Loading [MathJax]/jax/output/HTML-CSS/jax.js
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = structurally and superficially bound modes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1716 KiB  
Article
Distribution of Trace Elements (Ag, Pd, Cd, and Mn) between Pyrite and Pyrrhotite and Selectivity of Surficial Nonautonomous Phases in a Hydrothermal System
by Sergey Lipko, Vladimir Tauson, Nikolay Smagunov, Dmitriy Babkin and Irina Parkhomenko
Minerals 2022, 12(9), 1165; https://doi.org/10.3390/min12091165 - 15 Sep 2022
Cited by 4 | Viewed by 1917
Abstract
The dual distribution coefficients (D) that are related to structurally and superficially bound trace element (TE) in pyrite (Py) and pyrrhotite (Po) associations, crystallized hydrothermally at 400 °C and 1 kbar pressure, were determined. Three independent methods were used to estimate [...] Read more.
The dual distribution coefficients (D) that are related to structurally and superficially bound trace element (TE) in pyrite (Py) and pyrrhotite (Po) associations, crystallized hydrothermally at 400 °C and 1 kbar pressure, were determined. Three independent methods were used to estimate the structural and surficial TE contents (Cstr and Csur) and the corresponding D Py/Po values (Dstr and Dsur), which were found, on average, to be 12.4, 0.8, 0.9, and 0.06 (Dstr) and 2.6, 0.7, 2.0, and 0.07 (Dsur) for Ag, Pd, Cd, and Mn, respectively. The coincidence of a dual D for several elements was a result of coupled changes in Csur and Cstr. The selectivity (S) of the surficial nonautonomous phases (NAPs) that were responsible for TE accumulation (which is the ratio of TE concentrations in surficial and structural modes) was determined. It was shown that the interpretation of TE uptake by surficial phases was adequate and that this phenomenon is common in nature, independently of the system where it occurs—i.e., in experimental autoclaves or in hydrothermal ore deposits. Studies of NAPs selectivity can help in evaluating the total element compatibility in minerals and the maximum possible contents of structurally bound admixtures of the element (solubility) in minerals under given conditions. A significant surficial impurity accumulation effect is most important and well-pronounced for incompatible micro-elements with concentrations of less than ~0.1 wt%. The surficial mode may be a source of Pd and other platinum group elements and more abundant and easily refined than the structurally bound mode. Full article
Show Figures

Figure 1

27 pages, 4076 KiB  
Article
Trace Element Partitioning Dualism under Mineral–Fluid Interaction: Origin and Geochemical Significance
by Vladimir L. Tauson, Sergey V. Lipko, Nikolay V. Smagunov and Raisa G. Kravtsova
Minerals 2018, 8(7), 282; https://doi.org/10.3390/min8070282 - 30 Jun 2018
Cited by 25 | Viewed by 5002
Abstract
Trace element (TE) partitioning in the system “mineral-hydrothermal solution” is studied by the method of thermo-gradient crystal growth coupled with internal sampling of a fluid phase. The analytical procedure used enables evaluating of structurally bound and superficially bound modes of TE in crystals [...] Read more.
Trace element (TE) partitioning in the system “mineral-hydrothermal solution” is studied by the method of thermo-gradient crystal growth coupled with internal sampling of a fluid phase. The analytical procedure used enables evaluating of structurally bound and superficially bound modes of TE in crystals and determining corresponding dual partition coefficients. The case of precious metals (PM—Au, Pt, Pd) at 450 and 500 °C and 100 MPa pressure is considered. The minerals are pyrite, As-pyrite, magnetite, Mn-magnetite and hematite and fluids are ammonium chloride-based hydrothermal solutions. The partition coefficients for structural and surficial modes, Dstrp and Dsurp, are found to be unexpectedly high (except for Au in pyrite). High concentrations of PM are attributed to superficial nonautonomous phases (NAPs), which can be considered as primary concentrators of PM. We also have studied the co-crystallization (exchange) coefficients (De) of REE (Ce, Eu, Er, Yb) and Fe in magnetite and hematite at 450 °C and 100 MPa. Dsure is elevated to two orders of magnitude as compared to Dstre. It is shown that not only physicochemical parameters affect REE distribution in hydrothermal systems, but also NAP presence and its composition. The crystal growth mechanism specified by the agency of NAP is suggested. The study of PM distribution in natural pyrite of gold-ore deposits supported the importance of differentiating between structurally and superficially bound TE modes for correct use of experimental D values to determining element concentrations in ore-forming fluids. Full article
Show Figures

Figure 1

Back to TopTop