Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,523)

Search Parameters:
Keywords = surface engineering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 4694 KB  
Review
Review of the Current State of Optical Characterization and Design of Electronic States in Plasmonic Materials—From Noble Metals to Silverene and Goldene
by Rosen Todorov and Temenuga Hristova-Vasileva
Nanomaterials 2025, 15(20), 1548; https://doi.org/10.3390/nano15201548 - 10 Oct 2025
Abstract
Materials’ plasmon activity is defined by their electronic structure. Nowadays, the application of plasmonic materials is increasingly determined by the possibilities to control the electronic processes in them. The electronic structure’s design is of particular importance for tuning the plasmon frequency and the [...] Read more.
Materials’ plasmon activity is defined by their electronic structure. Nowadays, the application of plasmonic materials is increasingly determined by the possibilities to control the electronic processes in them. The electronic structure’s design is of particular importance for tuning the plasmon frequency and the excitation of hot electrons, which are important parameters determining the interaction of the nanostructures with the environment. The effective control of these parameters is important for the improvement of the efficiency and sensitivity of various processes, diagnostic methods and technologies in the field of photocatalysis and surface enhancement spectroscopies. This review is focused on the characterization techniques and the approaches for tuning the electronic states of plasmonic media. The diversity of materials and their electronic structure determine the approach for the engineering of the electronic structure. In the case of noble metals, the possibility for tuning the energy for interband transitions from their d band is considered by using intermetallic alloys (between noble metals themselves and with an addition of post-transition metals in them), while in semiconductor materials—the effect of charge transfer is mainly used. Such knowledge is not only essential from a practical point of view, but also contributes to understanding the processes in the field of new materials such as 2D noble metals and intermetallics. Full article
(This article belongs to the Special Issue Optical Properties of Plasmonic Nanostructures)
Show Figures

Figure 1

14 pages, 2291 KB  
Article
Infrared FEL-Induced Alteration of Zeta Potential in Electrochemically Grown Quantum Dots: Insights into Ion Modification
by Sukrit Sucharitakul, Siripatsorn Thanasanvorakun, Vasan Yarangsi, Suparoek Yarin, Kritsada Hongsith, Monchai Jitvisate, Hideaki Ohgaki, Surachet Phadungdhitidhada, Heishun Zen, Sakhorn Rimjaem and Supab Choopun
Nanomaterials 2025, 15(20), 1543; https://doi.org/10.3390/nano15201543 - 10 Oct 2025
Abstract
This study explores the use of mid-infrared (MIR) free-electron laser (FEL) irradiation as a tool for tailoring the surface properties of electrochemically synthesized TiO2—graphene quantum dots (QDs). The QDs, prepared in colloidal form via a cost-effective electrochemical method in a KCl—citric [...] Read more.
This study explores the use of mid-infrared (MIR) free-electron laser (FEL) irradiation as a tool for tailoring the surface properties of electrochemically synthesized TiO2—graphene quantum dots (QDs). The QDs, prepared in colloidal form via a cost-effective electrochemical method in a KCl—citric acid medium, were exposed to MIR wavelengths (5.76, 8.02, and 9.10 µm) at the Kyoto University FEL facility. Post-irradiation measurements revealed a pronounced inversion of zeta potential by 40–50 mV and approximately 10% reduction in hydrodynamic size, indicating double-layer contraction and ionic redistribution at the QD—solvent interface. Photoluminescence spectra showed enhanced emission for GQDs and TiO2/GQD composites, while Tauc analysis revealed modest bandgap blue shifts (0.04–0.08 eV), both consistent with trap-state passivation and sharper band edges. TEM confirmed intact crystalline structures, verifying that FEL-induced modifications were confined to surface chemistry rather than bulk lattice damage. Taken together, these results demonstrate that MIR FEL irradiation provides a resonance-driven, non-contact method to reorganize ions, suppress defect states, and improve the optoelectronic quality of QDs. This approach offers a scalable post-synthetic pathway for enhancing electron transport layers in perovskite solar cells and highlights the broader potential of photonic infrastructure for advanced nanomaterial processing and interface engineering in optoelectronic and energy applications. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

