Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (783)

Search Parameters:
Keywords = strain softening

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1936 KB  
Article
Microstructure Evolution and Constitutive Model of Spray-Formed 7055 Forging Aluminum Alloy
by Yu Deng, Huyou Zhao, Xiaolong Wang, Mingliang Cui, Xuanjie Zhao, Jiansheng Zhang and Jie Zhou
Materials 2025, 18(17), 4108; https://doi.org/10.3390/ma18174108 (registering DOI) - 1 Sep 2025
Abstract
The thermal deformation behaviour of a spray-formed 7055 as-forged aluminium alloy was studied using isothermal hot-press tests under different deformation conditions (strain rates of 0.01, 0.1, 1, and 10 s⁻1, temperatures of 340, 370, 400, 430, and 460 °C). An Arrhenius [...] Read more.
The thermal deformation behaviour of a spray-formed 7055 as-forged aluminium alloy was studied using isothermal hot-press tests under different deformation conditions (strain rates of 0.01, 0.1, 1, and 10 s⁻1, temperatures of 340, 370, 400, 430, and 460 °C). An Arrhenius constitutive model was developed using flow stress data corrected for friction and temperature, yielding a correlation coefficient (R) of 0.9877, an average absolute relative error (AARE) of 4.491%, and a deformation activation energy (Q) of 117.853 kJ/mol. Processing maps integrating instability criteria and power dissipation efficiency identified appropriate processing parameters at 400–460 °C/0.08–0.37 s⁻1. Furthermore, this study investigated how strain rate and temperature influence microstructural evolution. Microstructural characterization revealed that both dynamic recovery (DRV) and dynamic recrystallization (DRX) occur simultaneously during thermal deformation. At low temperatures (≤400 °C), DRV and continuous dynamic recrystallization (CDRX) dominated; at 430 °C, deformation microstructures and recrystallized grains coexisted, whereas abnormal grain growth prevailed at 460 °C. The prevailing mechanism of dynamic softening was influenced by the applied strain rate. At lower strain rates (≤0.1 s⁻1), discontinuous dynamic recrystallization (DDRX) was the primary mechanism, whereas CDRX became dominant at higher strain rates (≥1 s⁻1), and dislocation density gradients developed within adiabatic shear bands at 10 s⁻1. Full article
(This article belongs to the Section Metals and Alloys)
18 pages, 33551 KB  
Article
High-Temperature Deformation Behaviors of Gradient-Structured Mg-Gd-Y-Zr Alloys at High Strain Rates
by Jialiao Zhou, Minghui Wu, Wenxuan Zhang and Jiangli Ning
Materials 2025, 18(17), 4085; https://doi.org/10.3390/ma18174085 (registering DOI) - 31 Aug 2025
Abstract
The deformation behaviors of a gradient-structured (GS) Mg-Gd-Y-Zr alloy, prepared via surface mechanical attrition treatment (SMAT), were systematically investigated in comparison with those of a uniform coarse-grained (CG) counterpart by high-temperature tensile tests at high strain rates (≤ 400 °C and ≥ 0.01 [...] Read more.
The deformation behaviors of a gradient-structured (GS) Mg-Gd-Y-Zr alloy, prepared via surface mechanical attrition treatment (SMAT), were systematically investigated in comparison with those of a uniform coarse-grained (CG) counterpart by high-temperature tensile tests at high strain rates (≤ 400 °C and ≥ 0.01 s−1). The results indicated that the uniform CG samples exhibited high flow stresses and low elongations (43.9% at 400 °C and 0.01 s−1). Their fraction of dynamic recrystallization (DRX) during the hot deformation was very low, and the dislocations accumulated inside the deformed grains formed high residual stresses. Moreover, the solely operated prismatic <a> slips in the coarse grains implied insufficient deformation coordination. These resulted in their low deformability. By contrast, the GS samples formed by SMAT exhibited more stable flow behaviors, showing lower flow stresses and higher elongations (71.9% at 400 °C and 0.01 s−1). The high dislocation density in the severely deformed (SD) layer provided sufficient driving force for DRX, promoting remarkable softening effect during the hot deformation. The grain boundary slip mechanism facilitated by DRX in the SD layer played a significant role in the hot deformation, enhancing the overall plasticity of the GS samples, although the deformed coarse-grained (DCG) layer deformed in a manner resembling that of the CG samples. Full article
25 pages, 15343 KB  
Article
Experimental Investigation of the Effects of Moisture Levels on Geocomposite Drainage–Geomembrane Interface Shear Behavior
by Juan Hou, Ying Zhang and Xuelei Xie
Sustainability 2025, 17(17), 7850; https://doi.org/10.3390/su17177850 (registering DOI) - 31 Aug 2025
Abstract
Engineered landfill covers are vital for environmental sustainability. This study investigates the shear behaviors of geocomposite drainage (GCD) and geomembrane (GM) interfaces—smooth (GMS), impinged texture (GMTI), and embossed texture (GMTE)—under 10, 30, and 50 kPa of normal stress and 0%, 50%, and 100% [...] Read more.
Engineered landfill covers are vital for environmental sustainability. This study investigates the shear behaviors of geocomposite drainage (GCD) and geomembrane (GM) interfaces—smooth (GMS), impinged texture (GMTI), and embossed texture (GMTE)—under 10, 30, and 50 kPa of normal stress and 0%, 50%, and 100% moisture levels using large-scale direct shear tests. All interfaces showed strain-softening behavior. At 50 kPa and 0% moisture, GCD–GMTI had the highest peak strength (28 kPa), whereas GCD–GMS had the lowest (10 kPa) at 100% moisture. Moisture and normal stress showed a coupling effect, reducing strength and friction angle. At a 0% moisture level, the strength of the GCD–GMS and GCD–GMTI interfaces under 50 kPa of normal stress was 500% and 250% of that at 10 kPa, respectively; at a 100% moisture level, these proportions decreased to 310% and 230%, respectively. For GCD–GMTE, the ratio slightly increased from 3.0 to 3.2, indicating better wet performance. Texture significantly affected strength: peak strength at 50 kPa was reduced by 41% (GCD–GMS), 16% (GCD–GMTI), and 26% (GCD–GMTE) as moisture increased from 0% to 100%. Large displacement (LD)-to-peak ratios were 0.8–0.9 (GCD–GMS), 0.7–0.8 (GCD–GMTI), and up to 1.0 (GCD–GMTE). Friction angles were reduced from 18° to 9°, 23° to 18°, and 18° to 14° for GCD–GMS, GCD–GMTI, and GCD–GMTE, respectively. Vertical deformation was <0.6 mm. Shear mechanisms depended on texture and moisture. Microscopic and 3D scans revealed moisture-induced GMTI smoothing, reducing interlocking and strength. Full article
Show Figures

