Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,952)

Search Parameters:
Keywords = structural and microstructural properties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1218 KB  
Article
Improvement in Physicochemical and Functional Properties of Insoluble Dietary Fiber from Rice Bran Treated with Different Processing Methods
by Yanxia Chen, Qin Ma, Fei Huang, Xuchao Jia, Lihong Dong, Dong Liu, Mingwei Zhang and Ruifen Zhang
Foods 2025, 14(17), 3116; https://doi.org/10.3390/foods14173116 (registering DOI) - 5 Sep 2025
Abstract
Rice bran represents an exceptional natural source of dietary fiber (DF), and its physicochemical properties and therapeutic potential are closely associated with its origin and processing methods. Herein, rice bran was subjected to extrusion, fermentation, and a combined treatment of fermentation and extrusion [...] Read more.
Rice bran represents an exceptional natural source of dietary fiber (DF), and its physicochemical properties and therapeutic potential are closely associated with its origin and processing methods. Herein, rice bran was subjected to extrusion, fermentation, and a combined treatment of fermentation and extrusion to explore the alternations in the structural, physicochemical, and functional properties of the resulting insoluble dietary fiber (IDF). All treatments induced substantial microstructural alterations in IDF, producing fiber matrices with enhanced porosity and looser architectures. The employed processing treatments significantly enhanced the functional properties of rice bran IDF over the unprocessed sample, with 1.37- to 1.78-fold increases in oil-holding capacity, 1.31- to 1.48-fold increases in cholesterol-adsorption capacity, 2.89- to 5.90-fold increases in α-amylase-inhibitory activity, and 2.41- to 3.70-fold increases in glucose-adsorption capacity. Among them, extrusion proved more effective than fermentation in enhancing the water-holding capacity, sodium cholate binding, and cholesterol-adsorption capacity of rice bran IDF. However, fermented rice bran-derived IDF exhibited the optimum α-amylase-inhibitory and glucose-absorption capacities among all employed IDF samples. These findings provide valuable insights for the development of rice bran-based functional foods with enhanced health benefits. Full article
42 pages, 3828 KB  
Article
Modification Mechanism of Multipolymer Granulated Modifiers and Their Effect on the Physical, Rheological, and Viscoelastic Properties of Bitumen
by Yao Li, Ke Chao, Qikai Li, Kefeng Bi, Yuanyuan Li, Dongliang Kuang, Gangping Jiang and Haowen Ji
Materials 2025, 18(17), 4182; https://doi.org/10.3390/ma18174182 - 5 Sep 2025
Abstract
Polymer-modified bitumen is difficult to produce and often separates during storage and transport. In contrast, granular bitumen modifiers offer wide applicability, construction flexibility, and ease of transport and storage. This study involved preparing a multipolymer granulated bitumen modifier with a styrene–butadiene–styrene block copolymer, [...] Read more.
Polymer-modified bitumen is difficult to produce and often separates during storage and transport. In contrast, granular bitumen modifiers offer wide applicability, construction flexibility, and ease of transport and storage. This study involved preparing a multipolymer granulated bitumen modifier with a styrene–butadiene–styrene block copolymer, polyethylene, and aromatic oil. To elucidate the modification mechanism of a multipolymer granulated bitumen modifier on bitumen, the elemental composition of bitumen A and B, the micro-morphology of the modifiers, the changes in functional groups, and the distribution state of the polymers in the bitumen were investigated using an elemental analyzer, a scanning electron microscope, Fourier-transform infrared spectroscopy, and fluorescence microscopy. The effects of the multipolymer granulated bitumen modifier on the physical, rheological, and viscoelastic properties of two types of base bituminous binders were investigated at various