Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (338)

Search Parameters:
Keywords = stratigraphic analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 4598 KB  
Article
Paleobiodiversity and Paleoecology Insights from a New MIS 5e Highstand Deposit on Santa Maria Island (Azores Archipelago, Portugal)
by Sergio Moreno, Mohamed Amine Doukani, Ana Hipólito, Patrícia Madeira, Sergio Pérez Pérez, Laura S. Dalmau, Gonçalo Castela Ávila, Luís Silva, Gustavo M. Martins, Esther Martín-González, Markes E. Johnson and Sérgio P. Ávila
Quaternary 2025, 8(4), 53; https://doi.org/10.3390/quat8040053 - 30 Sep 2025
Abstract
During the last two decades, the Macaronesian archipelagos have been the focus of multiple studies targeting the abundant and diversified fossil record from late Neogene and Quaternary deposits. This record of past biota, ecosystems and climates is crucial for understanding the impact of [...] Read more.
During the last two decades, the Macaronesian archipelagos have been the focus of multiple studies targeting the abundant and diversified fossil record from late Neogene and Quaternary deposits. This record of past biota, ecosystems and climates is crucial for understanding the impact of glacial–interglacial cycles on Atlantic littoral marine organisms. Coupled with ongoing studies on the factors responsible for global climate change and associated sea-level variations, they contributed decisively towards the development of the modern marine island biogeography theory. Our current knowledge of the evolutionary and biogeographic history of the past and extant, shallow-water marine organisms from the Macaronesian geographic region relies on detailed analysis of many individual fossiliferous outcrops by means of quantitative and qualitative methodologies. Here, we focus on the fossil record of a newly studied MIS 5e outcrop at Pedra-que-pica (PQP), on Santa Maria Island (Azores Archipelago, Portugal). This multidisciplinary work integrates geology, paleontology and biology, providing the first detailed description of the sedimentary facies and stratigraphic framework of the PQP MIS 5e sequence that, coupled with the documentation of the biodiversity and ecological composition of PQP molluscan assemblages, allows us to produce a paleoecological reconstruction and to compare PQP with other last interglacial outcrops from Santa Maria Island. Our results increase the number of the Azorean MIS 5e marine molluscs to 140 taxa (116 Gastropoda and 24 Bivalvia). Ervilia castanea (Montagu, 1803) is the most abundant bivalve, while Bittium nanum (Mayer, 1864) and Melarhaphe neritoides (Linnaeus, 1758) are the most abundant gastropod species. In addition, this work emphasizes the crucial importance of complementing quantitative collecting with qualitative surveys of the fossiliferous outcrops, because nearly 42% of the bivalve species and 28% of the gastropod taxa would be missed if only quantitative samples were used. Derivation of Hill numbers and rarefaction curves both indicate that the sampling effort should be increased at PQP. Thus, although Santa Maria Island is recognized by the scientific community as one of the best-studied islands regarding the last interglacial fossil record, this study emphasizes the need to continue with similar efforts in less known outcrops on the island. Full article
Show Figures

Figure 1

33 pages, 5470 KB  
Article
Geochemical Characterization of Kupferschiefer in Terms of Hydrocarbon Generation Potential and Hydrogen Content
by Irena Matyasik, Małgorzata Kania, Małgorzata Labus and Agnieszka Wciślak-Oleszycka
Molecules 2025, 30(19), 3886; https://doi.org/10.3390/molecules30193886 - 25 Sep 2025
Abstract
The Permian Kupferschiefer shale, a key stratigraphic unit within the Zechstein sequence of the Fore-Sudetic Monocline, represents both a metal-rich lithofacies and a potential source rock for hydrocarbon generation. This study presents a comprehensive geochemical characterization of selected Kupferschiefer samples obtained from the [...] Read more.
The Permian Kupferschiefer shale, a key stratigraphic unit within the Zechstein sequence of the Fore-Sudetic Monocline, represents both a metal-rich lithofacies and a potential source rock for hydrocarbon generation. This study presents a comprehensive geochemical characterization of selected Kupferschiefer samples obtained from the Legnica–Głogów Copper District (LGOM) and exploratory boreholes. Analytical methods included Rock-Eval pyrolysis, Py-GC/FID, elemental analysis, TG-FTIR, biomarker profiling, and stable carbon isotope measurements. Results indicate that the shales contain significant amounts of Type II and mixed Type II/III kerogen, derived primarily from marine organic matter with minor terrestrial input. The organic matter maturity, expressed by Tmax, places most samples within the oil window. Rock-Eval S2 values exceed 60 mg HC/g rock in some samples, confirming excellent generative potential. Py-GC/FID data further support high hydrocarbon yields, particularly in samples from the CG-4 borehole and LGOM mines. The thermal decomposition of kerogen reveals multiple degradation phases, with evolved gas analysis identifying sulfur-containing compounds and hydrocarbons indicative of sapropelic origin. Isotopic compositions of bitumen and kerogen suggest syngenetic relationships and marine depositional settings, with samples from a North Poland borehole showing isotopic enrichment consistent with post-depositional oxidation. Kinetic parameters calculated using the Kissinger–Akahira–Sunose method demonstrate variable activation energies (107–341 kJ/mol), correlating with differences in organic matter composition and mineral matrix. The observed variability in geochemical properties highlights both regional and facies-dependent influences on the shale’s generative capacity. The study concludes that the Kupferschiefer in southwestern and northern Poland exhibits substantial hydrocarbon generation potential. This potential has been previously underestimated due to the unit’s thinness, but localized zones with high TOC, favorable kerogen type, and low activation energy could be viable exploration targets for natural gas. Full article
Show Figures