Figure 1

24 pages, 7584 KB  
Article
Estimation of Strain-Softening Parameters of Marine Clay Using the Initial T-Bar Penetration Test
by Qinglai Fan, Zhaoxia Lin, Mengmeng Sun, Yunrui Han and Ruiying Yin
J. Mar. Sci. Eng. 2025, 13(9), 1648; https://doi.org/10.3390/jmse13091648 - 28 Aug 2025
Viewed by 225
Abstract
T-bar penetrometers have been widely used to measure strength parameters of marine clay in laboratory and in situ tests. However, using the deep resistance factor derived from full-flow conditions to evaluate the undrained shear strength of shallow clay layers may lead to significant [...] Read more.
T-bar penetrometers have been widely used to measure strength parameters of marine clay in laboratory and in situ tests. However, using the deep resistance factor derived from full-flow conditions to evaluate the undrained shear strength of shallow clay layers may lead to significant underestimation. Furthermore, the deep resistance factor is inherently influenced by the strain-softening behavior of clay rather than maintaining the constant value (typically 10.5) as conventionally assumed in practice. To address this issue, large-deformation finite element (LDFE) simulations incorporating an advanced exponential strain-softening constitutive model were performed to replicate the full T-bar penetration process—from shallow embedment to deeper depths below the mudline. A series of parametric studies were conducted to examine the influence of key parameters on the resistance factor and the associated failure mechanisms during penetration. Based on numerical results, empirical formulas were derived to predict critical penetration depths for both trapped cavity formation and full-flow mechanism initiation. For penetration depths shallower than the full-flow depth, an expression for the softening correction factor was developed to calibrate the shallow resistance factor. Finally, combined with global optimization algorithms, a computer-aided back-analysis procedure was established to estimate strain-softening parameters using resistance-penetration curves from initial penetration tests in marine clay. The reliability of the back-analysis procedure was validated through extensive comparisons with a series of numerical simulation results. This procedure can be applied to the interpretation of T-bar in situ test results in soft marine clay, enabling the evaluation of its strain-softening behavior. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