dosages. The test results show that the ZH/C ratio of base bitumen A is smaller than that of base bitumen B and that the cross-linking effect with the polymer is optimal. Therefore, the direct-feed modified asphalt of A performs better than the direct-feed modified asphalt of B under the same multipolymer granulated bitumen modifier content. The loose, porous surface structure of styrene–butadiene–styrene block copolymer promotes the adsorption of light components in bitumen, and the microstructure of the multipolymer granulated bitumen modifier is highly coherent. When the multipolymer granulated bitumen modifier content is 20%, the physical, rheological, and viscoelastic properties of the direct-feed modified asphalt of A/direct-feed modified asphalt of B and the commodity styrene–butadiene–styrene block copolymer are essentially identical. While the multipolymer granulated bitumen modifier did not significantly improve the performance of bitumen A/B at contents greater than 20%, the mass loss rate of the direct-feed modified asphalt of A to aggregate stabilized, and the adhesion effect reached stability. Image processing determined the optimum mixing temperature and time for multipolymer granulated bitumen modifier and aggregate to be 185–195 °C and 80–100 s, respectively, at which point the dispersion homogeneity of the multipolymer granulated bitumen modifier in the mixture was at its best. The dynamic stability, fracture energy, freeze–thaw splitting strength ratio, and immersion residual stability of bitumen mixtures were similar to those of commodity styrene–butadiene–styrene block copolymers with a 20% multipolymer granulated bitumen modifier mixing amount, which was equivalent to the wet method. The styrene–butadiene–styrene block copolymer bitumen mixture reached the same technical level. Full article
(This article belongs to the Section Construction and Building Materials)
20 pages, 18687 KB  
Article
Influence of Stirring Pin Geometry on Weld Appearance and Microstructure in Wire-Based Friction-Stir Additive Manufacturing of EN AW-6063 Aluminium
by Stefan Donaubauer, Stefan Weihe and Martin Werz
J. Manuf. Mater. Process. 2025, 9(9), 306; https://doi.org/10.3390/jmmp9090306 - 5 Sep 2025
Abstract
Additive manufacturing of metal components is predominantly based on fusion-welding processes involving melting and solidification. However, processing high-strength aluminium alloys presents challenges, including reduced mechanical properties and increased susceptibility to hot cracking. To address these issues, alternative solid-state processing methods for aluminium are [...] Read more.
Additive manufacturing of metal components is predominantly based on fusion-welding processes involving melting and solidification. However, processing high-strength aluminium alloys presents challenges, including reduced mechanical properties and increased susceptibility to hot cracking. To address these issues, alternative solid-state processing methods for aluminium are being explored worldwide. One such method is wire-based friction-stir additive manufacturing, which builds on the principles of friction-stir welding. This study focused on assessing a range of pin tool designs to promote improved mixing between the filler material and substrate. The best results were achieved using a two-stirring-probe configuration, which was then employed to fabricate a multilayer wall made of EN AW-6063 aluminium alloy. The resulting structure showed significant grain refinement, with the deposited layers having an average grain size approximately four times smaller than that of the substrate, indicating dynamic recrystallisation. Tensile testing of the intermediate layer revealed a strength of 147 MPa and 10% elongation, corresponding to 77% of the filler wire strength. These findings highlight the potential of the W-FSAM process for producing near-net-shape, high-quality lightweight metal components with refined microstructures and reliable mechanical performance. Full article
Show Figures