Figure 1

23 pages, 3914 KB  
Article
Machine Learning-Driven Early Productivity Forecasting for Post-Fracturing Multilayered Wells
by Ruibin Zhu, Ning Li, Guohua Liu, Fengjiao Qu, Changjun Long, Xin Wang, Shuzhi Xiu, Fei Ling, Qinzhuo Liao and Gensheng Li
Water 2025, 17(19), 2804; https://doi.org/10.3390/w17192804 - 24 Sep 2025
Viewed by 125
Abstract
Hydraulic fracturing technology significantly enhances reservoir conductivity by creating artificial fractures, serving as a crucial means for the economically viable development of low-permeability reservoirs. Accurate prediction of post-fracturing productivity is essential for optimizing fracturing parameter design and establishing scientific production strategies. However, current [...] Read more.
Hydraulic fracturing technology significantly enhances reservoir conductivity by creating artificial fractures, serving as a crucial means for the economically viable development of low-permeability reservoirs. Accurate prediction of post-fracturing productivity is essential for optimizing fracturing parameter design and establishing scientific production strategies. However, current limitations in understanding post-fracturing production dynamics and the lack of efficient prediction methods severely constrain the evaluation of fracturing effectiveness and the adjustment of development plans. This study proposes a machine learning-based method for predicting post-fracturing productivity in multi-layer commingled production wells and validates its effectiveness using a key block from the PetroChina North China Huabei Oilfield Company. During the data preprocessing stage, the three-sigma rule, median absolute deviation, and density-based spatial clustering of applications with noise were employed to detect outliers, while missing values were imputed using the K-nearest neighbors method. Feature selection was performed using Pearson correlation coefficient and variance inflation factor, resulting in the identification of twelve key parameters as input features. The coefficient of determination served as the evaluation metric, and model hyperparameters were optimized using grid search combined with cross-validation. To address the multi-layer commingled production challenge, seven distinct datasets incorporating production parameters were constructed based on four geological parameter partitioning methods: thickness ratio, porosity–thickness product ratio, permeability–thickness product ratio, and porosity–permeability–thickness product ratio. Twelve machine learning models were then applied for training. Through comparative analysis, the most suitable productivity prediction model for the block was selected, and the block’s productivity patterns were revealed. The results show that after training with block-partitioned data, the accuracy of all models has improved; further stratigraphic subdivision based on block partitioning has led the models to reach peak performance. However, data volume is a critical limiting factor—for blocks with insufficient data, stratigraphic subdivision instead results in a decline in prediction performance. Full article
Show Figures

