Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = structure-type rockburst

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 6966 KB  
Article
Uniaxial Compressive Mechanical Behavior of Coals with Different Joint Spacing and Angles: A DEM Numerical Simulation Study
by Herui Zhang, Enyuan Wang, Jianhua Yue, Bin Miao, Danyang Xi and Xiaozhen Teng
Appl. Sci. 2025, 15(16), 9196; https://doi.org/10.3390/app15169196 - 21 Aug 2025
Cited by 1 | Viewed by 389
Abstract
Coal rupture in coal mining is prone to cause rockburst dynamic hazards. To investigate the effect of joint structure characteristics on the mechanical behavior and the fracture mechanism of coal sample. In this study, uniaxial compression numerical simulation experiments were carried out on [...] Read more.
Coal rupture in coal mining is prone to cause rockburst dynamic hazards. To investigate the effect of joint structure characteristics on the mechanical behavior and the fracture mechanism of coal sample. In this study, uniaxial compression numerical simulation experiments were carried out on coal sample with joint spacings (JSs) of 3 mm and 6 mm and joint angles (JAs) of 0°, 30°, 60°, 90°, respectively, by using the discrete element method (DEM) method. The combined effect of JS and JA on the mechanical properties of coal and its damage mechanism is investigated. The results show that: (1) By increasing JA, the uniaxial compressive strength (UCS) of the specimen first decreased and increased, and the UCS was minimized at θ = 60°. The cracks in the coal sample were transformed from “X”-shaped distribution to “V”-shaped distribution and were dominated by shear cracks. (2) The enlargement of JS contributed to increasing the UCS of the coal sample. At the same time, the crack length remarkably expanded, and the crack distribution broadened. (3) A smaller JA favors the development of tensile cracks and the aggregation of tensile chains towards the end of the specimen. The cracking inclination of the coal sample showed an inverse “N”-type movement with the increase in JA. (4) As the increase in JS benefits the forming of tensile cracks, the extension of cracking inclination of coal sample diminishes. The spread range and accumulation level of tensile chain grows. Full article
Show Figures

Figure 1

29 pages, 21376 KB  
Article
Numerical Simulation of Fracture Failure Propagation in Water-Saturated Sandstone with Pore Defects Under Non-Uniform Loading Effects
by Gang Liu, Yonglong Zan, Dongwei Wang, Shengxuan Wang, Zhitao Yang, Yao Zeng, Guoqing Wei and Xiang Shi
Water 2025, 17(12), 1725; https://doi.org/10.3390/w17121725 - 7 Jun 2025
Cited by 1 | Viewed by 699
Abstract
The instability of mine roadways is significantly influenced by the coupled effects of groundwater seepage and non-uniform loading. These interactions often induce localized plastic deformation and progressive failure, particularly in the roof and sidewall regions. Seepage elevates pore water pressure and deteriorates the [...] Read more.
The instability of mine roadways is significantly influenced by the coupled effects of groundwater seepage and non-uniform loading. These interactions often induce localized plastic deformation and progressive failure, particularly in the roof and sidewall regions. Seepage elevates pore water pressure and deteriorates the mechanical properties of the rock mass, while non-uniform loading leads to stress concentration. The combined effect facilitates the propagation of microcracks and the formation of shear zones, ultimately resulting in localized instability. This initial damage disrupts the mechanical equilibrium and can evolve into severe geohazards, including roof collapse, water inrush, and rockburst. Therefore, understanding the damage and failure mechanisms of mine roadways at the mesoscale, under the combined influence of stress heterogeneity and hydraulic weakening, is of critical importance based on laboratory experiments and numerical simulations. However, the large scale of in situ roadway structures imposes significant constraints on full-scale physical modeling due to limitations in laboratory space and loading capacity. To address these challenges, a straight-wall circular arch roadway was adopted as the geometric prototype, with a total height of 4 m (2 m for the straight wall and 2 m for the arch), a base width of 4 m, and an arch radius of 2 m. Scaled physical models were fabricated based on geometric similarity principles, using defect-bearing sandstone specimens with dimensions of 100 mm × 30 mm × 100 mm (length × width × height) and pore-type defects measuring 40 mm × 20 mm × 20 mm (base × wall height × arch radius), to replicate the stress distribution and deformation behavior of the prototype. Uniaxial compression tests on water-saturated sandstone specimens were performed using a TAW-2000 electro-hydraulic servo testing system. The failure process was continuously monitored through acoustic emission (AE) techniques and static strain acquisition systems. Concurrently, FLAC3D 6.0 numerical simulations were employed to analyze the evolution of internal stress fields and the spatial distribution of plastic zones in saturated sandstone containing pore defects. Experimental results indicate that under non-uniform loading, the stress–strain curves of saturated sandstone with pore-type defects typically exhibit four distinct deformation stages. The extent of crack initiation, propagation, and coalescence is strongly correlated with the magnitude and heterogeneity of localized stress concentrations. AE parameters, including ringing counts and peak frequencies, reveal pronounced spatial partitioning. The internal stress field exhibits an overall banded pattern, with localized variations induced by stress anisotropy. Numerical simulation results further show that shear failure zones tend to cluster regionally, while tensile failure zones are more evenly distributed. Additionally, the stress field configuration at the specimen crown significantly influences the dispersion characteristics of the stress–strain response. These findings offer valuable theoretical insights and practical guidance for surrounding rock control, early warning systems, and reinforcement strategies in water-infiltrated mine roadways subjected to non-uniform loading conditions. Full article
Show Figures