Figure 1

18 pages, 4842 KB  
Article
Study on the Hybrid Effect of Basalt and Polypropylene Fibers on the Mechanical Properties of Concrete
by Lianying Ding, Zhenan Lin, Cundong Xu, Hui Xu, Bofei Li and Jiaxing Shen
Buildings 2025, 15(17), 3197; https://doi.org/10.3390/buildings15173197 - 4 Sep 2025
Abstract
Hybrid fiber-reinforced concrete (HFRC), renowned for its significantly enhanced mechanical properties and structural integrity, is widely used in infrastructure construction and has become a key avenue of modern high-performance concrete development. The hybrid application of basalt fiber (BF) and polypropylene fiber (PPF) at [...] Read more.
Hybrid fiber-reinforced concrete (HFRC), renowned for its significantly enhanced mechanical properties and structural integrity, is widely used in infrastructure construction and has become a key avenue of modern high-performance concrete development. The hybrid application of basalt fiber (BF) and polypropylene fiber (PPF) at optimized ratios generates synergistic effects, improving both mechanical performance and material service reliability. To explore and evaluate the synergistic mechanism of BF-PPF hybrid fibers on concrete’s mechanical properties and performance, this study employs an orthogonal experimental design and mechanical testing methods, measuring the materials’ static compressive strength (loading rate: 0.6 mm/min), splitting tensile strength (loading rate: 0.12–0.14 MPa/s), dynamic elastic modulus (measured by the ultrasonic method), and dynamic compressive strength (loading rates: 0.6 mm/min, 6 mm/min, and 60 mm/min). For these tests, we prepared 100 mm × 100 mm × 100 mm cubic specimens (for static compressive, dynamic compressive, and splitting tensile tests) and 400 mm × 100 mm × 100 mm prismatic specimens (for dynamic elastic modulus tests), with three parallel specimens in each test group. In addition, the microstructure was characterized by scanning electron microscopy (SEM) to observe the fiber-matrix interaction. The results show that when the BF/PPF volume ratio is 1:2 (BF0.05PPF0.1), the concrete’s compressive strength, splitting tensile strength, and elastic modulus increase by 13.7%, 76.3%, and 116.0%, respectively, with corresponding synergistic effect indices (Q) of 0.057, 0.213, and 0.241, indicating obvious positive synergy. Under dynamic loading, hybrid combinations with higher PPF content (e.g., BF0.05PPF0.1) exhibit strain-rate-dependent enhancements in compressive strength and better impact resistance. SEM analysis reveals that fibers inhibit microcrack propagation through fiber bridging, network distribution, and pull-out resistance, while also improving the interfacial transition zone’s structure. These findings provide theoretical support for the engineering application of composite fiber-reinforced concrete materials. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

21 pages, 6078 KB  
Article
Integrating Microstructures and Dual Constitutive Models in Instrumented Indentation Technique for Mechanical Properties Evaluation of Metallic Materials
by Yubiao Zhang, Bin Wang, Yonggang Zhang, Shuai Wang, Shun Zhang and He Xue
Materials 2025, 18(17), 4159; https://doi.org/10.3390/ma18174159 - 4 Sep 2025
Abstract
Local variations in mechanical properties are commonly observed in engineering structures, driven by complex manufacturing histories and harsh service environments. The evaluation of mechanical properties accurately constitutes a fundamental requirement for structural integrity assessment. The Instrumented Indentation Technique (IIT) can play a critical [...] Read more.
Local variations in mechanical properties are commonly observed in engineering structures, driven by complex manufacturing histories and harsh service environments. The evaluation of mechanical properties accurately constitutes a fundamental requirement for structural integrity assessment. The Instrumented Indentation Technique (IIT) can play a critical role in the in-site testing of local properties. However, it could be often a challenge to correlate indentation characteristics with uniaxial stress–strain relationships. In this study, we investigated quantitatively the connection between the indentation responses of commonly used metals and their plastic properties using the finite element inversion method. Materials typically exhibit plastic deformation mechanisms characterized by either linear or power-law hardening behaviors. Consequently, conventional prediction methods based on a single constitutive model may no longer be universally applicable. Hence, this study developed methods for acquiring mechanical properties suitable for either the power-law and linear hardening model, or combined, respectively, based on analyses of microstructures of materials exhibiting different hardening behaviors. We proposed a novel integrated IIT incorporating microstructures and material-specific constitutive models. Moreover, the inter-dependency between microstructural evolution and hardening behaviors was systematically investigated. The proposed method was validated on representative engineering steels, including austenitic stainless steel, structural steel, and low-alloy steel. The predicted deviations in yield strength and strain hardening exponent are broadly within 10%, with the maximum error at 12%. This study is expected to provide a fundamental framework for the advancement of IIT and structural integrity assessment. Full article
Show Figures