13 pages, 1795 KB  
Article
Enhanced Wear and Corrosion Resistance of AlCoCrFeNiMoTi High-Entropy Alloy via B Addition by Laser Cladding
by Sansan Ao, Jiaxun Sun, Ziyuan Qi, Youxiang Wei, Hongyu Chen and Yang Li
Materials 2025, 18(20), 4651; https://doi.org/10.3390/ma18204651 - 10 Oct 2025
Abstract
To address the synergistic degradation mechanisms in engineering service environments, we propose a boron microalloying strategy to enhance the multifunctional surface performance of AlCoCrFeNiMo-based high-entropy alloys. AlCoCrFeNiMoTiBx coatings (x = 0, 0.5, 1, and 1.5) were fabricated on Q235 steel substrates using laser [...] Read more.
To address the synergistic degradation mechanisms in engineering service environments, we propose a boron microalloying strategy to enhance the multifunctional surface performance of AlCoCrFeNiMo-based high-entropy alloys. AlCoCrFeNiMoTiBx coatings (x = 0, 0.5, 1, and 1.5) were fabricated on Q235 steel substrates using laser cladding. The microstructure of the coatings was characterized using scanning electron microscope (SEM) and energy dispersive spectrometer (EDS), while their wear and corrosion resistance were evaluated through tribological and electrochemical tests. The key findings indicate that boron addition preserves the original body-centered cubic (BCC) and σ phases in the coating while promoting the in situ formation of TiB2, leading to lattice distortion. With increasing B content, the BCC phase becomes refined, and both the fraction and size of TiB2 particles increase. Boron incorporation improves the coating’s microhardness and wear resistance, with the highest wear resistance achieved at x = 1, where abrasive and oxidative wear predominate. At lower content (x = 0.5), B enhances the stability of the passive film and thereby improves corrosion resistance. In contrast, excessive formation of large TiB2 particles introduces defects into the passive film, accelerating its degradation. Full article
Show Figures

Figure 1

19 pages, 5979 KB  
Article
Improving the Biocompatibility of Plant-Derived Scaffolds for Tissue Engineering Using Heat Treatment
by Arvind Ramsamooj, Nicole Gorbenko, Cristian Olivares, Sashane John and Nick Merna
J. Funct. Biomater. 2025, 16(10), 380; https://doi.org/10.3390/jfb16100380 - 10 Oct 2025
Abstract
Small-diameter vascular grafts often fail due to thrombosis and compliance mismatch. Decellularized plant scaffolds are a biocompatible, sustainable alternative. Leatherleaf viburnum leaves provide natural architecture and mechanical integrity suitable for tissue-engineered vessels. However, the persistence of immunogenic plant biomolecules and limited degradability remain [...] Read more.
Small-diameter vascular grafts often fail due to thrombosis and compliance mismatch. Decellularized plant scaffolds are a biocompatible, sustainable alternative. Leatherleaf viburnum leaves provide natural architecture and mechanical integrity suitable for tissue-engineered vessels. However, the persistence of immunogenic plant biomolecules and limited degradability remain barriers to clinical use. This study tested whether mild heat treatment improves scaffold biocompatibility without compromising mechanical performance. Decellularized leatherleaf viburnum scaffolds were treated at 30–40 °C in 5% NaOH for 15–60 min and then evaluated via tensile testing, burst pressure analysis, scanning electron microscopy, histology, and in vitro assays with white blood cells and endothelial cells. Scaffold properties were compared to those of untreated controls. Heat treatment did not significantly affect scaffold thickness but decreased fiber area fraction and diameter across all anatomical layers. Scaffolds treated at 30–35 °C for ≤30 min retained >90% of tensile strength and achieved burst pressures ≥820 mmHg, exceeding physiological arterial pressures. Heat treatment reduced surface fractal dimension while increasing entropy and lacunarity, producing a smoother but more heterogeneous microarchitecture. White blood cell viability increased up to 2.5-fold and endothelial cell seeding efficiency improved with treatment duration, with 60 min producing near-confluent monolayers. Mild alkaline heat treatment therefore improved immune compatibility and endothelialization while preserving mechanical integrity, offering a simple, scalable modification to advance plant-derived scaffolds for grafting. Full article
Show Figures