Figure 1

20 pages, 7333 KB  
Article
Experimental Simulation Investigation on Slab Buckling Rockburst in Deep Tunnel
by Chao Ren, Xiaoming Sun, Manchao He and Dongqiao Liu
Appl. Sci. 2025, 15(4), 1682; https://doi.org/10.3390/app15041682 - 7 Feb 2025
Cited by 1 | Viewed by 1083
Abstract
The relationship between slabbing failure and rockburst has become a hot issue in rockburst research. In this paper, the experimental system of impact rockburst is used to conduct a simulation experiment of rockburst induced by slab failure on metamorphic sandstone samples taken from [...] Read more.
The relationship between slabbing failure and rockburst has become a hot issue in rockburst research. In this paper, the experimental system of impact rockburst is used to conduct a simulation experiment of rockburst induced by slab failure on metamorphic sandstone samples taken from the deep-buried horseshoe-shaped tunnel in Gaoloushan, with “pan-shaped” rockburst pits on site and laboratory simulation experiments, which prove the rationality of the experimental results of rockburst. The quantitative analysis of the displacement field in the process of the slab buckling rockburst is carried out, which shows that the slab structure will undergo a long period of gestation before its formation, and the formation of the slab structure will accelerate the occurrence of rockburst. This type of rockburst has attenuation characteristics in the process of rockburst; in addition, the phenomenon of “slab buckling circle” is found. The generation of the “slab buckling circle” and the formation of slab buckling cracks are inconsistent, which is a time-lagged fracture in engineering. The relationship between the rupture parameters of rockburst disaster rock mass and time shows a compound exponential growth relationship, revealing that the mechanism of the slab buckling rockburst can be regarded as the result of the combined action of shear crack and tension crack, which plays a leading role, reflecting the characteristic of progressive fracture development. It is a typical progressive fracture-induced instability rockburst model, which is a strain-lag rockburst. Full article
Show Figures

Figure 1

23 pages, 9129 KB  
Article
A Study on the Energy Absorption Performance of Mine Grooved Conical Tube Energy Absorption Components
by Ziyang Li, Xiaochun Xiao, Jun Xu and Bin Sun
Buildings 2025, 15(3), 437; https://doi.org/10.3390/buildings15030437 - 30 Jan 2025
Viewed by 947
Abstract
When rockbursts occur, hydraulic support is prone to impact failure, which leads to severe casualties and economic losses. To improve the performance of hydraulic support structures under impact loading, a grooved conical tube is designed as an energy absorption device to avoid hydraulic [...] Read more.
When rockbursts occur, hydraulic support is prone to impact failure, which leads to severe casualties and economic losses. To improve the performance of hydraulic support structures under impact loading, a grooved conical tube is designed as an energy absorption device to avoid hydraulic columns being destroyed. The performance of the grooved conical tube during deformation is studied using simulation, considering the wall thickness, cone angle and number of grooves. The equivalent axial load of the grooved conical tube component is derived by studying the energy dissipation path. And the grooved conical tube’s structure is optimized. The results show that the Y3-5-10 (cone angle: 3°; number of grooves: 5; wall thickness: 10 mm) grooved conical tube shows excellent performance among the twenty-seven types of structures. In addition, the equivalent axial load prediction formula for the grooved conical tube has a high prediction accuracy. Furthermore, after multi-objective optimization, the mean square error is decreased by 20.6%, and the effective energy absorption is increased by 6.0%, which is able to make the energy absorption process more stable. Compared with widely used corrugated square tubes, the effective deformation distance of the grooved conical tube is increased by 27.2%, and the effective energy absorption is increased by 37.1%. The grooved conical tube has advantages in its effective deformation distance and effective energy absorption. These results are expected to provide sufficient time for the opening of the support column’s relief valve and to enhance the impact resistance of the hydraulic support, which is highly important for the prevention of rockbursts. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