Figure 1

15 pages, 8982 KB  
Article
Radial Variation in Wood Anatomy of Cercis glabra and Its Application Potential: An Anatomy-Guided Approach to Sustainable Resource Utilization
by Pingping Guo, Xiping Zhao, Dongfang Wang, Yuying Zhang, Puxin Xie, Tifeng Zhao, Xinyi Zhao and Xinyi Lou
Plants 2025, 14(17), 2769; https://doi.org/10.3390/plants14172769 - 4 Sep 2025
Abstract
This study systematically analyzes the microstructure and radial variation of Cercis glabra wood, revealing its adaptive strategies for arid environments. The results show that the wood consists of thick-walled fibers (63%) and vessels (17.7%), with a semi-ring-porous structure and 48.4% average cell wall [...] Read more.
This study systematically analyzes the microstructure and radial variation of Cercis glabra wood, revealing its adaptive strategies for arid environments. The results show that the wood consists of thick-walled fibers (63%) and vessels (17.7%), with a semi-ring-porous structure and 48.4% average cell wall percentage. Fiber proportion peaks early (4 years), ensuring mechanical support, while vessel adjustment occurs later (19 years), balancing water transport. Rays decline sharply in the first 9 years, stabilizing thereafter, reflecting a shift from growth to structural stability. The high fiber proportion and occasional tyloses enhance durability, making it suitable for high-quality pulp, furniture, and humid environments such as shipbuilding. A rotation period ≥ 20 years ensures stable properties. Genetic breeding could shorten the juvenile stage and optimize vessel distribution. Future research should integrate multi-omics and environmental data to deepen our understanding of its adaptation mechanisms. This study provides a basis for the utilization of C. glabra resources. Full article
Show Figures

Figure 1

15 pages, 4260 KB  
Article
Research on the Ultrasonic Electro-Spark Deposition Process and the Properties of the Deposition Layer
by Bihan Li, Xiaobin Ma, Yongwei Liu, Hanqi Wang, Manyu Bao and Ruijun Wang
Coatings 2025, 15(9), 1038; https://doi.org/10.3390/coatings15091038 - 4 Sep 2025
Abstract
The continuous discharge voltage waveform and phenomena between the electrode and substrate were explored in this paper to study the ultrasonic electro-spark deposition process. Additionally, the impact of ultrasonics on the ultrasonic electro-spark deposition process and the properties of the deposition layer were [...] Read more.
The continuous discharge voltage waveform and phenomena between the electrode and substrate were explored in this paper to study the ultrasonic electro-spark deposition process. Additionally, the impact of ultrasonics on the ultrasonic electro-spark deposition process and the properties of the deposition layer were examined. The results show that the charge–discharge frequency of the ultrasonic electro-spark deposition process was commensurate with the discharge frequency of the ultrasonic electro-spark deposition power source, and the voltage waveform was stable. When ultrasonics is introduced, the molten droplet spray trajectory is efficiently guided, resulting in the spark spray trajectory displaying notable directional concentration characteristics. During a single charging and discharging phase, the electrode and substrate made roughly 15 mechanical contacts, 1 of which was discharging, and the remaining 14 were mechanically contacted reinforcement. The surface of the ultrasonic electro-spark deposition layer exhibited a sputtering morphology with no surface cracks. Phase structures such as Co3W3C, Fe3W3C, Fe6W6C, WC, and W2C constituted the majority of the ultrasonic electro-spark deposition layer’s microstructure and showed strong metallurgical bonds with the substrate. The ultrasonic electro-spark deposition layer has a surface roughness of 2.554 μm, a cross-section porosity of 1.3%, and a maximum microhardness of 1038.8 HV0.025. Comparative analysis demonstrates that the addition of ultrasonics can significantly enhance the deposition layer’s quality and performance. When compared to the electro-spark deposition layer, the surface roughness of the ultrasonic electro-spark deposition layer decreases by roughly 61.4%, the cross-sectional porosity decreases by around 57.5%, and the maximum microhardness increases by about 15.5%. Many cracks and much high surface roughness in the conventional electro-spark deposition layer are resolved by the ultrasonic electro-spark deposition technique, which is crucial for cold drawing mold surface strengthening. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

