Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = subaqueous slide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6577 KB  
Article
An Acoustic Sensor System to Measure Aeolian Ripple Morphology and Migration Rates
by Pei Zhang, Jinsu Bae, Eric J. R. Parteli, Diane Sherman and Douglas J. Sherman
Sensors 2024, 24(20), 6555; https://doi.org/10.3390/s24206555 - 11 Oct 2024
Viewed by 1282
Abstract
Acoustic distance sensors have a long history of use to detect subaqueous bedforms. There have been few comparable applications for aeolian bedforms such as ripples. To address this, we developed a simple and reliable apparatus comprising a pair of distance sensors, a bracket [...] Read more.
Acoustic distance sensors have a long history of use to detect subaqueous bedforms. There have been few comparable applications for aeolian bedforms such as ripples. To address this, we developed a simple and reliable apparatus comprising a pair of distance sensors, a bracket upon which they are mounted, and a base upon which the bracket can slide. Our system relies on two Senix Corporation (Hinesburg, VT, USA), ToughSonic® model 14-TSPC-30S1-232 acoustic distance sensors: one to measure surface elevation changes (in this case, ripple morphology) and a second to measure horizontal location. The ToughSonic® vertical resolution was 0.22 mm and the horizontal scan distance was about 0.60 m with a locational accuracy of 0.22 mm. The measurement rate was 20 Hz, but we over-sampled at 1 KHz. Signal processing involves converting volts to meters, detrending the data, and removing noise. Analysis produces ripple morphologies and migration rates that conform with independent measurements. The advantages of this system relative to terrestrial laser scanning or structure from motion are described. Full article
(This article belongs to the Special Issue Advances in Photoacoustic Resonators and Sensors)
Show Figures

Figure 1

17 pages, 17225 KB  
Article
Development of Chaos Terrain as Subaqueous Slide Blocks in Galilaei Crater, Mars
by Nabila Nizam, Claire Divola, Mackenzie Day, An Yin and Seulgi Moon
Remote Sens. 2022, 14(9), 1998; https://doi.org/10.3390/rs14091998 - 21 Apr 2022
Cited by 3 | Viewed by 3436
Abstract
Chaos terrain, expressed as enigmatic blocky landscapes on Mars, has poorly understood origins. Several hypotheses have been put forward to explain chaos terrain formation, but none fully account for the morphologies observed in Galilaei crater, the focus of this study. Previously inferred to [...] Read more.
Chaos terrain, expressed as enigmatic blocky landscapes on Mars, has poorly understood origins. Several hypotheses have been put forward to explain chaos terrain formation, but none fully account for the morphologies observed in Galilaei crater, the focus of this study. Previously inferred to be a paleolake, Galilaei crater hosts chaos terrain composed of kilometer-scale, disorganized blocks around the southern and southeastern margin of the crater. Blocks are concentrated near the base of the crater wall, with blocks of decreasing size extending into the crater interior. The crater wall slope in regions where these chaos blocks are present is notably lower than in regions where blocks are absent. Based on the observed morphologies, we propose the chaos terrain in Galilaei crater formed by gravity-driven slope failure and down-slope transport as subaqueous landslides and mass flows, initiated at a time when the paleolake level was still high. We propose and discuss Earth analogs for the observed terrain and use mapping-constrained spatiotemporal relationships to reconstruct the sequence of landform development. Subaqueous landslides represent an uncommonly invoked mechanism to explain chaos terrain on Mars, reinforcing the idea that one mechanism cannot explain the diversity of this enigmatic terrain. Full article
(This article belongs to the Special Issue Mars Remote Sensing)
Show Figures

Figure 1

10 pages, 4049 KB  
Article
Wave-Induced Seafloor Instability in the Yellow River Delta: Flume Experiments
by Xiuhai Wang, Chaoqi Zhu and Hongjun Liu
J. Mar. Sci. Eng. 2019, 7(10), 356; https://doi.org/10.3390/jmse7100356 - 6 Oct 2019
Cited by 14 | Viewed by 3382
Abstract
Geological disasters of seabed instability are widely distributed in the Yellow River Delta, posing a serious threat to the safety of offshore oil platforms and submarine pipelines. Waves act as one of the main factors causing the frequent occurrence of instabilities in the [...] Read more.
Geological disasters of seabed instability are widely distributed in the Yellow River Delta, posing a serious threat to the safety of offshore oil platforms and submarine pipelines. Waves act as one of the main factors causing the frequent occurrence of instabilities in the region. In order to explore the soil failure mode and the law for pore pressure response of the subaqueous Yellow River Delta under wave actions, in-lab flume tank experiments were conducted in this paper. In the experiments, wave loads were applied with a duration of 1 hour each day for 7 consecutive days; pore water pressure data of the soil under wave action were acquired, and penetration strength data of the sediments were determined after wave action. The results showed that the fine-grained seabed presented an arc-shaped oscillation failure form under wave action. In addition, the sliding surface firstly became deeper and then shallower with the wave action. Interestingly, the distribution of pores substantially coincided with that of sliding surfaces. For the first time, gas holes were identified along with their positioning and angle with respect to the sediments. The presence of gas may serve as a primer for submarine slope failures. The wave process can lead to an increase in the excess pore pressure, while the anti-liquefaction capacity of the sediments was improved, causing a decrease in the excess pore pressure resulting from the next wave process. Without new depositional sediments, the existing surface sediments can form high-strength formation under wave actions. The test results may provide a reference for numerical simulations and engineering practice. Full article
(This article belongs to the Special Issue New Advances in Marine Engineering Geology)
Show Figures

Figure 1

Back to TopTop