Figure 1

25 pages, 46515 KB  
Article
Parental Affinities and Environments of Bauxite Genesis in the Salt Range, Northwestern Himalayas, Pakistan
by Muhammad Khubab, Michael Wagreich, Andrea Mindszenty, Shahid Iqbal, Katerina Schöpfer and Matee Ullah
Minerals 2025, 15(9), 993; https://doi.org/10.3390/min15090993 - 19 Sep 2025
Viewed by 342
Abstract
As the residual products of severe chemical weathering, bauxite deposits serve both as essential economic Al-Fe resources and geochemical archives that reveal information about the parent rocks’ composition, paleoenvironments and paleoclimates, and the tectonic settings responsible for their genesis. The well-developed Early Paleocene [...] Read more.
As the residual products of severe chemical weathering, bauxite deposits serve both as essential economic Al-Fe resources and geochemical archives that reveal information about the parent rocks’ composition, paleoenvironments and paleoclimates, and the tectonic settings responsible for their genesis. The well-developed Early Paleocene bauxite deposits of the Salt Range, Pakistan, provide an opportunity for deciphering their ore genesis and parental affinities. The deposits occur as lenticular bodies and are typically composed of three consecutive stratigraphic facies from base to top: (1) massive dark-red facies (L-1), (2) composite conglomeratic–pisolitic facies (L-2), and (3) Kaolinite-rich clayey facies (L-3). Results from optical microscopy, X-ray powder diffraction (XRPD), and scanning electron microscopy with Energy-Dispersive X-Ray Spectroscopy (SEM-EDS) reveal that facies L-1 contains kaolinite, hematite, and goethite as major minerals, with minor amounts of muscovite, quartz, anatase, and rutile. In contrast, facies L-2 primarily consists of kaolinite, boehmite, hematite, gibbsite, goethite, alunite/natroalunite, and zaherite, with anatase, rutile, and quartz as minor constituents. L-3 is dominated by kaolinite, quartz, and anatase, while hematite and goethite exist in minor concentrations. Geochemical analysis reveals elevated concentrations of Al2O3, Fe2O3, SiO2, and TiO2. Trace elements, including Th, U, Ga, Y, Zr, Nb, Hf, V, and Cr, exhibit a positive trend across all sections when normalized to Upper Continental Crust (UCC) values. Field observations and analytical data suggest a polygenetic origin of these deposits. L-1 suggests in situ lateritization of some sort of precursor materials, with enrichment in stable and ultra-stable heavy minerals such as zircon, tourmaline, rutile, and monazite. This facies is mineralogically mature with bauxitic components, but lacks the typical bauxitic textures. In contrast, L-2 is texturally and mineralogically mature, characterized by various-sized pisoids and ooids within a microgranular-to-microclastic matrix. The L-3 mineralogy and texture suggest that the conditions were still favorable for bauxite formation. However, the ongoing tectonic activities and wet–dry climate cycles post-depositionally disrupted the bauxitization process. The accumulation of highly stable detrital minerals, such as zircon, rutile, tourmaline, and monazite, indicates prolonged weathering and multiple cycles of sedimentary reworking. These deposits have parental affinity with acidic-to-intermediate/-argillaceous rocks, resulting from the weathering of sediments derived from UCC sources, including cratonic sandstone and shale. Full article
Show Figures

Graphical abstract

17 pages, 2053 KB  
Article
Scale-Adaptive Continuous Wavelet Transform for Energy-Envelope Extraction and Instantaneous-Frequency Characterization in High-Resolution Sub-Bottom Profiling
by Doo-Pyo Kim, Sang-Hee Lee and Sung-Bo Kim
J. Mar. Sci. Eng. 2025, 13(9), 1767; https://doi.org/10.3390/jmse13091767 - 12 Sep 2025
Viewed by 265
Abstract
In marine seismic surveys, the indistinguishability of subsurface boundaries caused by the superimposition of the acoustic signals reflected from it, particularly at specific frequency ranges characterized by strong spectral interference, reduces the resolution of the seismic record. We processed sub-bottom profiler data, acquired [...] Read more.
In marine seismic surveys, the indistinguishability of subsurface boundaries caused by the superimposition of the acoustic signals reflected from it, particularly at specific frequency ranges characterized by strong spectral interference, reduces the resolution of the seismic record. We processed sub-bottom profiler data, acquired using a Bubble Pulser (nominal central frequency: ~400 Hz; effective bandwidth extending to ~1 kHz), (i) by extracting continuous wavelet transform (CWT) coefficients at the dominant energy scale to form the envelope and (ii) by applying Hilbert-based instantaneous frequency analysis to characterize medium-dependent spectral shifts. Envelope accuracy was benchmarked against four conventional filters using the sum of squared error (SSE) relative to a cubic-spline reference. CWT yielded the lowest SSE, outperforming low-pass 1 kHz and band-pass 400–1000 Hz; band-pass 400–650 Hz and low-pass 650 Hz were the least effective. Instantaneous-frequency trends differentiated rock, sand, and mud layers. Thus, compared to fixed-band filters, the scale-adaptive CWT envelope replicates raw energy more faithfully, while frequency attributes improve sediment classification. Low-pass filtering at 1000 Hz provides a more accurate representation of energy distribution than does bandpass filtering, particularly in the 400–650 Hz range. The integrated workflow—a robust, parameter-light alternative for high-resolution stratigraphic interpretation—enhances offshore engineering safety. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