14 pages, 3281 KB  
Article
Research on the Johnson–Cook Constitutive Model and Failure Behavior of TC4 Alloy
by Jiaxuan Zhu, Huidong Zhi, Tong Huang, Ning Ding and Zhaoming Yan
Metals 2025, 15(9), 951; https://doi.org/10.3390/met15090951 - 27 Aug 2025
Viewed by 139
Abstract
This study investigates the mechanical response characteristics and damage evolution behavior of TC4 alloy through quasi-static/dynamic coupled experimental methods. Quasi-static tensile tests at varying temperatures (293 K, 423 K, and 623 K) were conducted using a universal testing machine, while room-temperature dynamic tensile [...] Read more.
This study investigates the mechanical response characteristics and damage evolution behavior of TC4 alloy through quasi-static/dynamic coupled experimental methods. Quasi-static tensile tests at varying temperatures (293 K, 423 K, and 623 K) were conducted using a universal testing machine, while room-temperature dynamic tensile tests (strain rate 1000–3000 s−1) were performed with a Split Hopkinson Tensile Bar (SHTB). Key findings include the following: (1) Significant temperature-softening effect was observed, with flow stress decreasing markedly as temperature increased; (2) Notch size effect influenced mechanical properties, showing 50% enhancement in post-fracture elongation when notch radius increased from 3 mm to 6 mm; and (3) Strain-hardening effect exhibited rate dependence under dynamic loading, with reduced hardening index within the tested strain rate range. The Johnson–Cook constitutive model and failure criterion were modified and parameterized based on experimental data. A 3D tensile simulation model developed in ABAQUS demonstrated strong agreement with experimental results, achieving a 0.97 correlation coefficient for load–displacement curves, thereby validating the modified models. Scanning electron microscopy (SEM) analysis of fracture surfaces revealed temperature- and strain rate-dependent microstructural characteristics, dominated by ductile fracture mechanisms involving microvoid nucleation, growth, and coalescence. This research provides theoretical foundations for analyzing Ti alloy structures under impact loading through established temperature–rate-coupled constitutive models. Full article
(This article belongs to the Special Issue Structure and Mechanical Properties of Titanium Alloys)
Show Figures

Figure 1

27 pages, 1408 KB  
Article
Physico-Chemical and Sensory Characteristics of Extruded Cereal Composite Flour Porridge Enriched with House Crickets (Acheta domesticus)
by Tom Bbosa, Dorothy Nakimbugwe, Christophe Matthys, Jolien Devaere, Ann De Winne, Deniz Zeynel Gunes and Mik Van Der Borght
Foods 2025, 14(16), 2893; https://doi.org/10.3390/foods14162893 - 20 Aug 2025
Viewed by 487
Abstract
This study assessed the physico-chemical and sensory effects of enriching composite cereal porridges, typically consumed in Uganda, with undried house crickets (Acheta domesticus), a rich source of protein and vitamin B12. Composite flours containing 8.3% undried crickets, 66.7% maize, [...] Read more.
This study assessed the physico-chemical and sensory effects of enriching composite cereal porridges, typically consumed in Uganda, with undried house crickets (Acheta domesticus), a rich source of protein and vitamin B12. Composite flours containing 8.3% undried crickets, 66.7% maize, and 25.0% millet were compared to a control formulation with 73.0% maize and 27.0% millet, both extruded at 140 °C. Cricket enrichment slightly reduced lightness L* (59.99 vs. 61.28) and significantly increased aroma intensity (23,450 × 104 AU vs. 18,210 × 104 AU; p < 0.05), attributable to higher extrusion-induced Strecker degradation, Maillard reaction, and lipid oxidation. Rheological analysis revealed that paste made from cricket-enriched flour had lower critical strain (≈0.01%) and softened sooner than the control paste (≈0.03%) without becoming fragile. Both flours displayed stable paste-like behavior at stresses >10 Pa, with elastic moduli under 104 Pa, which is typical for soft pastes. Reduced pasting values relative to native flours are attributable to starch pre-gelatinization during extrusion. Sensory evaluation showed positive hedonic ratings for both porridges, and a choice test indicated no significant consumer preference. Generally, physico-chemical and sensory changes were minimal, supporting the use of house crickets for nutrient enrichment of composite cereal porridges. Full article
(This article belongs to the Section Grain)
Show Figures

