Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = stretching cylinder

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 1606 KB  
Article
Thermal Entropy Generation in Magnetized Radiative Flow Through Porous Media Over a Stretching Cylinder: An RSM-Based Study
by Shobha Visweswara, Baskar Palani, Fatemah H. H. Al Mukahal, S. Suresh Kumar Raju, Basma Souayeh and Sibyala Vijayakumar Varma
Mathematics 2025, 13(19), 3189; https://doi.org/10.3390/math13193189 - 5 Oct 2025
Abstract
Magnetohydrodynamic (MHD) flow and heat transfer in porous media are central to many engineering applications, including heat exchangers, MHD generators, and polymer processing. This study examines the boundary layer flow and thermal behavior of an electrically conducting viscous fluid over a porous stretching [...] Read more.
Magnetohydrodynamic (MHD) flow and heat transfer in porous media are central to many engineering applications, including heat exchangers, MHD generators, and polymer processing. This study examines the boundary layer flow and thermal behavior of an electrically conducting viscous fluid over a porous stretching tube. The model accounts for nonlinear thermal radiation, internal heat generation/absorption, and Darcy–Forchheimer drag to capture porous medium resistance. Similarity transformations reduce the governing equations to a system of coupled nonlinear ordinary differential equations, which are solved numerically using the BVP4C technique with Response Surface Methodology (RSM) and sensitivity analysis. The effects of dimensionless parameters magnetic field strength (M), Reynolds number (Re), Darcy–Forchheimer parameter (Df), Brinkman number (Br), Prandtl number (Pr), nonlinear radiation parameter (Rd), wall-to-ambient temperature ratio (rw), and heat source/sink parameter (Q) are investigated. Results show that increasing M, Df, and Q suppresses velocity and enhances temperature due to Lorentz and porous drag effects. Higher Re raises pressure but reduces near-wall velocity, while rw, Rd, and internal heating intensify thermal layers. The entropy generation analysis highlights the competing roles of viscous, magnetic, and thermal irreversibility, while the Bejan number trends distinctly indicate which mechanism dominates under different parameter conditions. The RSM findings highlight that rw and Rd consistently reduce the Nusselt number (Nu), lowering thermal efficiency. These results provide practical guidance for optimizing energy efficiency and thermal management in MHD and porous media-based systems.: Full article
(This article belongs to the Special Issue Advances and Applications in Computational Fluid Dynamics)
21 pages, 1627 KB  
Article
Estimation of Cylinder Grasping Contraction Force of Forearm Muscle in Home-Based Rehabilitation Using a Stretch-Sensor Glove
by Adhe Rahmatullah Sugiharto Suwito P, Ayumi Ohnishi, Tsutomu Terada and Masahiko Tsukamoto
Appl. Sci. 2025, 15(13), 7534; https://doi.org/10.3390/app15137534 - 4 Jul 2025
Viewed by 452
Abstract
Monitoring forearm muscle contraction force in home-based rehabilitation remains challenging. Electromyography (EMG), as a standard technique, is considered impractical and complex for independent use by patients at home, which poses a risk of device misattachment and inaccurate recorded data. Considering the muscle-related modality, [...] Read more.
Monitoring forearm muscle contraction force in home-based rehabilitation remains challenging. Electromyography (EMG), as a standard technique, is considered impractical and complex for independent use by patients at home, which poses a risk of device misattachment and inaccurate recorded data. Considering the muscle-related modality, several studies have demonstrated an excellent correlation between stretch sensors and EMG, which provides significant potential for addressing the monitoring issue at home. Additionally, due to its flexible nature, it can be attached to the finger, which facilitates the logging of the kinematic mechanisms of a finger. This study proposes a method for estimating forearm muscle contraction in a cylinder grasping environment during home-based rehabilitation using a stretch-sensor glove. This study employed support vector machine (SVM), multi-layer perceptron (MLP), and random forest (RF) to construct the estimation model. The root mean square (RMS) of the EMG signal, representing the muscle contraction force, was collected from 10 participants as the target learning for the stretch-sensor glove. This study constructed an experimental design based on a home-based therapy protocol known as the graded repetitive arm supplementary program (GRASP). Six cylinders with varying diameters and weights were employed as the grasping object. The results demonstrated that the RF model achieved the lowest root mean square error (RMSE) score, which differed significantly from the SVM and MLP models. The time series waveform comparison revealed that the RF model yields a similar estimation output to the ground truth, which incorporates the contraction–relaxation phases and the muscle’s contraction force. Additionally, despite the subjectivity of the participants’ grasping power, the RF model could produce similar trends in the muscle contraction forces of several participants. Utilizing a stretch-sensor glove, the proposed method demonstrated great potential as an alternative modality for monitoring forearm muscle contraction force, thereby improving the practicality for patients to self-implement home-based rehabilitation. Full article
(This article belongs to the Special Issue Applications of Emerging Biomedical Devices and Systems)
Show Figures