Graphical abstract

13 pages, 2404 KB  
Article
Strain Effect in PdCu Alloy Metallene for Enhanced Formic Acid Electrooxidation Reaction
by Kaili Wang, Zhen Cao and Jia He
Catalysts 2025, 15(10), 967; https://doi.org/10.3390/catal15100967 - 10 Oct 2025
Abstract
Developing high-activity and high-durability Pd-based electrocatalysts is an important strategy to promote their commercial application. Herein, a smaller particle size and ultrathin sheet-like PdCu alloy metallene (PdCuene) were successfully prepared by using a one-pot wet chemistry method for FAOR. Experimental measurements indicated that [...] Read more.
Developing high-activity and high-durability Pd-based electrocatalysts is an important strategy to promote their commercial application. Herein, a smaller particle size and ultrathin sheet-like PdCu alloy metallene (PdCuene) were successfully prepared by using a one-pot wet chemistry method for FAOR. Experimental measurements indicated that the introduction Cu into Pd lattice induces a significant compressive strain effect through lattice mismatch between Pd and Cu, and the strain effect optimizes the electronic structure of Pd, as well as the high electrochemical surface area, increased exposure of active sites, and appropriate lattice strain have been demonstrated as factors that influence the enhancement of intrinsic activity and the acceleration of kinetics, thereby improving FAOR performance. Moreover, the stronger lattice strain of 0.85% would facilitate surface adsorption and dissociation of formic acid. Specifically, the optimized PdCuene exhibits enhanced mass activity and specific activity with current densities of 2.31 A mgPd−1 and 4.09 mA cm−2, respectively, which transcend the activities of Pd metallene (1.44 A mgPd−1 and 2.73 mA cm−2) and commercial Pd/C (0.6 A mgPd−1 and 1.53 mA cm−2). Meanwhile, PdCuene displayed obvious enhanced durability. The work provides an approach to modulate the lattice strain engineering, which represents a highly promising strategy for designing efficient FAOR electrocatalysts. Full article
(This article belongs to the Special Issue Nanostructured Catalysts for Emerging Electrochemical Technologies)
Show Figures

Figure 1

28 pages, 1951 KB  
Review
Badminton Racket Coatings and Athletic Performance: Review Based on Functional Coatings
by Houwei Tian and Guoyuan Huang
Coatings 2025, 15(10), 1186; https://doi.org/10.3390/coatings15101186 - 9 Oct 2025
Abstract
As a key piece of equipment in badminton, the surface treatment technology of rackets has garnered significant attention in the fields of material science and sports engineering. This study is the first to systematically review research on racket coatings, integrating interdisciplinary knowledge on [...] Read more.
As a key piece of equipment in badminton, the surface treatment technology of rackets has garnered significant attention in the fields of material science and sports engineering. This study is the first to systematically review research on racket coatings, integrating interdisciplinary knowledge on the classification of functional coatings, their performance-enhancing principles, and their relationship with competitive levels, thereby addressing a gap in theoretical research in this field. This study focuses on four major functional coating systems: superhydrophobic coatings (to improve environmental adaptability and reduce air resistance), anti-scratch coatings (to prolong the life of the equipment), vibration-damping coatings (to optimise vibration damping performance), and strength-enhancing coatings (to safeguard structural stability). In badminton, differences in player skill levels and usage scenarios lead to variations in racket materials, which, in turn, result in different preparation processes and performance effects. The use of vibration-damping materials alleviates the impact force on the wrist, effectively preventing sports injuries caused by prolonged training; leveraging the aerodynamic properties of superhydrophobic technology enhances racket swing speed, thereby improving hitting power and accuracy. From the perspective of performance optimization, coating technology improves athletic performance in three ways: nanocomposite coatings enhance the fatigue resistance of the racket frame; customized damping layers reduce muscle activation delays; and surface energy regulation technology improves grip stability. Challenges remain in the industrial application of environmentally friendly water-based coatings and the evaluation system for coating lifespan under multi-field coupling conditions. Future research should integrate intelligent algorithms to construct a tripartite optimization system of “racket-coating-user” and utilize digital sports platforms to analyze its mechanism of influence on professional athletes’ tactical choices, providing a theoretical paradigm and technical roadmap for the targeted development of next-generation smart badminton rackets. Full article
Show Figures