Graphical abstract

22 pages, 25395 KB  
Article
Hot Deformation and Predictive Modelling of β-Ti-15Mo Alloy: Linking Flow Stress, ω-Phase Evolution, and Thermomechanical Behaviour
by Arthur de Bribean Guerra, Alberto Moreira Jorge Junior, Guilherme Yuuki Koga and Claudemiro Bolfarini
Metals 2025, 15(8), 877; https://doi.org/10.3390/met15080877 - 6 Aug 2025
Viewed by 345
Abstract
This study investigates the hot deformation behaviour and flow stress prediction of metastable β-Ti-15Mo alloy, a promising material for biomedical applications requiring strength–modulus optimisation and thermomechanical tunability. Isothermal compression tests were performed within the temperature range of 923–1173 K and at strain rates [...] Read more.
This study investigates the hot deformation behaviour and flow stress prediction of metastable β-Ti-15Mo alloy, a promising material for biomedical applications requiring strength–modulus optimisation and thermomechanical tunability. Isothermal compression tests were performed within the temperature range of 923–1173 K and at strain rates of 0.17, 1.72, and 17.2 s1 to assess the material’s response under industrially relevant hot working conditions. The alloy showed significant sensitivity to temperature and strain rate, with dynamic recovery (DRV) and dynamic recrystallisation (DRX) dominating the softening behaviour depending on the conditions. A strain-compensated Arrhenius-type constitutive model was developed and validated, resulting in an apparent activation energy of approximately 234 kJ/mol. Zener–Hollomon parameter analysis confirmed a transition in deformation mechanisms. Although microstructural and diffraction data suggest possible contributions from nanoscale phase transformations, including ω-phase dissolution at high temperatures, these aspects remain to be fully elucidated. The model offers reliable predictions of flow behaviour and supports optimisation of thermomechanical processing routes for biomedical β-Ti alloys. Full article
(This article belongs to the Special Issue Hot Forming/Processing of Metals and Alloys)
Show Figures

Graphical abstract

21 pages, 5966 KB  
Article
Study on Mechanism and Constitutive Modelling of Secondary Anisotropy of Surrounding Rock of Deep Tunnels
by Kang Yi, Peilin Gong, Zhiguo Lu, Chao Su and Kaijie Duan
Symmetry 2025, 17(8), 1234; https://doi.org/10.3390/sym17081234 - 4 Aug 2025
Viewed by 246
Abstract
Crack initiation, propagation, and slippage serve as the key mesoscopic mechanisms contributing to the deterioration of deep tunnel surrounding rocks. In this study, a secondary anisotropy of deep tunnels surrounding rocks was proposed: The axial-displacement constraint of deep tunnels forces cracks in the [...] Read more.
Crack initiation, propagation, and slippage serve as the key mesoscopic mechanisms contributing to the deterioration of deep tunnel surrounding rocks. In this study, a secondary anisotropy of deep tunnels surrounding rocks was proposed: The axial-displacement constraint of deep tunnels forces cracks in the surrounding rock to initiate, propagate, and slip in planes parallel to the tunnel axial direction. These cracks have no significant effect on the axial strength of the surrounding rock but significantly reduce the tangential strength, resulting in the secondary anisotropy. First, the secondary anisotropy was verified by a hybrid stress–strain controlled true triaxial test of sandstone specimens, a CT 3D (computed tomography three-dimensional) reconstruction of a fractured sandstone specimen, a numerical simulation of heterogeneous rock specimens, and field borehole TV (television) images. Subsequently, a novel SSA (strain-softening and secondary anisotropy) constitutive model was developed to characterise the secondary anisotropy of the surrounding rock and developed using C++ into a numerical form that can be called by FLAC3D (Fast Lagrangian Analysis of Continua in 3 Dimensions). Finally, effects of secondary anisotropy on a deep tunnel surrounding rock were analysed by comparing the results calculated by the SSA model and a uniform strain-softening model. The results show that considering the secondary anisotropy, the extent of strain-softening of the surrounding rock was mitigated, particularly the axial strain-softening. Moreover, it reduced the surface displacement, plastic zone, and dissipated plastic strain energy of the surrounding rock. The proposed SSA model can precisely characterise the objectively existent secondary anisotropy, enhancing the accuracy of numerical simulations for tunnels, particularly for deep tunnels. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