Figure 1

17 pages, 3907 KB  
Review
Polyamide 6 as a Liner Material for Type IV Hydrogen Storage Cylinders: Performance Challenges and Modification Strategies
by Wenyan Wang, Guanxi Zhao, Xiao Ma, Dengxun Ren, Min Nie and Rui Han
Polymers 2025, 17(13), 1848; https://doi.org/10.3390/polym17131848 - 1 Jul 2025
Cited by 1 | Viewed by 840
Abstract
Type IV hydrogen storage cylinders are pivotal for high-pressure hydrogen storage and transportation, offering advantages such as lightweight design, high hydrogen storage density, and cost efficiency. Polyamide 6 (PA6) has emerged as a promising liner material due to its excellent mechanical strength, chemical [...] Read more.
Type IV hydrogen storage cylinders are pivotal for high-pressure hydrogen storage and transportation, offering advantages such as lightweight design, high hydrogen storage density, and cost efficiency. Polyamide 6 (PA6) has emerged as a promising liner material due to its excellent mechanical strength, chemical resistance, and gas barrier properties. However, challenges remain, including high hydrogen permeability and insufficient mechanical performance under extreme temperature and pressure conditions. This review systematically summarizes recent advances in modification strategies to enhance PA6’s suitability for Type IV hydrogen storage cylinders. Incorporating nanofillers (e.g., graphene, montmorillonite, and carbon nanotubes) significantly reduces hydrogen permeability. In situ polymerization and polymer blending techniques improve toughness and interfacial adhesion (e.g., ternary blends achieve a special increase in impact strength). Multiscale structural design (e.g., biaxial stretching) and process optimization further enhance PA6’s overall performance. Future research should focus on interdisciplinary innovation, standardized testing protocols, and industry–academia collaboration to accelerate the commercialization of PA6-based composites for hydrogen storage applications. This review provides theoretical insights and engineering guidelines for developing high-performance liner materials. Full article
Show Figures

Figure 1

20 pages, 4919 KB  
Article
Analytical and Finite Element Solution for Functionally Graded Pressure Vessels Subjected to Finite Strain Coupled Axial and Torsional Deformations
by Mohammad Shojaeifard, Arash Valiollahi, Davood Rahmatabadi, Ali Taheri, Eunsoo Choi, Alireza Ostadrahimi and Mostafa Baghani
Materials 2025, 18(9), 2136; https://doi.org/10.3390/ma18092136 - 6 May 2025
Viewed by 679
Abstract
This study presents an analytical solution to examine the mechanical behavior of an incompressible, functionally graded hyperelastic cylinder under combined extension and torsion. The exp-exp strain energy density function characterizes the hyperelastic material, with parameters varying exponentially along the radial direction. To validate [...] Read more.
This study presents an analytical solution to examine the mechanical behavior of an incompressible, functionally graded hyperelastic cylinder under combined extension and torsion. The exp-exp strain energy density function characterizes the hyperelastic material, with parameters varying exponentially along the radial direction. To validate the solution, finite element simulations using a custom UHYPER in ABAQUS are performed. The analytical and numerical results show strong agreement across different stretch and twist levels. The stress distribution and maximum stress are significantly influenced by the exponential parameter governing material gradients. Unlike axial stretch, torsion induces a more intricate longitudinal stress distribution, with large twisting producing two extrema that shift toward the cylinder’s center and outer surface. Longitudinal stress primarily governs von Mises stress and strain energy density variations across the radial direction. A critical axial stretch is identified, below which torsion-induced axial force transitions to compression, elongating the cylinder during twisting. Beyond this stretch, the axial force shifts from tensile to compressive with increasing twist, causing initial shortening before further elongation. Full article
(This article belongs to the Special Issue Modelling of Deformation Characteristics of Materials or Structures)
Show Figures