Figure 1

16 pages, 4166 KB  
Article
Non-Destructive Volume Estimation of Oranges for Factory Quality Control Using Computer Vision and Ensemble Machine Learning
by Wattanapong Kurdthongmee and Arsanchai Sukkuea
J. Imaging 2025, 11(10), 352; https://doi.org/10.3390/jimaging11100352 - 9 Oct 2025
Abstract
A crucial task in industrial quality control, especially in the food and agriculture sectors, is the quick and precise estimation of an object’s volume. This study combines cutting-edge machine learning and computer vision techniques to provide a comprehensive, non-destructive method for predicting orange [...] Read more.
A crucial task in industrial quality control, especially in the food and agriculture sectors, is the quick and precise estimation of an object’s volume. This study combines cutting-edge machine learning and computer vision techniques to provide a comprehensive, non-destructive method for predicting orange volume. We created a reliable pipeline that employs top and side views of every orange to estimate four important dimensions using a calibrated marker. These dimensions are then fed into a machine learning model that has been fine-tuned. Our method uses a range of engineered features, such as complex surface-area-to-volume ratios and new shape-based descriptors, to go beyond basic geometric formulas. Based on a dataset of 150 unique oranges, we show that the Stacking Regressor performs significantly better than other single-model benchmarks, including the highly tuned LightGBM model, achieving an R2 score of 0.971. Because of its reliance on basic physical characteristics, the method is extremely resilient to the inherent variability in fruit and may be used with a variety of produce types. Because it allows for the real-time calculation of density (mass over volume) for automated defect detection and quality grading, this solution is directly applicable to a factory sorting environment. Full article
(This article belongs to the Topic Nondestructive Testing and Evaluation)
Show Figures

Figure 1

30 pages, 2315 KB  
Review
Progress in NiO Based Materials for Electrochemical Sensing Applications
by Praveen Kumar, Mohammad Aslam, Saood Ali, Khaled Hamdy, Khursheed Ahmad and Danishuddin
Biosensors 2025, 15(10), 678; https://doi.org/10.3390/bios15100678 - 9 Oct 2025
Abstract
Nickel oxide (NiO), a wide bandgap p-type semiconductor, has emerged as a promising material for electrochemical sensing owing to its excellent redox properties, chemical stability, and facile synthesis. Its strong electrocatalytic activity enables effective detection of diverse analytes, including glucose, hydrogen peroxide, environmental [...] Read more.
Nickel oxide (NiO), a wide bandgap p-type semiconductor, has emerged as a promising material for electrochemical sensing owing to its excellent redox properties, chemical stability, and facile synthesis. Its strong electrocatalytic activity enables effective detection of diverse analytes, including glucose, hydrogen peroxide, environmental pollutants, and biomolecules. Advances in nanotechnology have enabled the development of NiO-based nanostructures such as nanoparticles, nanowires, and nanoflakes, which offer enhanced surface area and improved electron transfer. Integration with conductive materials like graphene, carbon nanotubes, and metal–organic frameworks (MOFs) further enhance sensor performance through synergistic effects. Innovations in synthesis techniques, including hydrothermal, sol–gel, and green approaches, have expanded the applicability of NiO in next-generation sensing platforms. This review summarizes recent progress in the structural engineering, composite formation, and electrochemical mechanisms of NiO-based materials for advanced electrochemical sensing applications. Full article
Show Figures

Figure 1

18 pages, 2078 KB  
Review
The Role of Tribocatalysis in Friction and Wear: A Review
by Diana Berman and Ali Erdemir
Lubricants 2025, 13(10), 442; https://doi.org/10.3390/lubricants13100442 - 8 Oct 2025
Abstract
When exposed to high contact pressure and shear conditions, the sliding and/or rolling contact interfaces of moving mechanical systems can experience significant friction and wear losses, thereby impairing their efficiency, reliability, and environmental sustainability. Traditionally, these losses have been minimized using high-performance solid [...] Read more.
When exposed to high contact pressure and shear conditions, the sliding and/or rolling contact interfaces of moving mechanical systems can experience significant friction and wear losses, thereby impairing their efficiency, reliability, and environmental sustainability. Traditionally, these losses have been minimized using high-performance solid and liquid lubricants or surface engineering techniques like physical and chemical vapor deposition. However, increasingly harsh operating conditions of more advanced mechanical systems (including wind turbines, space mechanisms, electric vehicle drivetrains, etc.) render such traditional methods less effective or impractical over the long term. Looking ahead, an emerging and complementary solution could be tribocatalysis, a process that spontaneously triggers the formation of nanocarbon-based tribofilms in situ and on demand at lubricated interfaces, significantly reducing friction and wear even without the use of high-performance additives. These films often comprise a wide range of amorphous or disordered carbons, crystalline graphite, graphene, nano-onions, nanotubes, and other carbon nanostructures known for their outstanding friction and wear properties under the most demanding tribological conditions. This review highlights recent advances in understanding the underlying mechanisms involved in forming these carbon-based tribofilms, along with their potential applications in real-world mechanical systems. These examples underscore the scientific significance and industrial potential of tribocatalysis in further enhancing the efficiency, reliability, and environmental sustainability of future mechanical systems. Full article
(This article belongs to the Special Issue Tribo-Catalysis)
Show Figures