23 pages, 5091 KB  
Article
Erosion, Mechanical and Microstructural Evolution of Cement Stabilized Coarse Soil for Embankments
by Adel Belmana, Victor Cavaleiro, Mekki Mellas, Luis Andrade Pais, Hugo A. S. Pinto, Vanessa Gonçalves, Maria Vitoria Morais, André Studart and Leonardo Marchiori
Geotechnics 2025, 5(3), 62; https://doi.org/10.3390/geotechnics5030062 - 4 Sep 2025
Abstract
Internal erosion is a significant issue caused by water flow within soils, resulting in structural collapse of hydraulic structures, particularly in coarse soils located near rivers. These soils typically exhibit granulometric instability due to low clay content, resulting in poor hydraulic and mechanical [...] Read more.
Internal erosion is a significant issue caused by water flow within soils, resulting in structural collapse of hydraulic structures, particularly in coarse soils located near rivers. These soils typically exhibit granulometric instability due to low clay content, resulting in poor hydraulic and mechanical properties. To mitigate this problem, cement treatment is applied as an alternative to soil removal, reducing transportation and storage costs. The hole erosion test (HET) and Crumbs tests, shearing behaviour through consolidated undrained (CU) triaxial, and microstructure analyses regarding scanning electron microscopy (SEM), mercury intrusion porosimeter (MIP) and thermogravimetric analysis (TGA) were conducted for untreated and treated coarse soil specimens with varying cement contents (1%, 2%, and 3%) and curing durations (1, 7, and 28 days). The findings indicate a reduction in the loss of eroded particles and overall stability of treated soils, along with an improvement in mechanical properties. SEM observations reveal the development of hydration gel after treatment, which enhances cohesion within the soil matrix, corroborated by TGA analyses. MIP reveals the formation of a new class of pores, accompanied by a reduction in dry density. This study demonstrates that low cement addition can transform locally unsuitable soils into durable construction materials, reducing environmental impact and supporting sustainable development. Full article
Show Figures

Figure 1

16 pages, 3623 KB  
Article
A New Microstructural Concept and Water-Free Manufacturing of an Al2O3-Based Refractory Material for Auxiliary Equipment of Sintering Furnaces
by Monika Spyrka, Piotr Kula and Sebastian Miszczak
Materials 2025, 18(17), 4144; https://doi.org/10.3390/ma18174144 - 4 Sep 2025
Abstract
This study presents the development of a novel alumina-based ceramic composite designed for refractory applications in auxiliary components of sintering furnaces. The innovative concept relies on a three-phase microstructural architecture: a fine-grained alumina matrix improves cohesion, coarse particles act as crack propagation barriers, [...] Read more.
This study presents the development of a novel alumina-based ceramic composite designed for refractory applications in auxiliary components of sintering furnaces. The innovative concept relies on a three-phase microstructural architecture: a fine-grained alumina matrix improves cohesion, coarse particles act as crack propagation barriers, and spherical granules are intentionally introduced to increase porosity while preserving mechanical strength. This design reduces thermal capacity, enhancing the material’s energy efficiency under high-frequency thermal cycling and offering potential for operating cost reduction. A further novelty is the water-free forming process, which eliminates issues related to drying and deformation. The material was characterized using scanning electron microscopy (SEM), mechanical strength testing, and refractoriness under load (RUL) analysis to establish the structure–property relationships of the developed composite. The results demonstrate that the developed spherical alumina-based composite possesses excellent thermal and mechanical properties, making it a promising candidate for high-temperature industrial applications, particularly as auxiliary refractory plates. Full article
(This article belongs to the Special Issue High Temperature-Resistant Ceramics and Composites)
Show Figures

