral stiffness, and 64.2% in cumulative energy dissipation. The elastoplastic time-history analysis results indicate that under seismic excitation, the maximum inter-story drift ratios of the panel-equipped frames with M14 and M20 bolts were reduced by 42.7% and 53%, respectively, compared to the bare frame. Simultaneously, the equivalent plastic strain in the primary structural members significantly decreased. Finally, based on the mechanical equilibrium conditions, a calculation formula was derived to quantify the contribution of joint friction to the horizontal load-carrying capacity of the frame. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

23 pages, 9795 KB  
Article
Evaluation of Viscoelastic and Rotational Friction Dampers for Coupled Shear Wall System
by Zafira Nur Ezzati Mustafa, Ryo Majima and Taiki Saito
Appl. Sci. 2025, 15(15), 8185; https://doi.org/10.3390/app15158185 - 23 Jul 2025
Viewed by 709
Abstract
This research experimentally and numerically evaluates the effectiveness of viscoelastic (VE) and rotational friction (RF) dampers in enhancing the seismic performance of coupled shear wall (CSW) systems. This study consists of two phases: (1) element testing to characterize the hysteretic behavior and energy [...] Read more.
This research experimentally and numerically evaluates the effectiveness of viscoelastic (VE) and rotational friction (RF) dampers in enhancing the seismic performance of coupled shear wall (CSW) systems. This study consists of two phases: (1) element testing to characterize the hysteretic behavior and energy dissipation capacity of VE and RF dampers, and (2) shake table testing of a large-scale CSW structure equipped with these dampers under the white noise, sinusoidal and Kokuji waves. The experimental results are validated through numerical analysis using STERA 3D (version 11.5), a nonlinear finite element software, to simulate the dynamic response of the damped CSW system. Key performance indicators, including inter-story drift, base shear, and energy dissipation, are compared between experimental and numerical results, demonstrating strong correlation. The findings reveal that VE dampers effectively control high-frequency vibrations, while RF dampers provide stable energy dissipation across varying displacement amplitudes. The validated numerical model facilitates the optimization of damper configurations for performance-based seismic design. This study provides valuable insights into the selection and implementation of supplemental damping systems for CSW structures, contributing to improved seismic resilience in buildings. Full article
(This article belongs to the Special Issue Nonlinear Dynamics and Vibration)
Show Figures

Figure 1

19 pages, 4717 KB  
Article
Seismic Response Characteristics of High-Speed Railway Hub Station Considering Pile-Soil Interactions
by Ning Zhang and Ziwei Chen
Buildings 2025, 15(14), 2466; https://doi.org/10.3390/buildings15142466 - 14 Jul 2025
Viewed by 328
Abstract
As a key transportation infrastructure, it is of great significance to ensure the seismic safety of the high-speed railway hub station. Taking Changde high-speed railway hub station as background, a comprehensive 3D numerical model of the high-speed railway station structure is proposed to [...] Read more.
As a key transportation infrastructure, it is of great significance to ensure the seismic safety of the high-speed railway hub station. Taking Changde high-speed railway hub station as background, a comprehensive 3D numerical model of the high-speed railway station structure is proposed to consider the engineering geological characteristics of the site, soil nonlinearity, and pile-soil interactions. The results show that the hub station structural system, considering pile-soil interaction, presents the ‘soft-upper-rigid-down’ characteristics as a whole, and the natural vibration is lower than that of the station structure with a rigid foundation assumption. Under the action of three strong seismic motions, the nonlinear site seismic effect is significant, the surface acceleration is significantly enlarged, and decreases with the buried depth. The interaction between pile and soil is related to the nonlinear seismic effect of the site, which deforms together to resist the foundation deformation caused by the strong earthquake motions, and the depth range affected by the interaction between the two increases with the increase of the intensity of earthquake motion. Among the three kinds of input earthquake motions, the predominant frequency of the Kobe earthquake is the closest to the natural vibration of the station structure system, followed by the El Centro earthquake. Moreover, the structures above the foundation of the high-speed railway hub station structural system are more sensitive to the spectral characteristics of Taft waves and El Centro waves compared to the site soil. This is also the main innovation point of this study. The existence of the roof leads to the gradual amplification of the seismic response of the station frame structure with height, and the seismic response amplification at the connection between the roof and the frame structure is the largest. The maximum story drift angle at the top floor of the station structure is also greater than that at the bottom floor. Full article
Show Figures

Figure 1

18 pages, 4705 KB  
Article
Optimization of Large Deformable Elastic Braces in Two-Degrees-of-Freedom Systems
by Md Harun Ur Rashid, Shingo Komatsu and Kiichiro Sawada
Buildings 2025, 15(14), 2405; https://doi.org/10.3390/buildings15142405 - 9 Jul 2025
Viewed by 1017
Abstract
This study presents a computational approach to optimize the stiffness distribution of large deformable elastic braces (LDEBs), which possess a high elastic deformation capacity and are designed to enhance the seismic performance of building structures. An optimization problem was formulated to minimize the [...] Read more.
This study presents a computational approach to optimize the stiffness distribution of large deformable elastic braces (LDEBs), which possess a high elastic deformation capacity and are designed to enhance the seismic performance of building structures. An optimization problem was formulated to minimize the seismic response of two-story buildings modeled as multi-degree-of-freedom systems, in which both the building frame and the LDEBs were represented by spring elements. Seismic responses under earthquake excitations were evaluated through time-history analyses. Particle swarm optimization (PSO) was employed to determine the optimal stiffness ratios of LDEBs that minimize the maximum story drift. Extensive round-robin analyses were conducted to verify the validity of the PSO results, generating response surfaces that mapped the maximum story drift against the LDEBs’ stiffness under three different earthquake records. The analysis revealed that the optimal solutions obtained from the PSO coincided with the global minimum identified in the round-robin response surfaces. These results confirm the effectiveness of the proposed optimization framework and demonstrate the potential of LDEBs for enhancing seismic resilience in structural designs. Full article
(This article belongs to the Special Issue Seismic Prevention and Response Analysis of Buildings)
Show Figures

Figure 1

33 pages, 5572 KB  
Article
Machine Learning-Based Methods for the Seismic Damage Classification of RC Buildings
by Sung Hei Luk
Buildings 2025, 15(14), 2395; https://doi.org/10.3390/buildings15142395 - 8 Jul 2025
Viewed by 1145
Abstract
This paper aims to investigate the feasibility of machine learning methods for the vulnerability assessment of buildings and structures. Traditionally, the seismic performance of buildings and structures is determined through a non-linear time–history analysis, which is an accurate but time-consuming process. As an [...] Read more.
This paper aims to investigate the feasibility of machine learning methods for the vulnerability assessment of buildings and structures. Traditionally, the seismic performance of buildings and structures is determined through a non-linear time–history analysis, which is an accurate but time-consuming process. As an alternative, structural responses of buildings under earthquakes can be obtained using well-trained machine learning models. In the current study, machine learning models for the damage classification of RC buildings are developed using the datasets generated from numerous incremental dynamic analyses. A variety of earthquake and structural parameters are considered as input parameters, while damage levels based on the maximum inter-story drift ratio are selected as the output. The performance and effectiveness of several machine learning algorithms, including ensemble methods and artificial neural networks, are investigated. The importance of different input parameters is studied. The results reveal that well-prepared machine learning models are also capable of predicting damage levels with an adequate level of accuracy and minimal computational effort. In this study, the XGBoost method generally outperforms the other algorithms, with the highest accuracy and generalizability. Simplified prediction models are also developed for preliminary estimation using the selected input parameters for practical usage. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

Back to TopTop