Figure 1

17 pages, 1712 KB  
Article
Levenberg–Marquardt Analysis of MHD Hybrid Convection in Non-Newtonian Fluids over an Inclined Container
by Julien Moussa H. Barakat, Zaher Al Barakeh and Raymond Ghandour
Eng 2025, 6(5), 92; https://doi.org/10.3390/eng6050092 - 30 Apr 2025
Viewed by 693
Abstract
This work aims to explore the magnetohydrodynamic mixed convection boundary layer flow (MHD-MCBLF) on a slanted extending cylinder using Eyring–Powell fluid in combination with Levenberg–Marquardt algorithm–artificial neural networks (LMA-ANNs). The thermal properties include thermal stratification, which has a higher temperature surface on the [...] Read more.
This work aims to explore the magnetohydrodynamic mixed convection boundary layer flow (MHD-MCBLF) on a slanted extending cylinder using Eyring–Powell fluid in combination with Levenberg–Marquardt algorithm–artificial neural networks (LMA-ANNs). The thermal properties include thermal stratification, which has a higher temperature surface on the cylinder than on the surrounding fluid. The mathematical model incorporates essential factors involving mixed conventions, thermal layers, heat absorption/generation, geometry curvature, fluid properties, magnetic field intensity, and Prandtl number. Partial differential equations govern the process and are transformed into coupled nonlinear ordinary differential equations with proper changes of variables. Datasets are generated for two cases: a flat plate (zero curving) and a cylinder (non-zero curving). The applicability of the LMA-ANN solver is presented by solving the MHD-MCBLF problem using regression analysis, mean squared error evaluation, histograms, and gradient analysis. It presents an affordable computational tool for predicting multicomponent reactive and non-reactive thermofluid phase interactions. This study introduces an application of Levenberg–Marquardt algorithm-based artificial neural networks (LMA-ANNs) to solve complex magnetohydrodynamic mixed convection boundary layer flows of Eyring–Powell fluids over inclined stretching cylinders. This approach efficiently approximates solutions to the transformed nonlinear differential equations, demonstrating high accuracy and reduced computational effort. Such advancements are particularly beneficial in industries like polymer processing, biomedical engineering, and thermal management systems, where modeling non-Newtonian fluid behaviors is crucial. Full article
Show Figures

Figure 1

42 pages, 25798 KB  
Article
CFD Simulation of Pre-Chamber Spark-Ignition Large Bore CNG Engine: Model Development, Practical Applications, and Experimental Validation
by Soo-Jin Jeong, Seokpan Seo and Seong-Joon Moon
Energies 2025, 18(7), 1600; https://doi.org/10.3390/en18071600 - 23 Mar 2025
Viewed by 1077
Abstract
This study develops and validates a three-dimensional CFD model for a 12 L large-bore active-type pre-chamber spark-ignition (PCSI) engine fueled by natural gas. The model incorporates an advanced Extended Coherent Flamelet Model (ECFM-3Z) with a tuned stretch factor to capture complex turbulence–flame interactions, [...] Read more.
This study develops and validates a three-dimensional CFD model for a 12 L large-bore active-type pre-chamber spark-ignition (PCSI) engine fueled by natural gas. The model incorporates an advanced Extended Coherent Flamelet Model (ECFM-3Z) with a tuned stretch factor to capture complex turbulence–flame interactions, flame propagation, and pollutant formation under ultra-lean conditions. By systematically varying pre-chamber geometries—specifically the orifice diameter, cone angle, diverging tapered nozzle, and volume—the simulations assess their effects on combustion dynamics, heat release rates, turbulent jet penetration, and emissions (NOx and CO). Model predictions of in-cylinder and pre-chamber pressure profiles, combustion phasing, and emission trends are validated against experimental data. The results demonstrate that optimizing pre-chamber and orifice configurations enhances turbulent mixing, accelerates flame development, and reduces local high-temperature zones, thereby suppressing NOx and CO formation. Although some discrepancies in NOx predictions persist due to limitations in current turbulence–chemistry models, the findings offer valuable insights for the design of high-efficiency, low-emission PCSI engines. Full article
(This article belongs to the Special Issue Optimization of Efficient Clean Combustion Technology)
Show Figures