14 pages, 1600 KB  
Article
Research on Stress–Strain Model of FRP-Confined Concrete Based on Compressive Fracture Energy
by Min Wu, Xinglang Fan and Haimin Qian
Buildings 2025, 15(15), 2716; https://doi.org/10.3390/buildings15152716 - 1 Aug 2025
Viewed by 334
Abstract
A numerical method is proposed for evaluating the axial stress–strain relationship of FRP-confined concrete. In this method, empirical formulae for the compressive strength and strain at peak stress of confined concrete are obtained by fitting experimental data collected from the literature. It is [...] Read more.
A numerical method is proposed for evaluating the axial stress–strain relationship of FRP-confined concrete. In this method, empirical formulae for the compressive strength and strain at peak stress of confined concrete are obtained by fitting experimental data collected from the literature. It is then assumed that when FRP-confined concrete and actively confined concrete are subjected to the same lateral strain and confining pressure at a specific loading stage, their axial stress–strain relationships are identical at that stage. Based on this assumption, a numerical method for the axial stress–strain relationship of FRP-confined concrete is developed by combining the stress–strain model of actively confined concrete with the axial–lateral strain correlation. Finally, the validity of this numerical method is verified with experimental data with various geometric and material parameters, demonstrating a reasonable agreement between predicted stress–strain curves and measured ones. A parametric analysis is conducted to reveal that the stress–strain curve is independent of the specimen length for strong FRP confinement with small failure strains, while the specimen length exhibits a significant effect on the softening branch for weak FRP confinement. Therefore, for weakly FRP-confined concrete, it is recommended to consider the specimen length effect in evaluating the axial stress–strain relationship. Full article
Show Figures

Figure 1

19 pages, 4397 KB  
Article
Thermal History-Dependent Deformation of Polycarbonate: Experimental and Modeling Insights
by Maoyuan Li, Haitao Wang, Guancheng Shen, Tianlun Huang and Yun Zhang
Polymers 2025, 17(15), 2096; https://doi.org/10.3390/polym17152096 - 30 Jul 2025
Viewed by 394
Abstract
The deformation behavior of polymers is influenced not only by service conditions such as temperature and the strain rate but also significantly by the formation process. However, existing simulation frameworks typically treat injection molding and the in-service mechanical response separately, making it difficult [...] Read more.
The deformation behavior of polymers is influenced not only by service conditions such as temperature and the strain rate but also significantly by the formation process. However, existing simulation frameworks typically treat injection molding and the in-service mechanical response separately, making it difficult to capture the impact of the thermal history on large deformation behavior. In this study, the deformation behavior of injection-molded polycarbonate (PC) was investigated by accounting for its thermal history during formation, achieved through combined experimental characterization and constitutive modeling. PC specimens were prepared via injection molding followed by annealing at different molding/annealing temperatures and durations. Uniaxial tensile tests were conducted using a Zwick universal testing machine at strain rates of 10−3–10−1 s−1 and temperatures ranging from 293 K to 353 K to obtain stress–strain curves. The effects of the strain rate, testing temperature, and annealing conditions were thoroughly examined. Building upon a previously proposed phenomenological model, a new constitutive framework incorporating thermal history effects during formation was developed to characterize the large deformation behavior of PC. This model was implemented in ABAQUS/Explicit using a user-defined material subroutine. Predicted stress–strain curves exhibit excellent agreement with the experimental data, accurately reproducing elastic behavior, yield phenomena, and strain-softening and strain-hardening stages. Full article
Show Figures