26 pages, 31941 KB  
Article
Erosion and Karst in Subsurface Middle Paleozoic Rocks in the Arkoma Basin, Oklahoma, USA
by A. Riley Brinkerhoff, John McBride, R. William Keach and Scott M. Ritter
Geosciences 2025, 15(9), 357; https://doi.org/10.3390/geosciences15090357 - 12 Sep 2025
Viewed by 317
Abstract
Seismic attribute analysis, guided by well data, reveals widespread stratigraphic anomalies caused by erosion or karstification in the late Ordovician-early Devonian Hunton Group in the Arkoma Basin, eastern Oklahoma, USA. This study shows that these strata are more extensive than previously known. Well [...] Read more.
Seismic attribute analysis, guided by well data, reveals widespread stratigraphic anomalies caused by erosion or karstification in the late Ordovician-early Devonian Hunton Group in the Arkoma Basin, eastern Oklahoma, USA. This study shows that these strata are more extensive than previously known. Well data and seismic mapping in the Red Oak petroleum field identify approximately 40 m thick Hunton lenses, averaging 3 km in diameter, surrounded by karsted rock. These lenses may be remnants of incomplete erosion during the Middle Devonian period (pre-Woodford unconformity) or result from Hunton rocks sagging into sinkholes caused by karstification and collapse of underlying Viola or Bromide carbonates. Using formation tops from wells, correlated with attribute and structure maps from a 3D seismic volume, we identify (1) areas lacking Hunton seismic markers, indicating complete removal; (2) areas with Hunton contacts, showing where Hunton remains; and (3) zones without Hunton but with a thin layer underlying carbonate strata, interpreted as an incipient karst zone, often near areas with Hunton. We also observe that the thickness of the overlying Woodford Shale, a key hydrocarbon target, correlates with karstic and erosional thinning of Hunton carbonates. Interpretation of 3D seismic data reveals a strong connection between thinned Hunton and thickened Woodford Shale. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

19 pages, 6973 KB  
Article
A Bayesian Framework for the Calibration of Cyclic Triaxial Tests
by Luis Castillo-Suárez, Jesús Redondo-Mosquera, Vicente Mercado, Jaime Fernández-Gómez and Joaquín Abellán-García
Geotechnics 2025, 5(3), 63; https://doi.org/10.3390/geotechnics5030063 - 5 Sep 2025
Viewed by 1176
Abstract
This research presents the calibration of a constitutive model to replicate the cyclic performance of soils using a Bayesian framework. This study uses data from laboratory-conducted consolidated undrained isotropic cyclic triaxial tests and numerical tools to estimate optimal parameters by the application of [...] Read more.
This research presents the calibration of a constitutive model to replicate the cyclic performance of soils using a Bayesian framework. This study uses data from laboratory-conducted consolidated undrained isotropic cyclic triaxial tests and numerical tools to estimate optimal parameters by the application of Slice Sampling in a Bayesian analysis and to determinate the uncertainty of the model. For each calibrated parameter in the model, a probability distribution was obtained from the Markov chain. The means and the standard deviations from the distributions are compared with the laboratory results by the simulation of a series of consolidated undrained isotropic cyclic triaxial tests and a numerical model for a deposit that replicates the Wildlife’s stratigraphic characteristics. The calibrated model response offers a good approximation of the recorded data and the uncertainty due to the model is evaluated. The results of this study demonstrate that Bayesian calibration can reliably quantify parameter uncertainty, reveal parameter correlations that deterministic methods overlook, and improve confidence in liquefaction assessments. This probabilistic framework provides a robust basis for extending calibration to other soil types and site conditions. Full article
Show Figures