Graphical abstract

25 pages, 1098 KB  
Review
Review of Nano- and Micro- Indentation Tests for Rocks
by Qingqing He and Heinz Konietzky
Geosciences 2025, 15(10), 389; https://doi.org/10.3390/geosciences15100389 - 7 Oct 2025
Viewed by 220
Abstract
Nano- and micro-indentation have become essential tools for quantifying the micromechanical behavior of rocks beyond traditional macroscopic tests. This review summarizes the historical evolution, experimental methodologies, and interpretation models (e.g., Oliver–Pharr, Doerner–Nix, energy-based methods, Hertz/ECM/Lawn), with a particular focus on rock-specific challenges such [...] Read more.
Nano- and micro-indentation have become essential tools for quantifying the micromechanical behavior of rocks beyond traditional macroscopic tests. This review summarizes the historical evolution, experimental methodologies, and interpretation models (e.g., Oliver–Pharr, Doerner–Nix, energy-based methods, Hertz/ECM/Lawn), with a particular focus on rock-specific challenges such as heterogeneity, anisotropy, and surface roughness. A structured literature survey (1980–August 2025) covers representative studies on shale, limestone, marble, sandstone, claystone, and granite. The transition from classical hardness measurements to advanced instrumented indentation has enabled more reliable determination of localized properties, including hardness, elastic modulus, fracture toughness, and creep. Special attention is given to the applicability and limitations of different interpretation models when applied to heterogeneous and anisotropic rocks. Current challenges include high sensitivity to surface conditions and difficulties in capturing the full complexity of natural rock behavior. Looking forward, promising directions involve intelligent systems that integrate AI-driven data analytics, robotic automation, and multiscale modeling (from molecular dynamics to continuum FEM) to enable predictive material design. This review aims to provide geoscientists and engineers with a comprehensive foundation for the effective application and further development of indentation-based testing in rock mechanics and geotechnical engineering. Full article
(This article belongs to the Section Geomechanics)
Show Figures

Figure 1

20 pages, 2587 KB  
Article
Load-Dedicated Fiber Reinforcement of Additively Manufactured Lightweight Structures
by Sven Meißner, Daniel Kalisch, Rezo Aliyev, Sebastian Scholz, Henning Zeidler, Sascha Müller, Axel Spickenheuer and Lothar Kroll
J. Compos. Sci. 2025, 9(10), 548; https://doi.org/10.3390/jcs9100548 - 6 Oct 2025
Viewed by 233
Abstract
This study focuses on a novel lightweight technology for manufacturing variable-axial fiber-reinforced polymer components. In the presented approach, channels following the load flow are implemented in an additively manufactured basic structure and impregnated continuous fiber bundles are pulled through these component-integrated cavities. Improved [...] Read more.
This study focuses on a novel lightweight technology for manufacturing variable-axial fiber-reinforced polymer components. In the presented approach, channels following the load flow are implemented in an additively manufactured basic structure and impregnated continuous fiber bundles are pulled through these component-integrated cavities. Improved channel cross-section geometries to enhance the mechanical performance are proposed and evaluated. The hypothesis posits that increasing the surface area of the internal channels significantly reduces shear stresses between the polymer basic structure and the integrated continuous fiber composite. A series of experiments, including analytical, numerical, and microscopic analyses, were conducted to evaluate the mechanical properties of the composites formed, focusing on Young’s modulus and tensile strength. In addition, an important insight into the failure mechanism of the novel fiber composite is provided. The results demonstrate a clear correlation between the channel geometry and mechanical performance, indicating that optimized designs can effectively reduce shear stress, thus improving load-bearing capacities. The findings reveal that while fiber volume content influences the impregnation quality, an optimal balance must be achieved to enhance mechanical properties. This research contributes to the advancement of production technologies for lightweight components through additive manufacturing and the development of new types of composite materials applicable in various engineering fields. Full article
(This article belongs to the Special Issue Additive Manufacturing of Advanced Composites, 2nd Edition)
Show Figures