Figure 1

29 pages, 7048 KB  
Article
Research on Synergistic Control Technology for Composite Roofs in Mining Roadways
by Lei Wang, Gang Liu, Dali Lin, Yue Song and Yongtao Zhu
Processes 2025, 13(8), 2342; https://doi.org/10.3390/pr13082342 - 23 Jul 2025
Viewed by 271
Abstract
Addressing the stability control challenges of roadways with composite roofs in the No. 34 coal seam of Donghai Mine under high-strength mining conditions, this study employed integrated methodologies including laboratory experiments, numerical modeling, and field trials. It investigated the mechanical response characteristics of [...] Read more.
Addressing the stability control challenges of roadways with composite roofs in the No. 34 coal seam of Donghai Mine under high-strength mining conditions, this study employed integrated methodologies including laboratory experiments, numerical modeling, and field trials. It investigated the mechanical response characteristics of the composite roof and developed a synergistic control system, validated through industrial application. Key findings indicate significant differences in mechanical behavior and failure mechanisms between individual rock specimens and composite rock masses. A theoretical “elastic-plastic-fractured” zoning model for the composite roof was established based on the theory of surrounding rock deterioration, elucidating the mechanical mechanism where the cohesive strength of hard rock governs the load-bearing capacity of the outer shell, while the cohesive strength of soft rock controls plastic flow. The influence of in situ stress and support resistance on the evolution of the surrounding rock zone radii was quantitatively determined. The FLAC3D strain-softening model accurately simulated the post-peak behavior of the surrounding rock. Analysis demonstrated specific inherent patterns in the magnitude, ratio, and orientation of principal stresses within the composite roof under mining influence. A high differential stress zone (σ1/σ3 = 6–7) formed within 20 m of the working face, accompanied by a deflection of the maximum principal stress direction by 53, triggering the expansion of a butterfly-shaped plastic zone. Based on these insights, we proposed and implemented a synergistic control system integrating high-pressure grouting, pre-stressed cables, and energy-absorbing bolts. Field tests demonstrated significant improvements: roof-to-floor convergence reduced by 48.4%, rib-to-rib convergence decreased by 39.3%, microseismic events declined by 61%, and the self-stabilization period of the surrounding rock shortened by 11%. Consequently, this research establishes a holistic “theoretical modeling-evolution diagnosis-synergistic control” solution chain, providing a validated theoretical foundation and engineering paradigm for composite roof support design. Full article
Show Figures

Figure 1

16 pages, 3034 KB  
Article
Identification of Avocado Fruit Disease Caused by Diaporthe phaseolorum and Colletotrichum fructicola in China
by Aosiqi Ma, Yuhang Xu, Hongxing Feng, Yanyuan Du, Huan Liu, Song Yang, Jie Chen and Xin Hao
J. Fungi 2025, 11(8), 547; https://doi.org/10.3390/jof11080547 - 23 Jul 2025
Viewed by 694
Abstract
Persea americana (avocado) is a healthy fruit, rich in unsaturated fatty acids, various minerals, and vitamins. As avocado cultivation continues to expand globally, its development is increasingly constrained by concomitant diseases, among which fruit rot and anthracnose have emerged as significant threats to [...] Read more.
Persea americana (avocado) is a healthy fruit, rich in unsaturated fatty acids, various minerals, and vitamins. As avocado cultivation continues to expand globally, its development is increasingly constrained by concomitant diseases, among which fruit rot and anthracnose have emerged as significant threats to fruit quality. Menglian in Yunnan Province is the largest avocado production area in China. In November 2024, fruit rot was observed on avocado fruits in Yunnan, China, characterized by reddish-brown discoloration, premature ripening, softening, and pericarp decay, with a field infection rate of 22%. Concurrently, anthracnose was detected in avocado fruits, presenting as small dark brown spots that developed into irregular rust-colored lesions, followed by dry rot depressions, ultimately leading to soft rot, peeling, or hardened dry rot, with a field infection rate of 15%. Infected fruit samples were collected, and fungal strains were isolated, purified, and inoculated via spore suspension, followed by re-isolation. The strains were conclusively identified as Diaporthe phaseolorum (SWFU20, SWFU21) and Colletotrichum fructicola (SWFU12, SWFU13) through an integrated approach combining DNA extraction, polymerase chain reaction (PCR), sequencing, phylogenetic reconstruction, and morphological characterization. This is the first report of D. phaseolorum causing fruit rot and C. fructicola causing anthracnose on avocado in China. In future research, we will test methods for the control of D. phaseolorum and C. fructicola. The identification of these pathogens provides a foundation for future disease management research, supporting the sustainable development of the avocado industry. Full article
Show Figures