Figure 1

18 pages, 4398 KB  
Article
Connectivity Evaluation of Fracture-Cavity Reservoirs in S91 Unit
by Yunlong Xue, Yinghan Gao and Xiaobo Peng
Appl. Sci. 2025, 15(17), 9738; https://doi.org/10.3390/app15179738 - 4 Sep 2025
Cited by 1 | Viewed by 542
Abstract
Carbonate fracture–cavity reservoirs are significant oil and gas reservoirs globally, and their efficient development is influenced by the connectivity between fracture–cavity units within the reservoir. These reservoirs primarily consist of large caves, dissolution holes, and natural fractures, which serve as the primary storage [...] Read more.
Carbonate fracture–cavity reservoirs are significant oil and gas reservoirs globally, and their efficient development is influenced by the connectivity between fracture–cavity units within the reservoir. These reservoirs primarily consist of large caves, dissolution holes, and natural fractures, which serve as the primary storage and flow spaces. The S91 unit of the Tarim Oilfield is a karstic fracture–cavity reservoir with shallow coverage. It exhibits significant heterogeneity in the fracture–cavity reservoirs and presents complex connectivity between the fracture–cavity bodies. The integration of static and dynamic data, including geology, well logging, seismic, and production dynamics, resulted in the development of a set of static and dynamic connectivity evaluation processes designed for highly heterogeneous fracture–cavity reservoirs. Methods include using structural gradient tensors and stratigraphic continuity attributes to delineate the boundaries of caves and holes; performing RGB fusion analysis of coherence, curvature, and variance attributes to characterize large-scale fault development features; applying ant-tracking algorithms and fracture simulation techniques to identify the distribution and density characteristics of fracture zones; utilizing 3D visualization technology to describe the spatial relationship between fracture–cavity units and large-scale faults and fracture development zones; and combining dynamic data to verify interwell connectivity. This process will provide a key geological basis for optimizing well network deployment, improving water and gas injection efficiency, predicting residual oil distribution, and formulating adjustment measures, thereby improving the development efficiency of such complex reservoirs. Full article
(This article belongs to the Special Issue Advances in Geophysical Exploration)
Show Figures

Figure 1

27 pages, 19273 KB  
Article
Deciphering Photographic Papers: Material Insights into 20th-Century Ilford and Kodak Sample Books
by Laura-Cassandra Vălean, Sílvia O. Sequeira, Susana França de Sá and Élia Roldão
Heritage 2025, 8(9), 361; https://doi.org/10.3390/heritage8090361 - 4 Sep 2025
Viewed by 380
Abstract
Fiber-based black-and-white developing-out papers (DOPs) were among the most widely used photographic supports of the 20th century. Their broad use, structural complexity, and range of surface finishes, alongside evolving manufacturing practices, underscore the importance of understanding their material composition for authentication, dating, and [...] Read more.
Fiber-based black-and-white developing-out papers (DOPs) were among the most widely used photographic supports of the 20th century. Their broad use, structural complexity, and range of surface finishes, alongside evolving manufacturing practices, underscore the importance of understanding their material composition for authentication, dating, and conservation purposes. This study presents a multi-analytical characterization of three DOP sample sets: two from Ilford (ca. 1950) and one from Kodak (1972), complementing previous research with a deeper insight into general features, stratigraphy, and composition. Initial non-sampling techniques, including thickness measurements, colorimetry, optical microscopy, and UV–visible induced fluorescence, were used to classify papers into visually and physically distinct groups. This informed a targeted sampling strategy for further stratigraphic and compositional analysis using Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy (SEM-EDS), X-ray fluorescence (XRF), Raman spectroscopy, and fiber/pulp identification tests. Significant differences were observed in base tint, surface gloss, optical brightening agents, fillers, and fiber content. Notable findings include the presence of iron (III) oxide–hydroxide pigment in Ilford cream papers, anatase titanium dioxide (TiO2) in a baryta-less Ilford sample, and the shift to more uniform tones and mixed pulps in Kodak papers by the 1970s. These results offer valuable insights into historical manufacturing and support improved dating and characterization of photographic papers. Full article
Show Figures

Figure 1

23 pages, 9916 KB  
Article
Mineralization Age and Ore-Forming Material Source of the Yanshan Gold Deposit in the Daliuhang Gold Field in the Jiaodong Peninsula, China: Constraints from Geochronology and In Situ Sulfur Isotope
by Bin Wang, Zhengjiang Ding, Qun Yang, Zhongyi Bao, Junyang Lv, Yina Bai, Shunxi Ma and Yikang Zhou
Minerals 2025, 15(9), 941; https://doi.org/10.3390/min15090941 - 4 Sep 2025
Viewed by 431
Abstract
The newly discovered Yanshan gold deposit within the Qixia–Penglai mineralization belt is situated within the Daliuhang goldfield of Daliuhang Town, approximately 45 km southeast of Penglai City, the Jiaodong Peninsula. Quartz-vein–type gold orebodies are mainly distributed among the Guojialing granite and are controlled [...] Read more.
The newly discovered Yanshan gold deposit within the Qixia–Penglai mineralization belt is situated within the Daliuhang goldfield of Daliuhang Town, approximately 45 km southeast of Penglai City, the Jiaodong Peninsula. Quartz-vein–type gold orebodies are mainly distributed among the Guojialing granite and are controlled by NNE-trending faults. Native gold primarily occurs within the interiors of pyrite grains, forming inclusion gold and fracture gold. In this study, LA-ICP-MS zircon U-Pb dating and in situ sulfur isotope analysis of gold-bearing pyrite were conducted to constrain the ore genesis of the Yanshan gold deposit. Guojialing monzogranite and porphyritic granodiorite yielded weighted mean 206Pb/238U ages of 130 ± 2 Ma (MSWD = 1.8) and 131 ± 2 Ma (MSWD = 1.8), respectively, indicating that magmatism and gold mineralization occurred during the Early Cretaceous period. The in situ sulfur δ34S values of euhedral crystalline pyrite (Py1) formed in the early stage ranged from 3.21% to 5.35‰ (n = 11), while the in situ sulfur δ34S values of pyrite (Py2) formed in the later stage ranged from 6.32‰ to 9.77‰ (n = 10), suggesting that the sulfur of the Yanshan gold deposit primarily originates from magmatism, with contamination from stratigraphic materials. Granitoids are highly likely to provide the thermal drive for fluid activity; however, the origins of the fluids and ore-forming materials remain difficult to determine. Based on geological features, geochronological data, and in situ sulfur isotopic analysis, this study concludes that the Yanshan gold deposit is a mesothermal magmatic hydrothermal vein-type gold deposit. The mineralization of the Yanshan gold deposit is related to the subduction of the Mesozoic Paleo-Pacific Plate beneath the Eurasian continent and is mainly controlled by steep dip faults. This study provides theoretical guidance for further exploration and prospecting of the Yanshan gold deposit. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

