Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = superallowed Fermi beta decay

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 603 KB  
Article
The St. Benedict Facility: Probing Fundamental Symmetries through Mixed Mirror β-Decays
by William S. Porter, Daniel W. Bardayan, Maxime Brodeur, Daniel P. Burdette, Jason A. Clark, Aaron T. Gallant, Alicen M. Houff, James J. Kolata, Biying Liu, Patrick D. O’Malley, Caleb Quick, Fabio Rivero, Guy Savard, Adrian A. Valverde and Regan Zite
Atoms 2023, 11(10), 129; https://doi.org/10.3390/atoms11100129 - 11 Oct 2023
Cited by 2 | Viewed by 1997
Abstract
Precise measurements of nuclear beta decays provide a unique insight into the Standard Model due to their connection to the electroweak interaction. These decays help constrain the unitarity or non-unitarity of the Cabibbo–Kobayashi–Maskawa (CKM) quark mixing matrix, and can uniquely probe the existence [...] Read more.
Precise measurements of nuclear beta decays provide a unique insight into the Standard Model due to their connection to the electroweak interaction. These decays help constrain the unitarity or non-unitarity of the Cabibbo–Kobayashi–Maskawa (CKM) quark mixing matrix, and can uniquely probe the existence of exotic scalar or tensor currents. Of these decays, superallowed mixed mirror transitions have been the least well-studied, in part due to the absence of data on their Fermi to Gamow-Teller mixing ratios (ρ). At the Nuclear Science Laboratory (NSL) at the University of Notre Dame, the Superallowed Transition Beta-Neutrino Decay Ion Coincidence Trap (St. Benedict) is being constructed to determine the ρ for various mirror decays via a measurement of the beta–neutrino angular correlation parameter (aβν) to a relative precision of 0.5%. In this work, we present an overview of the St. Benedict facility and the impact it will have on various Beyond the Standard Model studies, including an expanded sensitivity study of ρ for various mirror nuclei accessible to the facility. A feasibility evaluation is also presented that indicates the measurement goals for many mirror nuclei, which are currently attainable in a week of radioactive beam delivery at the NSL. Full article
(This article belongs to the Special Issue Advances in Ion Trapping of Radioactive Ions)
Show Figures

Figure 1

29 pages, 721 KB  
Review
Isospin-Symmetry Breaking within the Nuclear Shell Model: Present Status and Developments
by Nadezda A. Smirnova
Physics 2023, 5(2), 352-380; https://doi.org/10.3390/physics5020026 - 31 Mar 2023
Cited by 10 | Viewed by 5598
Abstract
The paper reviews the recent progress in the description of isospin-symmetry breaking within the nuclear shell model and applications to actual problems related to the structure and decay of exotic neutron-deficient nuclei and nuclei along the N=Z line, where N is [...] Read more.
The paper reviews the recent progress in the description of isospin-symmetry breaking within the nuclear shell model and applications to actual problems related to the structure and decay of exotic neutron-deficient nuclei and nuclei along the N=Z line, where N is the neutron number and Z the atomic number. The review recalls the fundamentals of the isospin formalism for two-nucleon and many-nucleon systems, including quantum numbers, the spectrum’s structure and selection rules for weak and electromagnetic transitions; and at the end, summarizes experimental signatures of isospin-symmetry breaking effects, which motivated efforts towards the creation of a relevant theoretical framework to describe those phenomena. The main approaches to construct accurate isospin-nonconserving Hamiltonians within the shell model are briefly described and recent advances in the description of the structure and (isospin-forbidden) decay modes of neutron-deficient nuclei are highlighted. The paper reviews major implications of the developed theoretical tools to (i) the fundamental interaction studies on nuclear decays and (ii) the estimation of the rates of nuclear reactions that are important for nuclear astrophysics. The shell model is shown to be one of the most suitable approaches to describing isospin-symmetry breaking in nuclear states at low energies. Further efforts in extending and refining the description to larger model spaces, and in developing first-principle theories to deal with isospin-symmetry breaking in many-nucleon systems, seem to be indispensable steps towards our better understanding of nuclear properties in the precision era. Full article
Show Figures

Figure 1

15 pages, 456 KB  
Article
Beta Decay in Medium-Mass Nuclei with the In-Medium Similarity Renormalization Group
by Steven Ragnar Stroberg
Particles 2021, 4(4), 521-535; https://doi.org/10.3390/particles4040038 - 18 Nov 2021
Cited by 9 | Viewed by 3836
Abstract
We review the status of ab initio calculations of allowed beta decays (both Fermi and Gamow–Teller), within the framework of the valence-space in-medium similarity renormalization group approach. Full article
(This article belongs to the Special Issue Beta-Decay Processes in Nuclear Systems)
Show Figures

Figure 1

Back to TopTop