Figure 1

22 pages, 13284 KB  
Article
Mechanical Properties of CuZr Amorphous Metallic Nanofoam at Various Temperatures Investigated by Molecular Dynamics Simulation
by Yuhang Zhang, Hongjian Zhou and Xiuming Liu
Materials 2025, 18(14), 3423; https://doi.org/10.3390/ma18143423 - 21 Jul 2025
Viewed by 539
Abstract
Metallic nanofoams with amorphous structures demonstrate exceptional properties and significant potential for diverse applications. However, their mechanical properties at different temperatures are still unclear. By using molecular dynamics simulation, this study investigates the mechanical responses of representative CuZr amorphous metallic nanofoam (AMNF) under [...] Read more.
Metallic nanofoams with amorphous structures demonstrate exceptional properties and significant potential for diverse applications. However, their mechanical properties at different temperatures are still unclear. By using molecular dynamics simulation, this study investigates the mechanical responses of representative CuZr amorphous metallic nanofoam (AMNF) under uniaxial tension and compression at various temperatures. Our results reveal that the mechanical properties, such as Young’s modulus, yield stress, and maximum stress, exhibit notable temperature sensitivity and tension–compression asymmetry. Under tensile loading, the Young’s modulus, yield strength, and peak stress exhibit significant reductions of approximately 30.5%, 33.3%, and 32.9%, respectively, as the temperature increases from 100 K to 600 K. Similarly, under compressive loading, these mechanical properties experience even greater declines, with the Young’s modulus, yield strength, and peak stress decreasing by about 34.5%, 38.0%, and 41.7% over the same temperature range. The tension–compression asymmetry in yield strength is temperature independent. Interestingly, the tension–compression asymmetry in elastic modulus becomes more pronounced at elevated temperatures, which is attributed to the influence of surface energy effects. This phenomenon is further amplified by the increased disparity in surface-area-to-volume ratio variations between tensile and compressive loading at higher temperatures. Additionally, as the temperature rises, despite material softening, the structural resistance under large tensile strains improves due to delayed ligament degradation and more uniform deformation distribution, delaying global failure. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