28 pages, 68775 KB  
Article
Machine Learning Approaches for Predicting Lithological and Petrophysical Parameters in Hydrocarbon Exploration: A Case Study from the Carpathian Foredeep
by Drozd Arkadiusz, Topór Tomasz, Lis-Śledziona Anita and Sowiżdżał Krzysztof
Energies 2025, 18(17), 4521; https://doi.org/10.3390/en18174521 - 26 Aug 2025
Viewed by 607
Abstract
This study presents a novel approach to the parametrization of 3D PETRO FACIES and SEISMO FACIES using supervised and unsupervised learning, supported by a coherent structural and stratigraphic framework, to enhance understanding of the presence of hydrocarbons in the Dzików–Uszkowce region. The prediction [...] Read more.
This study presents a novel approach to the parametrization of 3D PETRO FACIES and SEISMO FACIES using supervised and unsupervised learning, supported by a coherent structural and stratigraphic framework, to enhance understanding of the presence of hydrocarbons in the Dzików–Uszkowce region. The prediction relies on selected seismic attributes and well logging data, which are essential in hydrocarbon exploration. Three-dimensional seismic data, a crucial source of information, reflect the propagation velocity of elastic waves influenced by lithological formations and reservoir fluids. However, seismic response similarities complicate accurate seismic image interpretation. Three-dimensional seismic data were also used to build a structural–stratigraphic model that partitions the study area into coeval strata, enabling spatial analysis of the machine learning results. In the 3D seismic model, PETRO FACIES classification achieved an overall accuracy of 80% (SD = 0.01), effectively distinguishing sandstone- and mudstone-dominated facies (RT1–RT4) with F1 scores between 0.65 and 0.85. RESERVOIR FACIES prediction, covering seven hydrocarbon system classes, reached an accuracy of 70% (SD = 0.01). However, class-level performance varied substantially. Non-productive zones such as HNF (No Flow) were identified with high precision (0.82) and recall (0.84, F1 = 0.83), while mixed-saturation facies (HWGS, BSWGS) showed moderate performance (F1 = 0.74–0.81). In contrast, gas-saturated classes (BSGS and HGS) suffered from extremely low F1 scores (0.08 and 0.12, respectively), with recalls as low as 5–7%, highlighting the model’s difficulty in discriminating these units from water-saturated or mixed facies due to overlapping seismic responses and limited training data for gas-rich intervals. To enhance reservoir characterization, SEISMO FACIES analysis identified 12 distinct seismic facies using key attributes. An additional facies (facies 13) was defined to characterize gas-saturated sandstones with high reservoir quality and accumulation potential. Refinements were performed using borehole data on hydrocarbon-bearing zones and clay volume (VCL), applying a 0.3 VCL cutoff and filtering specific facies to isolate zones with confirmed gas presence. The same approach was applied to PETRO FACIES and a new RT facie was extracted. This integrated approach improved mapping of lithological variability and hydrocarbon saturation in complex geological settings. The results were validated against two blind wells that were excluded from the machine learning process. Knowledge of the presence of gas in well N-1 and its absence in well D-24 guided verification of the models within the structural–stratigraphic framework. Full article
(This article belongs to the Section H1: Petroleum Engineering)
Show Figures