Figure 1

16 pages, 5094 KB  
Article
Fabrication of 3D Porous and Flexible Thermoplastic Polyurethane/Carbon Nanotube Composites Towards High-Performance Microwave Absorption
by Yanfang Li, Yandong Xu, Guangming Wen and Junwei Wang
Molecules 2025, 30(17), 3610; https://doi.org/10.3390/molecules30173610 - 3 Sep 2025
Abstract
Materials with the characteristics of lightweight, thinness, flexibility, strong absorption, and broad bandwidth are of great concern in the microwave absorption field. Herein, a novel and facile technique, the vapor-induced phase separation (VIPS) method, was adopted to fabricate flexible thermoplastic polyurethane (TPU)/carbon nanotube [...] Read more.
Materials with the characteristics of lightweight, thinness, flexibility, strong absorption, and broad bandwidth are of great concern in the microwave absorption field. Herein, a novel and facile technique, the vapor-induced phase separation (VIPS) method, was adopted to fabricate flexible thermoplastic polyurethane (TPU)/carbon nanotube (CNT) composites with a three-dimensional (3D) porous structure. The microstructure and electromagnetic wave absorption properties of the composites were tuned by varying the CNT weight ratio. The results show that the CNT established strong interfacial bonding with the TPU matrix. Different CNT weight ratios had a significant effect on the microstructure and electromagnetic parameters of the composites. The TPU/CNT composites achieved the minimum reflection loss (RLmin) of −25.33 dB at 2.35 mm and an effective absorption bandwidth (EAB) of 4.89 GHz at 1.6 mm with a relatively low CNT weight ratio of 1 wt%. The conductive loss, dielectric loss, and multiple scattering synergistically contribute to favorable microwave absorption performances. This study showcases the use of a facile fabrication approach for the generation of flexible and porous TPU-based or other polymer counterparts-based functional composites via the VIPS method; it also paves the way for the large-scale application of high-performance microwave absorption materials. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

15 pages, 4067 KB  
Article
The Use of Phase Change Materials for Thermal Management of Metal Hydride Reaction
by Ying Xu, Murray McCurdy and Mohammed Farid
Appl. Sci. 2025, 15(17), 9657; https://doi.org/10.3390/app15179657 - 2 Sep 2025
Viewed by 139
Abstract
To meet the massive increase in energy demand, extensive research has been conducted over the past few decades on developing clean and sustainable energy storage methods. Hydrogen is considered as one of the most promising future energy carriers due to its high energy [...] Read more.
To meet the massive increase in energy demand, extensive research has been conducted over the past few decades on developing clean and sustainable energy storage methods. Hydrogen is considered as one of the most promising future energy carriers due to its high energy density and renewability, but it requires storage. Storing hydrogen using metal hydride offers several advantages, including stability, safety compactness and reversibility of the hydrogen absorption/desorption process. Thermal management during hydrogen storage using metal hydride is critically important since the reaction between the metal and hydrogen is highly exothermic. We are aiming to develop thermal storage systems based on composite phase change materials (CPCMs) that absorb the heat generated during hydrogen absorption and release it during desorption, in an effort to improve energy storage efficiency. Lightweight, shape-stable CPCMs are prepared by loading the selected organic phase change materials into expanded graphite and hydrophobic monolithic silica aerogel. The chemical structure, microstructure, thermal properties and leakage of CPCMs are investigated. These samples were subjected to variable power electrical heating to simulate the heat generated during hydrogen reaction, forming lanthanum hydride, according to its published reaction kinetics. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