Figure 1

2 pages, 164 KB  
Comment
Comment on Rooman et al. Entropy Optimization on Axisymmetric Darcy–Forchheimer Powell–Eyring Nanofluid over a Horizontally Stretching Cylinder with Viscous Dissipation Effect. Coatings 2022, 12, 749
by Asterios Pantokratoras
Coatings 2025, 15(2), 211; https://doi.org/10.3390/coatings15020211 - 10 Feb 2025
Viewed by 628
Abstract
The concentration shown in Equation (4) in [1] is given as follows:(1)wCr+uCz=DB2Cr2+1rCr+DTT2Tr2+1rTr [...] Full article
25 pages, 51903 KB  
Article
Discrete Element Method Simulation of Particulate Material Fracture Behavior on a Stretchable Single Filter Fiber with Additional Gas Flow
by Ermek Asylbekov, Lukas Poggemann, Achim Dittler and Hermann Nirschl
Powders 2024, 3(3), 367-391; https://doi.org/10.3390/powders3030021 - 3 Jul 2024
Cited by 1 | Viewed by 1673
Abstract
This study presents a comprehensive discrete element method (DEM) simulation approach for the stretching of a filter fiber with a separated polydisperse particle structure on top. For a realistic interaction between the fiber surface and the particles, the original surface of the polymer [...] Read more.
This study presents a comprehensive discrete element method (DEM) simulation approach for the stretching of a filter fiber with a separated polydisperse particle structure on top. For a realistic interaction between the fiber surface and the particles, the original surface of the polymer fiber was projected onto the surface of the fiber cylinder using surface imaging technologies (atomic force microscopy (AFM) and white-light interferometry). In addition, the adhesive forces between particle–fiber and particle–particle contacts were calibrated in the DEM domain using values from self-conducted AFM measurements. Fiber stretching was implemented by the linear motion of small periodic fiber elements. Discretization problems were resolved through studying the stretching of a fiber segment at the size of 8 mm. A critical fiber element length was discovered to be ≈100 μm for minimizing discretization dependencies during the cracking of the particle structure. The number and density of particle–particle contacts within the particle loading on the fiber were obtained at two different elongation rates. Effects such as densification of the particulate structure and increased detachment due to additional air flow were demonstrated. Full article
Show Figures

Figure 1

21 pages, 6501 KB  
Article
Wake Structures and Hydrodynamic Characteristics of Flows around Two Near-Wall Cylinders in Tandem and Parallel Arrangements
by Xing Chang, Pandeng Yin, Jianjian Xin, Fulong Shi and Ling Wan
J. Mar. Sci. Eng. 2024, 12(5), 832; https://doi.org/10.3390/jmse12050832 - 16 May 2024
Cited by 4 | Viewed by 2304
Abstract
To clarify the hydrodynamic interference characteristics of flows around multiple cylinders under the wall effect, the two-dimensional (2D) flows around the near-wall single, two tandem and parallel cylinders are simulated under different gap ratios (0.15 ≤ G/D ≤ 3.0) and spacing [...] Read more.
To clarify the hydrodynamic interference characteristics of flows around multiple cylinders under the wall effect, the two-dimensional (2D) flows around the near-wall single, two tandem and parallel cylinders are simulated under different gap ratios (0.15 ≤ G/D ≤ 3.0) and spacing ratios (1.5 ≤ T/D ≤ 4.0) at a Reynolds number of Re = 6300. We also examine the wake patterns, the force coefficients, and the vortex-shedding frequency with emphases on the wall effect and effects of the two-cylinder interference. A critical wall gap of G/D = 0.6 is identified in the single-cylinder case where the wall can exert significant influences. The two near-wall tandem cylinders exhibit three wake states: stretching mode, attachment mode, and impinging mode. The force coefficients on the upstream cylinder are significantly affected by the wall for G/D ≤ 0.6. The downstream cylinder is mainly influenced by the upstream cylinder. For G/D > 0.6, the force coefficients on the two cylinders exhibit a similar variation trend. In the parallel arrangement, the two cylinders exhibit four wake states in different G/D and T/D ranges: double stretching mode, hetero-vortex scale mode, unilateral vortex mode, and free vortex mode. Moreover, the two parallel cylinders in the hetero-vortex scale or free vortex mode have two states: synchronous in-phase state and synchronous out-of-phase state. The mean drag coefficients on the two cylinders decrease, while the mean lift coefficients exhibit opposite variation trends, as the T/D grows. Full article
(This article belongs to the Special Issue Hydrodynamic Research of Marine Structures)
Show Figures