Figure 1

19 pages, 4015 KB  
Article
New Geochemical Insights into Pre-Khorat Paleoenvironments: A Case Study of Triassic–Jurassic Reddish Sedimentary Rocks in Thailand
by Vimoltip Singtuen, Burapha Phajuy and Punya Charusiri
Geosciences 2025, 15(8), 324; https://doi.org/10.3390/geosciences15080324 - 19 Aug 2025
Viewed by 676
Abstract
The Nam Phong Formation, a key unit of the pre-Khorat Group in the western Khorat Plateau, provides critical insights into the Mesozoic geological evolution of northeastern Thailand. This study presents the first integrated petrographic and geochemical investigation of the formation within Khon Kaen [...] Read more.
The Nam Phong Formation, a key unit of the pre-Khorat Group in the western Khorat Plateau, provides critical insights into the Mesozoic geological evolution of northeastern Thailand. This study presents the first integrated petrographic and geochemical investigation of the formation within Khon Kaen Geopark to reconstruct its Late Triassic–Early Jurassic depositional settings, provenance, and paleoclimate. A detailed stratigraphic section and five supplementary sites reveal litharenite and lithic wacke sandstones, interbedded with red paleosols and polymictic conglomerates. Sedimentary structures—such as trough and planar cross-bedding, erosional surfaces, and mature paleosols—indicate deposition in a high-energy braided fluvial system under semi-arid to subhumid conditions with episodic subaerial exposure. Petrographic analysis identifies abundant quartz, feldspar, and volcanic lithic fragments. Geochemical data and REE patterns, including diagnostic negative Ce anomalies, provide compelling evidence for provenance from active continental margins and oxidizing weathering conditions. These findings point to a tectonically active syn-rift basin influenced by climatic variability. Strikingly, the Nam Phong Formation exhibits paleoenvironmental and sedimentological features comparable to the modern Ebro Basin in northeastern Spain, highlighting the relevance of uniformitarian principles in interpreting ancient continental depositional systems. Full article
Show Figures

Figure 1

46 pages, 9391 KB  
Article
Multifactorial Controls on Carbonate–Clastic Sedimentation in Rift Basins: Integrated Foraminiferal, Sequence Stratigraphic, and Petrophysical Analysis, Gulf of Suez, Egypt
by Haitham M. Ayyad, Hatem E. Semary, Mohamed Fathy, Ahmed Hassan Ismail Hassan, Anis Ben Ghorbal and Mohamed Reda
Minerals 2025, 15(8), 864; https://doi.org/10.3390/min15080864 - 15 Aug 2025
Viewed by 544
Abstract
The lithological dichotomy in the Hammam Faraun Member (Gulf of Suez, Egypt) reveals a stable western flank with Nullipore carbonate deposits, contrasting with the clastic-prone eastern margin influenced by tectonic activity. This study aims to decipher multifactorial controls on spatial lithological variability and [...] Read more.
The lithological dichotomy in the Hammam Faraun Member (Gulf of Suez, Egypt) reveals a stable western flank with Nullipore carbonate deposits, contrasting with the clastic-prone eastern margin influenced by tectonic activity. This study aims to decipher multifactorial controls on spatial lithological variability and reservoir implications through (1) foraminiferal-based paleoenvironmental reconstruction; (2) integrated sequence stratigraphic–petrophysical analysis for sweet spot identification; and (3) synthesis of lateral facies controls. This study uniquely integrates foraminiferal paleoenvironmental proxies, sequence stratigraphy, and petrophysical analyses to understand the multifactorial controls on spatial variability and its implications for reservoir characterization. Middle Miocene sea surface temperatures, reconstructed between 19.2 and 21.2 °C, align with warm conditions favorable for carbonate production across the basin. Foraminiferal data indicate consistent bathyal depths (611–1238 m) in the eastern region, further inhibited in photic depths by clastic influx from the nearby Nubian Shield, increasing turbidity and limiting carbonate factory growth. Conversely, the western shelf, at depths of less than 100 m, supports thriving carbonate platforms. In the sequence stratigraphy analysis, we identify two primary sequences: LA.SQ1 (15.12–14.99 Ma), characterized by evaporitic Feiran Member deposits, and LA.SQ2 (14.99–14.78 Ma), dominated by clastic deposits. The primary reservoir comprises highstand systems tract (HST) sandstones with effective porosity ranging from 17% to 22% (calculated via shale-corrected neutron density cross-plots) and hydrocarbon saturation of 33%–55% (computed using Archie’s equation). These values, validated in Wells 112-58 (ϕe = 19%, Shc = 55%) and 113M-81 (ϕe = 17%, Shc = 33%), demonstrate the primary reservoir potential. Authigenic dolomite cement and clay content reduce permeability in argillaceous intervals, while quartz dissolution in clean sands enhances porosity. This research emphasizes that bathymetry, sediment availability, and syn-sedimentary tectonics, rather than climate, govern carbonate depletion in the eastern region, providing predictive parameters for identifying reservoir sweet spots in clastic-dominated rift basins. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Graphical abstract