Figure 1

24 pages, 3163 KB  
Article
Machine Learning Investigation of Ternary-Hybrid Radiative Nanofluid over Stretching and Porous Sheet
by Hamid Qureshi, Muhammad Zubair and Sebastian Andreas Altmeyer
Nanomaterials 2025, 15(19), 1525; https://doi.org/10.3390/nano15191525 - 5 Oct 2025
Viewed by 199
Abstract
Ternary hybrid nanofluid have been revealed to possess a wide range of application disciplines reaching from biomedical engineering, detection of cancer, over or photovoltaic panels and cells, nuclear power plant engineering, to the automobile industry, smart cells and and eventually to heat exchange [...] Read more.
Ternary hybrid nanofluid have been revealed to possess a wide range of application disciplines reaching from biomedical engineering, detection of cancer, over or photovoltaic panels and cells, nuclear power plant engineering, to the automobile industry, smart cells and and eventually to heat exchange systems. Inspired by the recent developments in nanotechnology and in particular the high potential ability of use of such nanofluids in practical problems, this paper deals with the flow of a three phase nanofluid of MWCNT-Au/Ag nanoparticles dispersed in blood in the presence of a bidirectional stretching sheet. The model derived in this study yields a set of linked nonlinear PDEs, which are first transformed into dimensionless ODEs. From these ODEs we get a dataset with the help of MATHEMATICA environment, then solved using AI-based technique utilizing Levenberg Marquardt Feedforward Algorithm. In this work, flow characteristics under varying physical parameters have been studied and analyzed and the boundary layer phenomena has been investigated. In detail horizontal, vertical velocity profiles as well as temperature distribution are analyzed. The findings reveal that as the stretching ratio of the surface coincide with an increase the vertical velocity as the surface has thinned in this direction minimizing resistance to the fluid flow. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

30 pages, 3520 KB  
Article
Thermal Entropy Generation in Magnetized Radiative Flow Through Porous Media over a Stretching Cylinder: An RSM-Based Study
by Shobha Visweswara, Baskar Palani, Fatemah H. H. Al Mukahal, S. Suresh Kumar Raju, Basma Souayeh and Sibyala Vijayakumar Varma
Mathematics 2025, 13(19), 3189; https://doi.org/10.3390/math13193189 - 5 Oct 2025
Viewed by 113
Abstract
Magnetohydrodynamic (MHD) flow and heat transfer in porous media are central to many engineering applications, including heat exchangers, MHD generators, and polymer processing. This study examines the boundary layer flow and thermal behavior of an electrically conducting viscous fluid over a porous stretching [...] Read more.
Magnetohydrodynamic (MHD) flow and heat transfer in porous media are central to many engineering applications, including heat exchangers, MHD generators, and polymer processing. This study examines the boundary layer flow and thermal behavior of an electrically conducting viscous fluid over a porous stretching tube. The model accounts for nonlinear thermal radiation, internal heat generation/absorption, and Darcy–Forchheimer drag to capture porous medium resistance. Similarity transformations reduce the governing equations to a system of coupled nonlinear ordinary differential equations, which are solved numerically using the BVP4C technique with Response Surface Methodology (RSM) and sensitivity analysis. The effects of dimensionless parameters magnetic field strength (M), Reynolds number (Re), Darcy–Forchheimer parameter (Df), Brinkman number (Br), Prandtl number (Pr), nonlinear radiation parameter (Rd), wall-to-ambient temperature ratio (rw), and heat source/sink parameter (Q) are investigated. Results show that increasing M, Df, and Q suppresses velocity and enhances temperature due to Lorentz and porous drag effects. Higher Re raises pressure but reduces near-wall velocity, while rw, Rd, and internal heating intensify thermal layers. The entropy generation analysis highlights the competing roles of viscous, magnetic, and thermal irreversibility, while the Bejan number trends distinctly indicate which mechanism dominates under different parameter conditions. The RSM findings highlight that rw and Rd consistently reduce the Nusselt number (Nu), lowering thermal efficiency. These results provide practical guidance for optimizing energy efficiency and thermal management in MHD and porous media-based systems.: Full article
(This article belongs to the Special Issue Advances and Applications in Computational Fluid Dynamics)
Show Figures