Figure 1

21 pages, 4278 KB  
Article
Flow and Heat Transfer of CoFe2O4-Blood Due to a Rotating Stretchable Cylinder under the Influence of a Magnetic Field
by Jahangir Alam, Ghulam Murtaza, Efstratios E. Tzirtzilakis, Shuyu Sun and Mohammad Ferdows
Bioengineering 2024, 11(4), 317; https://doi.org/10.3390/bioengineering11040317 - 26 Mar 2024
Cited by 3 | Viewed by 1485
Abstract
The flow and heat transfer of a steady, viscous biomagnetic fluid containing magnetic particles caused by the swirling and stretching motion of a three-dimensional cylinder has been investigated numerically in this study. Because fluid and particle rotation are different, a magnetic field is [...] Read more.
The flow and heat transfer of a steady, viscous biomagnetic fluid containing magnetic particles caused by the swirling and stretching motion of a three-dimensional cylinder has been investigated numerically in this study. Because fluid and particle rotation are different, a magnetic field is applied in both radial and tangential directions to counteract the effects of rotational viscosity in the flow domain. Partial differential equations are used to represent the governing three-dimensional modeled equations. With the aid of customary similarity transformations, this system of partial differential equations is transformed into a set of ordinary differential equations. They are then numerically resolved utilizing a common finite differences technique that includes iterative processing and the manipulation of tridiagonal matrices. Graphs are used to depict the physical effects of imperative parameters on the swirling velocity, temperature distributions, skin friction coefficient, and the rate of heat transfer. For higher values of the ferromagnetic interaction parameter, it is discovered that the axial velocity increases, whereas temperature and tangential velocity drop. With rising levels of the ferromagnetic interaction parameter, the size of the axial skin friction coefficient and the rate of heat transfer are both accelerated. In some limited circumstances, a comparison with previously published work is also handled and found to be acceptably accurate. Full article
(This article belongs to the Section Biomechanics and Sports Medicine)
Show Figures

Figure 1

19 pages, 5818 KB  
Article
Strength and Failure Analysis of Fiber-Wound Composite Gas Cylinder via Numerical Simulation
by Xiaodi Wu, Bo Yang and Song Zhou
Materials 2024, 17(3), 717; https://doi.org/10.3390/ma17030717 - 2 Feb 2024
Cited by 7 | Viewed by 2507
Abstract
Based on the classical grid theory and related regulations, a structure model of a fiber-wound composite gas cylinder was designed in this paper. Based on the design results, a finite element model of a fully wound composite cylinder of an aluminum alloy inner [...] Read more.
Based on the classical grid theory and related regulations, a structure model of a fiber-wound composite gas cylinder was designed in this paper. Based on the design results, a finite element model of a fully wound composite cylinder of an aluminum alloy inner liner with a working pressure of 35 MPa was established based on the ABAQUS software, and its stress distribution under working pressure and minimum burst pressure was analyzed. According to engineering experience, the pressure tolerance of composite cylinders can be improved by proper autofrettage pressure before working pressure, so the influence of autofrettage pressure was analyzed in this paper. The optimum autofrettage pressure was selected by setting the autofrettage gradient, and damage analysis was carried out on the cylinder with nominal working pressure of 35 MPa based on the Hashin failure criterion. The results show the initial damage sequence: matrix stretching occurs before the fiber stretching, and the damage generally starts from the spiral-wound layer. The tensile damage first appears in the transition section between the head and the barrel body, and the damage of the spiral-wound layer develops from the inner layer of the wound layer to the outer layer, while the damage of the circumferentially wound layer develops from the outer layer to the inner layer. Full article
(This article belongs to the Special Issue Advances in High-Performance Polymers and Composites)
Show Figures