20 pages, 3004 KB  
Article
Synthesis, Characterization, and Evaluation of Photocatalytic and Gas Sensing Properties of ZnSb2O6 Pellets
by Jacob Morales-Bautista, Héctor Guillén-Bonilla, Lucia Ivonne Juárez-Amador, Alex Guillén-Bonilla, Verónica-María Rodríguez-Betancourtt, Jorge Alberto Ramírez-Ortega, José Trinidad Guillén-Bonilla and María de la Luz Olvera-Amador
Chemosensors 2025, 13(9), 329; https://doi.org/10.3390/chemosensors13090329 - 2 Sep 2025
Viewed by 183
Abstract
This work reports a low-cost, microwave-assisted wet chemistry synthesis of zinc antimonate (ZnSb2O6) powders with a trirutile structure, yielding highly homogeneous, nanometric particles. X-ray diffraction (XRD) confirmed the formation of the trirutile phase with lattice parameters of a = [...] Read more.
This work reports a low-cost, microwave-assisted wet chemistry synthesis of zinc antimonate (ZnSb2O6) powders with a trirutile structure, yielding highly homogeneous, nanometric particles. X-ray diffraction (XRD) confirmed the formation of the trirutile phase with lattice parameters of a = 4.664 Å and c = 9.263 Å, and an estimated crystallite size of 42 nm. UV–vis spectroscopy revealed a bandgap of 3.35 eV. Scanning electron microscopy (SEM) showed that ethylenediamine, as a chelating agent, formed porous microstructures of microrods and cuboids, ideal for enhanced gas adsorption. Brunauer–Emmett–Teller (BET) analysis revealed a specific surface area of 6 m2/g and a total pore volume of 0.0831 cm3/g, indicating a predominantly mesoporous structure. The gas sensing properties of ZnSb2O6 pellets were evaluated in CO and C3H8 atmospheres at 100, 200, and 300 °C. The material exhibited high sensitivity at 300 °C, where the maximum responses were 5.86 for CO at 300 ppm and 1.04 for C3H8 at 500 ppm. The enhanced sensitivity at elevated temperatures was corroborated by a corresponding decrease in electrical resistivity. Furthermore, the material demonstrated effective photocatalytic activity, achieving up to 60% degradation of methylene blue and 50% of malachite green after 300 min of UV irradiation, with the process following first-order reaction kinetics. These results highlight that ZnSb2O6 synthesized by this method is a promising bifunctional material for gas sensing and photocatalytic applications. Full article
(This article belongs to the Special Issue Advanced Chemical Sensors for Gas Detection)
Show Figures

Figure 1

15 pages, 4614 KB  
Article
Influence of Plasma Assistance on EB-PVD TBC Coating Thickness Distribution and Morphology
by Grzegorz Maciaszek, Krzysztof Cioch, Andrzej Nowotnik and Damian Nabel
Materials 2025, 18(17), 4109; https://doi.org/10.3390/ma18174109 - 1 Sep 2025
Viewed by 163
Abstract
In this study, the effects of plasma assistance on the electron beam physical vapour deposition (EB-PVD) process were investigated using an industrial coater (Smart Coater ALD Vacuum Technologies GmbH) equipped with a dual hollow cathode system. This configuration enabled the generation of a [...] Read more.
In this study, the effects of plasma assistance on the electron beam physical vapour deposition (EB-PVD) process were investigated using an industrial coater (Smart Coater ALD Vacuum Technologies GmbH) equipped with a dual hollow cathode system. This configuration enabled the generation of a plasma environment during the deposition of the ceramic top coat onto a metallic substrate. The objective was to assess how plasma assistance influences the microstructure and thickness distribution of 7% wt. yttria-stabilised zirconia (YSZ) thermal barrier coatings (TBCs). Coatings were deposited with and without plasma assistance to enable a direct comparison. The thickness uniformity and columnar morphology of the 7YSZ top coats were evaluated by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The mechanical properties of the deposited coatings were verified by the scratch test method. The results demonstrate that, in the presence of plasma, columnar grains become more uniformly spaced and exhibit sharper, well-defined boundaries even at reduced substrate temperatures. XRD analysis confirmed that plasma-assisted EB-PVD processes allow for maintaining the desired tetragonal phase of YSZ without inducing secondary phases or unwanted texture changes. These findings indicate that plasma-assisted EB-PVD can achieve desirable coating characteristics (uniform thickness and optimised columnar structure) more efficiently, offering potential advantages for high-temperature applications in aerospace and power-generation industries. Continued development of the EB-PVD process with the assistance of plasma generation could further improve deposition rates and TBC performance, underscoring the promising future of HC-assisted EB-PVD technology. Full article
(This article belongs to the Special Issue Advancements in Thin Film Deposition Technologies)
Show Figures