Figure 1

35 pages, 11610 KB  
Article
A Markerless Photogrammetric Framework with Spatio-Temporal Refinement for Structural Deformation and Strain Monitoring
by Tee-Ann Teo, Ko-Hsin Mei and Terry Y. P. Yuen
Buildings 2025, 15(19), 3584; https://doi.org/10.3390/buildings15193584 - 5 Oct 2025
Viewed by 134
Abstract
Photogrammetry offers a non-contact and efficient alternative for monitoring structural deformation and is particularly suited to large or complex surfaces such as masonry walls. This study proposes a spatio-temporal photogrammetric refinement framework that enhances the accuracy of three-dimensional (3D) deformation and strain analysis [...] Read more.
Photogrammetry offers a non-contact and efficient alternative for monitoring structural deformation and is particularly suited to large or complex surfaces such as masonry walls. This study proposes a spatio-temporal photogrammetric refinement framework that enhances the accuracy of three-dimensional (3D) deformation and strain analysis by integrating advanced filtering techniques into markerless image-based measurement workflows. A hybrid methodology was developed using natural image features extracted using the Speeded-Up Robust Features algorithm and refined through a three-stage filtering process: median absolute deviation filtering, Gaussian smoothing, and representative point selection. These techniques significantly mitigated the influence of noise and outliers on deformation and strain analysis. Comparative experiments using both manually placed targets and automatically extracted feature points on a full-scale masonry wall under destructive loading demonstrated that the proposed spatio-temporal filtering effectively improves the consistency of displacement and strain fields, achieving results comparable to traditional marker-based methods. Validation against laser rangefinder measurements confirmed sub-millimeter accuracy in displacement estimates. Additionally, strain analysis based on filtered data captured crack evolution patterns and spatial deformation behavior. Therefore, integrating photogrammetric 3D point tracking with spatio-temporal refinement provides a practical, accurate, and scalable approach to monitor structural deformation in civil engineering applications. Full article
(This article belongs to the Special Issue Advances in Nondestructive Testing of Structures)
Show Figures

Figure 1

25 pages, 3709 KB  
Article
Utilization of Tunnel Muck-Derived Recycled Granite Aggregates in Surface-Layer Asphalt Mixtures via Hybridization with Basalt
by Yuqi Zhou, Weiwei Liu, Yanxia Nie and Zongwu Chen
Materials 2025, 18(19), 4611; https://doi.org/10.3390/ma18194611 - 5 Oct 2025
Viewed by 282
Abstract
This study explored the feasibility of utilizing tunnel muck-derived recycled granite aggregates (RGAs) in surface-layer asphalt mixtures via hybrid with basalt aggregates. Firstly, RGAs, including coarse aggregates (RGCAs) and fine aggregates (RGFAs), were prepared using a production method integrated with multi-cleaning technology. Then, [...] Read more.
This study explored the feasibility of utilizing tunnel muck-derived recycled granite aggregates (RGAs) in surface-layer asphalt mixtures via hybrid with basalt aggregates. Firstly, RGAs, including coarse aggregates (RGCAs) and fine aggregates (RGFAs), were prepared using a production method integrated with multi-cleaning technology. Then, the material properties of RGAs and RGA–basalt hybrid aggregates with varying RGA volume proportions were investigated. Finally, asphalt mixtures with these hybrid aggregates were designed and their engineering performance was evaluated. Basalt aggregates and their corresponding asphalt mixture served as the control group. Results suggest that since RGAs are rich in quartz and their SiO2 content is as high as 70.88%, they are acidic aggregates. Employing multi-cleaning technology is a guaranteed method of obtaining RGAs with low mud content. The main conventional technical indexes of RGAs and all hybrid aggregates with 40–70% RGA volume proportions meet the requirements of Chinese technical specifications. Asphalt mixtures incorporating RGAs exhibit slightly higher voids in the mineral aggregates (VMAs) than the control group, indicating that RGAs modify the interlocking skeleton and contact states of aggregates. Blending RGAs with basalt to form hybrid aggregates is an effective way to achieve full-gradation utilization of tunnel muck-derived RGAs in the surface-layer asphalt mixtures. Without additional enhancement measures, a 40% RGA volume proportion in hybrid aggregates is recommended. For a higher RGA recycling rate, combining RGAs with cement is advised, maintaining 70% RGA volume proportion and 50% cement content of total filler volume. When external basalt aggregates are transported over a distance of 50–200 km, applying these schemes to local asphalt pavement surface layers can achieve at least 26.56% aggregate cost savings. Full article
Show Figures

Figure 1

Back to TopTop