Figure 1

12 pages, 3752 KB  
Article
Effects of Variable Viscosity in Unsteady Magnetohydrodynamic Hybrid Nanofluid Flow over Stretching/Shrinking Cylinder with Partial Slip and Stefan Blowing
by Jagan Kandasamy, Manoj Kumar Narayanaswamy and Sivasankaran Sivanandam
Nanomanufacturing 2023, 3(4), 434-445; https://doi.org/10.3390/nanomanufacturing3040027 - 30 Nov 2023
Cited by 3 | Viewed by 2063
Abstract
In the manufacturing sector, transport phenomena near the stagnation region are frequent, particularly in the polymer and extrusion processes, which require continuous improvement to raise the process’s quality standards. The aim of this study is to explore the improvement of heat and mass [...] Read more.
In the manufacturing sector, transport phenomena near the stagnation region are frequent, particularly in the polymer and extrusion processes, which require continuous improvement to raise the process’s quality standards. The aim of this study is to explore the improvement of heat and mass transmission using unsteady magnetohydrodynamic (MHD) hybrid nanofluid (HNF) flow over a stretching/shrinking cylinder with variable viscosity and Stefan blowing. The governed equations of heat and mass transfer processes are converted into ordinary differential equations (ODEs) using the appropriate transformations, and the resulting equations are then solved using the MATLAB package bvp4c. With an upsurge in the volume fraction of nanoparticles, the skin friction increases, but the reverse trend is detected with negative values for the unsteadiness constraint. The use of 2D graphs to show how important parameters affect the velocity, temperature, and concentration is thoroughly discussed. There is a discussion of the quantitative findings from the wall shear factor and the heat and mass transfer rates calculated for the stretching/shrinking cases. Full article
Show Figures

Figure 1

19 pages, 6138 KB  
Article
Comparative Numerical Analysis for the Error Estimation of the Fluid Flow over an Inclined Axisymmetric Cylinder with a Gyrotactic Microbe
by Fuad A. Awwad, Emad A. A. Ismail, Waris Khan, Taza Gul and Abdul Samad Khan
Symmetry 2023, 15(10), 1811; https://doi.org/10.3390/sym15101811 - 22 Sep 2023
Cited by 3 | Viewed by 1429
Abstract
The numerical investigation of bioconvective nanofluid (NF) flow, which involves gyrotactic microbes and heat and mass transmission analysis above an inclined extending axisymmetric cylinder, is presented in this study. The study aims to investigate the bioconvection flow of nanofluid under the influence of [...] Read more.
The numerical investigation of bioconvective nanofluid (NF) flow, which involves gyrotactic microbes and heat and mass transmission analysis above an inclined extending axisymmetric cylinder, is presented in this study. The study aims to investigate the bioconvection flow of nanofluid under the influence of heat sources/sinks. Through proper transformation, all partial differential equations are transformed into a non-linear ODE scheme. A new set of variables is presented in the directive to get the first-order convectional equations and then solved numerically using bvp4c MATLAB, embedded in the function. The proposed model is validated after calculating the error estimation and obtaining the residual error. The influence of various factors on the velocity, energy, concentration, and density of motile microorganisms is examined and studied. The analysis describes and addresses all physical measures of concentration such as Skin Friction (SF), Sherwood number, the density of motile microorganisms, and Nusselt number. To validate the present study, a comparison is conducted with previous studies, and excellent correspondence is found. In addition, the ND-Solve approach is utilized to confirm the bvp4c. The mathematical model is confirmed through error analysis. This study provides the platform for industrial applications such as cooling capacity polymers, heat exchange, and chemical production sectors. Full article
(This article belongs to the Special Issue Symmetry in Numerical Analysis and Computational Fluid Dynamics)
Show Figures