20 pages, 5806 KB  
Review
A Review of Mechanical Properties and Rockburst Investigation of Transversely Isotropic Rocks by Experimental Technique
by Xuefeng Si, Song Luo and Yong Luo
Materials 2023, 16(8), 3183; https://doi.org/10.3390/ma16083183 - 18 Apr 2023
Cited by 21 | Viewed by 3736
Abstract
Under complex geostress caused by long-term geological evolution, approximately parallel bedding structures are normally created in rocks due to sedimentation or metamorphism. This type of rock is known as transversely isotropic rock (TIR). Due to the existence of bedding planes, the mechanical properties [...] Read more.
Under complex geostress caused by long-term geological evolution, approximately parallel bedding structures are normally created in rocks due to sedimentation or metamorphism. This type of rock is known as transversely isotropic rock (TIR). Due to the existence of bedding planes, the mechanical properties of TIR are quite different from those of relatively homogeneous rocks. The purpose of this review is to discuss the research progress into the mechanical properties and failure characteristics of TIR and to explore the influence of the bedding structure on the rockburst characteristics of the surrounding rocks. First, the P-wave velocity characteristics of the TIR is summarized, followed by the mechanical properties (e.g., the uniaxial compressive strength, the triaxial compressive strength, and tensile strength) and the related failure characteristics of the TIR. The strength criteria of the TIR under triaxial compression are also summarized in this section. Second, the research progress of the rockburst tests on the TIR is reviewed. Finally, six prospects for the study of the transversely isotropic rock are presented: (1) measuring the Brazilian tensile strength of the TIR; (2) establishing the strength criteria for the TIR; (3) revealing the influence mechanism of the mineral particles between the bedding planes on rock failure from the microscopic point of view; (4) investigating the mechanical properties of the TIR in complex environments; (5) experimentally investigating the rockburst of the TIR under the stress path of “the three-dimensional high stress + internal unloading + dynamic disturbance”; and (6) studying the influence of the bedding angle, thickness, and number on the rockburst proneness of the TIR. Finally, some conclusions are summarized. Full article
Show Figures

Figure 1

35 pages, 7208 KB  
Review
An Insight from Rock Bolts and Potential Factors Influencing Their Durability and the Long-Term Stability of Deep Rock Tunnels
by Wadslin Frenelus, Hui Peng and Jingyu Zhang
Sustainability 2022, 14(17), 10943; https://doi.org/10.3390/su141710943 - 1 Sep 2022
Cited by 17 | Viewed by 6454
Abstract
Selecting and designing the most suitable support systems are crucial for securing underground openings, limiting their deformation and ensuring their long-term stability. Indeed, the rock excavations imposed by the erection of deep tunnels generate various harmful effects such as stress perturbation, damage, fractures, [...] Read more.
Selecting and designing the most suitable support systems are crucial for securing underground openings, limiting their deformation and ensuring their long-term stability. Indeed, the rock excavations imposed by the erection of deep tunnels generate various harmful effects such as stress perturbation, damage, fractures, rockbursts, convergence deformation, and so on. To combat such effects by helping the surrounding rocks of these structures to hold up, rock bolts are typically utilized as pioneer support systems. However, the latter must be efficient and sustainable to properly fulfil their vital roles. A thorough understanding of the existing rock bolt types or models and the relevant factors influencing their failure is highly required for appropriate selection, design and applications. It is observed that, despite numerous studies carried out, there is a lack of comprehensive reviews concerning the advances in such rock support systems. This paper provides an insight into the most pertinent rock bolt types or models and describes the potential factors influencing their failure. Additionally, it discusses the durability of rock bolts, which has a huge impact on the long-term stability of deep rock tunnels. Furthermore, the paper highlights some proposals for future trends. Full article
Show Figures