24 pages, 5801 KB  
Article
A Study on the Performance of Gel-Based Polyurethane Prepolymer/Ceramic Fiber Composite-Modified Asphalt
by Tengteng Guo, Xu Guo, Yuanzhao Chen, Chenze Fang, Jingyu Yang, Zhenxia Li, Jiajie Feng, Hao Huang, Zhi Li, Haijun Chen and Jiachen Wang
Gels 2025, 11(7), 558; https://doi.org/10.3390/gels11070558 - 20 Jul 2025
Viewed by 382
Abstract
In order to solve various problems in traditional roads and extend their service life, new road materials have become a research hotspot. Polyurethane prepolymers (PUPs) and ceramic fibers (CFs), as materials with unique properties, were chosen due to their synergistic effect: PUPs provide [...] Read more.
In order to solve various problems in traditional roads and extend their service life, new road materials have become a research hotspot. Polyurethane prepolymers (PUPs) and ceramic fibers (CFs), as materials with unique properties, were chosen due to their synergistic effect: PUPs provide elasticity and gel-like behavior, while CFs contribute to structural stability and high-temperature resistance, making them ideal for enhancing asphalt performance. PUPs, a thermoplastic and elastic polyurethane gel material, not only enhance the flexibility and adhesion properties of asphalt but also significantly improve the structural stability of composite materials when synergistically combined with CF. Using response surface methodology, an optimized preparation scheme for PUP/CF composite-modified asphalt was investigated. Through aging tests, dynamic shear rate (DSR) testing, bending rate (BBR) testing, microstructure scanning (MSCR), scanning electron microscopy (SEM), atomic force microscopy (AFM), and infrared spectroscopy (IR), the aging performance, rheological properties, permanent deformation resistance, microstructure, and modification mechanism of PUP/CF composite-modified asphalt were investigated. The results indicate that the optimal preparation scheme is a PUP content of 7.4%, a CF content of 2.1%, and a shear time of 40 min. The addition of the PUP and CF significantly enhances the asphalt’s aging resistance, and compared with single-CF-modified asphalt and base asphalt, the PUP/CF composite-modified asphalt exhibits superior high- and low-temperature rheological properties, demonstrating stronger strain recovery capability. The PUP forms a gel network structure in the material, effectively filling the gaps between CF and asphalt, enhancing interfacial bonding strength, and making the overall performance more stable. AFM microscopic morphology shows that PUP/CF composite-modified asphalt has more “honeycomb structures” than matrix asphalt and CF-modified asphalt, forming more structural asphalt and enhancing overall structural stability. This study indicates that the synergistic effect of PUP gel and CF significantly improves the macro and micro properties of asphalt. The PUP forms a three-dimensional elastic gel network in asphalt, improving adhesion and deformation resistance. Using response surface methodology, the optimal formulation (7.4% PUP, 2.1% CF) improves penetration (↓41.5%), softening point (↑6.7 °C), and ductility (↑9%), demonstrating the relevance of gel-based composites for asphalt modification. Full article
(This article belongs to the Special Issue Synthesis, Properties, and Applications of Novel Polymer-Based Gels)
Show Figures

Figure 1

13 pages, 5908 KB  
Article
Experimental Study on the Strength Characteristics of Modified Guilin Red Clay
by Wenwu Chen, Zhigao Xie, Jiguang Chen, Mengyao Hong, Xiaobo Wang, Haofeng Zhou and Bai Yang
Buildings 2025, 15(14), 2533; https://doi.org/10.3390/buildings15142533 - 18 Jul 2025
Viewed by 290
Abstract
To address the engineering challenges associated with Guilin red clay, such as its potentially low strength and unfavorable mechanical behavior, this study investigated the effectiveness of lignin and lime as modifiers. Consolidation undrained triaxial tests and scanning electron microscopy (SEM) were employed to [...] Read more.
To address the engineering challenges associated with Guilin red clay, such as its potentially low strength and unfavorable mechanical behavior, this study investigated the effectiveness of lignin and lime as modifiers. Consolidation undrained triaxial tests and scanning electron microscopy (SEM) were employed to evaluate the strength characteristics and microstructural changes in modified clay specimens with varying dosages. The results demonstrate distinct strengthening mechanisms: Lignin exhibits an optimal dosage (6%), significantly increasing cohesion and internal friction angle through physical reinforcement (“soil fiber” formation), but higher dosages (8%) lead to particle separation and strength reduction. In contrast, lime provides continuous and substantial strength enhancement with increasing dosage (up to 8%), primarily through chemical reactions producing cementitious compounds (e.g., C-S-H, C-A-H) that densify the structure. Consequently, lime-modified clay shows significantly higher cohesion and internal friction angle compared to lignin-modified clay at equivalent or higher dosages, with corresponding stress–strain curves shifting from enhanced (strain-hardening) to softening behavior. These findings provide practical insights into red clay improvement in geotechnical engineering applications. Full article
(This article belongs to the Special Issue Advances in Soil–Geosynthetic Composite Materials)
Show Figures

Figure 1

Back to TopTop