20 pages, 9668 KB  
Article
Distribution Patterns and Main Controlling Factors of Helium in the Ordos Basin
by Dahai Wang, Lichi Ma, Tao Zhang, Dongya Zhu, Xiaohui Jin, Guojun Wang and Jun Peng
Appl. Sci. 2025, 15(16), 8806; https://doi.org/10.3390/app15168806 - 9 Aug 2025
Viewed by 579
Abstract
This study presents the first integrated, basin-scale analysis of helium distribution and its geological controls within the Ordos Basin, one of China’s most prospective cratonic gas provinces. Through comprehensive sampling and experimental analysis of the helium content in natural gas, combined with high-resolution [...] Read more.
This study presents the first integrated, basin-scale analysis of helium distribution and its geological controls within the Ordos Basin, one of China’s most prospective cratonic gas provinces. Through comprehensive sampling and experimental analysis of the helium content in natural gas, combined with high-resolution gravity and magnetic data processed using the normalized vertical derivative of the total horizontal derivative (NVDR-THDR) method, we reveal significant spatial heterogeneity in helium enrichment. The results show that helium concentrations are generally higher along the basin margins and structurally complex zones, while central areas are relatively depleted. Helium primarily originates from the radioactive decay of uranium (U) and thorium (Th) within metamorphic and magmatic basement rocks. Fault systems act as efficient vertical migration pathways, enabling deep-sourced helium to accumulate in structurally and stratigraphically favorable traps. This study proposes a new enrichment mode, “basement-sourced helium generation, fault-mediated migration, and caprock-controlled preservation”, which highlights the synergistic roles of basement lithology, deep-seated faults, and sealing capacity in controlling helium distribution. This model is supported by the observed alignment of high helium concentrations with zones of strong basement magnetism and major fault intersections. These findings advance our understanding of helium accumulation mechanisms in stable cratonic settings and provide a predictive framework for helium exploration in similar geological contexts worldwide. Full article
(This article belongs to the Topic Exploitation and Underground Storage of Oil and Gas)
Show Figures

Figure 1

20 pages, 5378 KB  
Article
Machine Learning-Based Approach for CPTu Data Processing and Stratigraphic Analysis
by Helena Paula Nierwinski, Arthur Miguel Pereira Gabardo, Ricardo José Pfitscher, Rafael Piton, Ezequias Oliveira and Marieli Biondo
Metrology 2025, 5(3), 48; https://doi.org/10.3390/metrology5030048 - 6 Aug 2025
Viewed by 489
Abstract
Cone Penetration Tests with pore pressure measurements (CPTu) are widely used in geotechnical site investigations due to their high-resolution profiling capabilities. However, traditional interpretation methods—such as the Soil Behavior Type Index (Ic)—often fail to capture the internal heterogeneity typical of [...] Read more.
Cone Penetration Tests with pore pressure measurements (CPTu) are widely used in geotechnical site investigations due to their high-resolution profiling capabilities. However, traditional interpretation methods—such as the Soil Behavior Type Index (Ic)—often fail to capture the internal heterogeneity typical of mining tailings deposits. This study presents a machine learning-based approach to enhance stratigraphic interpretation from CPTu data. Four unsupervised clustering algorithms—k-means, DBSCAN, MeanShift, and Affinity Propagation—were evaluated using a dataset of 12 CPTu soundings collected over a 19-year period from an iron tailings dam in Brazil. Clustering performance was assessed through visual inspection, stratigraphic consistency, and comparison with Ic-based profiles. k-means and MeanShift produced the most consistent stratigraphic segmentation, clearly delineating depositional layers, consolidated zones, and transitions linked to dam raising. In contrast, DBSCAN and Affinity Propagation either over-fragmented or failed to identify meaningful structures. The results demonstrate that clustering methods can reveal behavioral trends not detected by Ic alone, offering a complementary perspective for understanding depositional and mechanical evolution in tailings. Integrating clustering outputs with conventional geotechnical indices improves the interpretability of CPTu profiles, supporting more informed geomechanical modeling, dam monitoring, and design. The approach provides a replicable methodology for data-rich environments with high spatial and temporal variability. Full article
Show Figures

Figure 1

Back to TopTop