Figure 1

20 pages, 47388 KB  
Article
Research on the Method and Model for Calculating Impact Load in the Rockburst Tunnel
by Zhiwei Yan, Dagang Liu, Zhilong Wang, Daming Zhao and Hongtao Tian
Minerals 2022, 12(1), 13; https://doi.org/10.3390/min12010013 - 22 Dec 2021
Cited by 5 | Viewed by 3085
Abstract
Among several design methods of tunnel supporting structure, the load-structure method is widely used in different countries, but the determination of load is essential in this design method. The problem of rockburst is becoming more prominent as tunnel engineering enters the deep underground [...] Read more.
Among several design methods of tunnel supporting structure, the load-structure method is widely used in different countries, but the determination of load is essential in this design method. The problem of rockburst is becoming more prominent as tunnel engineering enters the deep underground space. However, the research on the impact load on the supporting structure is insufficient in relevant fields. Therefore, from the perspective of energy, this paper deduces the method and model for calculating the impact load of the rockburst tunnel acting on the supporting structure by using the method of structural mechanics first, after the location effect of impact load is determined under different section types and different section sizes. The results indicated that: dynamic load factor K is related to the stiffness EI and supporting size coefficient K0 of the supporting structure, also the difference of impact load in different sections is proved. Tunnel rockburst-prone location is related to lateral pressure coefficient, thus when λ = 1, the probability of rockburst in the whole circular tunnel is the same, while side wall and vault are prone to rockburst in single-track horseshoe tunnel, and the side wall is prone to rockburst in double-track horseshoe tunnel; furthermore when λ > 1, the vault and the inverted arch are prone to rockburst; additionally, when λ < 1, the rockburst is most likely to occur in the arch waist of the circular tunnel and the side walls and the arch waist of the horseshoe tunnel. Finally, the rockburst tunnel’s local load-structure calculation model and the calculation process based on the model are provided. Full article
(This article belongs to the Special Issue Failure Characteristics of Deep Rocks)
Show Figures

Figure 1

25 pages, 2671 KB  
Review
Review on Early Warning Methods for Rockbursts in Tunnel Engineering Based on Microseismic Monitoring
by Shichao Zhang, Chunan Tang, Yucheng Wang, Jiaming Li, Tianhui Ma and Kaikai Wang
Appl. Sci. 2021, 11(22), 10965; https://doi.org/10.3390/app112210965 - 19 Nov 2021
Cited by 14 | Viewed by 3851
Abstract
Due to the different geological conditions and construction methods associated with different projects, rockbursts in deep-buried tunnels often present different precursor characteristics, bringing major challenges to the early warning of rockbursts. To adapt to the complexity of engineering, it is necessary to review [...] Read more.
Due to the different geological conditions and construction methods associated with different projects, rockbursts in deep-buried tunnels often present different precursor characteristics, bringing major challenges to the early warning of rockbursts. To adapt to the complexity of engineering, it is necessary to review the latest advancements in rockburst early warning and to discuss general early warning methods. In this article, first, microseismic monitoring and localization methods applicable under tunneling construction are reviewed. Based on the latest engineering examples and research progress, the microseismic evolution characteristics of the rockburst formation process are summarized, and the formation process and mechanism of structure-type and delayed rockbursts are analyzed. The different methods for predicting the risk and level of rockbursts using microseismic indices are reviewed, and the implementation methods and application cases for predicting potential rockburst areas and rockburst probability based on a mechanical model are expounded. Finally, combined with the new practice in early warning methods, development directions for the early warning of rockbursts are put forward. Full article
(This article belongs to the Special Issue Tunneling and Underground Engineering: From Theories to Practices)
Show Figures

Figure 1

26 pages, 77327 KB  
Article
Study on Evolution Mechanism of Structure-Type Rockburst: Insights from Discrete Element Modeling
by Chenxi Zhang, Diyuan Li, Shunchuan Wu, Long Chen and Jun Peng
Sustainability 2021, 13(14), 8036; https://doi.org/10.3390/su13148036 - 19 Jul 2021
Cited by 6 | Viewed by 2810
Abstract
Taking the “11.28” rockburst occurred in the Jinping II Hydropower Station as the engineering background, the evolution mechanism of structure-type rockburst was studied in detail based on the particle flow code. The results indicate that the failure mechanism of structure-type rockburst includes a [...] Read more.
Taking the “11.28” rockburst occurred in the Jinping II Hydropower Station as the engineering background, the evolution mechanism of structure-type rockburst was studied in detail based on the particle flow code. The results indicate that the failure mechanism of structure-type rockburst includes a tensile fracture induced by tangential compressive stress and a shear fracture caused by shear stress due to overburdened loadings and shear slip on the structural plane. In addition, it is found that the differences between structure-type rockburst and strainburst mainly include (a) the distribution of the local concentrated stress zone after excavation, (b) the evolution mechanism, and (c) the failure locations. Finally, the influence of four factors on the structure-type rockburst are explored. The results show that (1) when the friction coefficient is greater than 0.5, the effect of structural plane is weakened, and the rock near excavation tends to be intact, the structural-type rockburst intensity decreases; (2) the dissipated and radiated energy in structural-type rockburst reduces with rockmass heterogeneity m; (3) the lateral pressure coefficient has a significant effect on the intensity of deep rock failure, specifically in the form of the rapid growth in dissipative energy; (4) and the structural-type rockburst is more pronounced at a structural plane length near 90 mm. Full article
(This article belongs to the Special Issue Advances in Rock Mechanics and Geotechnical Engineering)
Show Figures

Figure 1

Back to TopTop