Figure 1

18 pages, 1318 KB  
Article
Thermal Enhancement in the Ternary Hybrid Nanofluid (SiO2+Cu+MoS2/H2O) Symmetric Flow Past a Nonlinear Stretching Surface: A Hybrid Cuckoo Search-Based Artificial Neural Network Approach
by Asad Ullah, Waseem, Muhammad Imran Khan, Fuad A. Awwad and Emad A. A. Ismail
Symmetry 2023, 15(8), 1529; https://doi.org/10.3390/sym15081529 - 2 Aug 2023
Cited by 10 | Viewed by 1571
Abstract
In this article, we considered a 3D symmetric flow of a ternary hybrid nanofluid flow (THNF) past a nonlinear stretching surface. The effect of the thermal radiation is considered. The THNF nanofluid SiO2+Cu+MoS2/H2O is considered in this [...] Read more.
In this article, we considered a 3D symmetric flow of a ternary hybrid nanofluid flow (THNF) past a nonlinear stretching surface. The effect of the thermal radiation is considered. The THNF nanofluid SiO2+Cu+MoS2/H2O is considered in this work, where the shapes of the particles are assumed as blade, flatlet, and cylindrical. The problem is formulated into a mathematical model. The modeled equations are then reduced into a simpler form with the help of suitable transformations. The modeled problem is then tackled with a new machine learning approach known as a hybrid cuckoo search-based artificial neural network (HCS-ANN). The results are presented in the form of figures and tables for various parameters. The impact of the volume fraction coefficients ϕ1, ϕ2, and ϕ3, and the radiation parameter is displayed through graphs and tables. The higher numbers of the radiation parameter (Rd) and the cylinder-shaped nanoparticles, ϕ3, enhance the thermal profile. In each case, the residual error, error histogram, and fitness function for the optimization problem are presented. The results of the HCS-ANN are validated through mean square error and statistical graphs in the last section, where the accuracy of our implemented technique is proved. Full article
(This article belongs to the Special Issue Symmetry Applications in Nanofluids and Nanomaterials)
Show Figures

Figure 1

15 pages, 4132 KB  
Article
Numerical Calculation of Thermal Radiative Boundary Layer Nanofluid Flow across an Extending Inclined Cylinder
by Humaira Yasmin, Showkat Ahmad Lone, Sadia Anwar, Sana Shahab and Anwar Saeed
Symmetry 2023, 15(7), 1424; https://doi.org/10.3390/sym15071424 - 15 Jul 2023
Cited by 5 | Viewed by 1547
Abstract
This research presents the numerical analysis of the fluid flow containing the micro gyrotactic organism with heat and mass transfer. The flow is allowed to pass through an inclined stretching cylinder with the effects of heat generation/a heat source and activation energy subject [...] Read more.
This research presents the numerical analysis of the fluid flow containing the micro gyrotactic organism with heat and mass transfer. The flow is allowed to pass through an inclined stretching cylinder with the effects of heat generation/a heat source and activation energy subject to the symmetric boundary conditions at the cylinder walls. Similarity transformation is employed in the system of PDEs (partial differential equations) to transform them into non-dimensional ODEs (ordinary differential equations). The solution to the proposed problem is obtained by using the bvp4c (numerical scheme). The graphical results are plotted for various flow parameters in order to show their impact on the flow, mass, energy, and motile microorganism profiles. Moreover, the angle of inclination disturbs the flow within an inclined cylinder and slows down the fluid motion, while it elevates the energy of the fluid inside an inclined cylinder. Similarly, the curvature effect is also highlighted in the dynamics of fluid velocity, temperature, and the motile microorganism profile. From the obtained results, it is elucidated that growing values of the curvature factor accelerate the temperature, velocity, and motile microbes’ profiles. Finally, some engineering quantities are calculated in terms of skin friction, the Nusselt and Sherwood number, and the density of motile microbes. The acquired results are also displayed in tabular form. Full article
(This article belongs to the Special Issue Application of Symmetry in Heat Transfer)
Show Figures

Figure 1

Back to TopTop