Figure 1

16 pages, 3291 KB  
Article
Aging-Induced Microstructural Transformations and Performance Enhancement of Cr/DLC Coatings on ECAP-7075 Aluminum Alloy
by Yuqi Wang, Tao He, Xiangyang Du, Artem Okulov, Alexey Vereschaka, Jian Li, Yang Ding, Kang Chen and Peiyu He
Coatings 2025, 15(9), 1017; https://doi.org/10.3390/coatings15091017 - 1 Sep 2025
Viewed by 179
Abstract
This study systematically investigates the effects of aging treatment (AT) on the microstructure and properties of Cr/DLC coatings deposited via cathodic arc ion plating onto the surface of ECAP-7075 aluminum alloy. Utilizing a comprehensive approach combining performance tests (nanoindentation, nanoscratch testing, dynamic polarization [...] Read more.
This study systematically investigates the effects of aging treatment (AT) on the microstructure and properties of Cr/DLC coatings deposited via cathodic arc ion plating onto the surface of ECAP-7075 aluminum alloy. Utilizing a comprehensive approach combining performance tests (nanoindentation, nanoscratch testing, dynamic polarization analysis) with characterization tests (scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy), the synergistic effects of equal channel angular pressing (ECAP) and aging treatment(AT) were elucidated. The results demonstrate that the combined ECAP and AT significantly enhance the coating’s performance. Specifically, AT promotes the precipitation of η’ phase within the 7075 aluminum alloy substrate, increases the size of Cr7C3 crystallites in the Cr-based interlayer, improves the crystallinity of the Cr7C3 phase on the (060) or (242) crystal planes, and elevates the sp3-C/sp2-C ratio in the diamond-like carbon(DLC) top layer, leading to partial healing of defects and a denser overall coating structure. These microstructural transformations, induced by AT, result in substantial improvements in the mechanical properties (hardness reaching 5.2 GPa, bond strength achieving 15.1 N) and corrosion resistance (corrosion potential increasing to -0.698 V) of the Cr/DLC-coated ECAP-7075 aluminum alloy. This enhanced combination of properties makes these coatings particularly well-suited for high-performance aerospace components requiring both wear resistance and corrosion protection in demanding environments. Full article
(This article belongs to the Special Issue Innovative Coatings for Corrosion Protection of Alloy Surfaces)
Show Figures

Figure 1

24 pages, 8697 KB  
Article
Recycling of Marine Sediments in Cement-Based Materials by Stabilization/Solidification Treatment: Effect on the Mechanical and Microstructural Properties
by Claudio Moreno Cino, Andrea Petrella, Francesco Todaro and Michele Notarnicola
Recycling 2025, 10(5), 169; https://doi.org/10.3390/recycling10050169 - 1 Sep 2025
Viewed by 199
Abstract
Port maintenance causes large quantities of dredged sediment throughout the world. The disposal of this material in authorised landfills is economically disadvantageous, as well as being at odds with a circular economy model with a reduced impact on the environment. The application of [...] Read more.
Port maintenance causes large quantities of dredged sediment throughout the world. The disposal of this material in authorised landfills is economically disadvantageous, as well as being at odds with a circular economy model with a reduced impact on the environment. The application of stabilization/solidification treatment to dredged marine sediments allows an improvement of their physical and mechanical properties, together with the production of cement-based materials that can be used for road construction, as well as for making blocks and bricks. In this study, an experimental laboratory investigation is carried out on two samples of sandy sediments collected from the Mola di Bari harbour (Southern Italy), to identify sustainable management options for recovering materials that will be dredged. To assess the influence on mortars made from sediments with variable organic matter content and seawater, these were characterised from a chemical–physical point of view before and after washing treatment and oxidative processes. The products of the Stabilization/Solidification (S/S) treatment were evaluated in terms of workability, flexural and compressive strengths, and, furthermore, a microstructural study was conducted using SEM-EDX and optical microscopy to analyse the internal structure of the materials. The mechanical performance evaluation clearly demonstrated organic matter’s negative impact on strength development, resulting in a 16% reduction. Pre-treatments, such as sediment washing, effectively improved the performance of treated sediments (e.g., 24% increase in compressive strength). This study aims to demonstrate the benefits of recycling marine sediments in cement-based materials, highlighting how this process can enhance circularity and sustainability while reducing the environmental impact of dredging activities. Full article
(This article belongs to the Topic Advances and Innovations in Waste Management)
Show Figures

Figure 1

Back to TopTop