Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (764)

Search Parameters:
Keywords = surface mass load

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3972 KB  
Article
Optimization and Prediction of Mass Loss During Adhesive Wear of Nitrided AISI 4140 Steel Parts
by Ahmed Daghbouch, Borhen Louhichi and Mohamed Ali Terres
Crystals 2025, 15(10), 875; https://doi.org/10.3390/cryst15100875 - 10 Oct 2025
Abstract
Adhesive wear has been identified as a significant cause of material loss, representing a substantial challenge across diverse industrial sectors. In order to address this issue, it is imperative to conduct studies with the aim of mitigating this degradation. The present study focuses [...] Read more.
Adhesive wear has been identified as a significant cause of material loss, representing a substantial challenge across diverse industrial sectors. In order to address this issue, it is imperative to conduct studies with the aim of mitigating this degradation. The present study focuses on achieving a high-quality product with minimal mass loss during adhesive wear by utilizing gas nitriding treatment to optimize the wear parameters of AISI 4140 steel. The present study employed the Taguchi methodology and response surface methodology (RSM) in order to design the experiments. A comprehensive investigation was conducted into the key wear parameters, encompassing sliding speed (V), normal load (FN), and the microhardness of nitrided parts (HV). Furthermore, an artificial neural network (ANN) prediction model was developed to forecast the wear performance of 4140 Steel. The ANN model demonstrated an accuracy of approximately 99% when compared to the experimental data. In order to enhance the precision of wear estimation, prediction optimization was conducted using Bayesian and genetic algorithms. The findings demonstrated that the predicted R2 values exhibited a reasonable alignment with the adjusted R2 values, with a discrepancy of less than 0.2. The analysis demonstrated that the normal load is the most significant factor influencing wear, followed by hardness. In contrast, sliding speed was found to have the least significant impact. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

20 pages, 6683 KB  
Article
Numerical Simulation Study on Shear Mechanical Properties of Unfilled Three-Dimensional Rough Joint Surfaces Under Constant Normal Stiffness Boundary Conditions
by Xinmu Xu, Kui Zhao, Liangfeng Xiong, Peng Zeng, Cong Gong and Yifan Chen
Appl. Sci. 2025, 15(19), 10827; https://doi.org/10.3390/app151910827 - 9 Oct 2025
Viewed by 75
Abstract
When jointed rock masses are in a high-stress environment, the roughness of the joints is the key factor controlling their shear strength. Their loading behavior is also different from the constant normal load (CNL) conditions controlled in conventional laboratories; rather, they follow the [...] Read more.
When jointed rock masses are in a high-stress environment, the roughness of the joints is the key factor controlling their shear strength. Their loading behavior is also different from the constant normal load (CNL) conditions controlled in conventional laboratories; rather, they follow the constant normal stiffness (CNS) conditions. To investigate the effects of normal stiffness and roughness on the shear mechanical properties of unfilled joint surfaces, shear tests were simulated using PFC3D (5.0) software under CNS conditions. The effects of normal stiffness of 0 (constant normal stress of 4 MPa), 0.028 GPa/m (low normal stiffness), 0.28 GPa/m (medium normal stiffness), and 2.8 GPa/m (high normal stiffness), and joint roughness coefficients (JRC) of 2~4 (low roughness), 10~12 (medium roughness), and 18~20 (high roughness) on the shear stress, normal stress, normal deformation, surface resistance index, and block failure characteristics of the joint surface were obtained. The results indicate that for different combinations of normal stiffness—JRC—the shear simulation process primarily exhibits three deformation stages: linear stage, yield stage, and post-peak stage. Shear stress increases initially and then decreases as shear displacement increases. When normal stiffness is no less than 0.28 GPa/m, both normal stress and JRC increase gradually with increasing JRC and normal stiffness. When the normal stiffness is no greater than 0.028 GPa/m, the normal stress shows no significant change. The normal displacement changes from “shear contraction” to “shear expansion” with increasing shear displacement and from positive to negative values while the displacement gradually increases; the maximum normal displacement decreases with increasing normal stiffness and increases with increasing JRC. The peak SRI value increases with increasing JRC and decreases with increasing normal stiffness. As normal stiffness increases, the number of tensile cracks for JRC 2~4 first decreases and then increases, while the number of shear cracks gradually increases; for JRC 10~12 and 18~20, both the number of shear cracks and tensile cracks increase with increasing normal stiffness. This paper simulates the actual mechanical environment of deep underground joints to expound the influence of normal stiffness and joint roughness on the stability of deep rock masses. The research results can provide certain theoretical references for predicting the stability of deep surrounding rocks and the stress of support structures. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

10 pages, 689 KB  
Article
Sex Differences in Foot Arch Structure Affect Postural Control and Energy Flow During Dynamic Tasks
by Xuan Liu, Shu Zhou, Yan Pan, Lei Li and Ye Liu
Life 2025, 15(10), 1550; https://doi.org/10.3390/life15101550 - 3 Oct 2025
Viewed by 389
Abstract
Background: This study investigated sex differences in foot arch structure and function, and their impact on postural control and energy flow during dynamic tasks. Findings aim to inform sex-specific training, movement assessment, and injury prevention strategies. Methods: A total of 108 participants (53 [...] Read more.
Background: This study investigated sex differences in foot arch structure and function, and their impact on postural control and energy flow during dynamic tasks. Findings aim to inform sex-specific training, movement assessment, and injury prevention strategies. Methods: A total of 108 participants (53 males and 55 females) underwent foot arch morphological assessments and performed a sit-to-stand (STS). Motion data were collected using an infrared motion capture system, three-dimensional force plates, and wireless surface electromyography. A rigid body model was constructed in Visual3D, and joint forces, segmental angular and linear velocities, center of pressure (COP), and center of mass (COM) were calculated using MATLAB. Segmental net energy was integrated to determine energy flow across different phases of the STS. Results: Arch stiffness was significantly higher in males. In terms of postural control, males exhibited significantly lower mediolateral COP frequency and anteroposterior COM peak velocity during the pre-seat-off phase, and lower COM displacement, peak velocity, and sample entropy during the post-seat-off phase compared to females. Conversely, males showed higher anteroposterior COM velocity before seat-off, and greater anteroposterior and vertical momentum after seat-off (p < 0.05). Regarding energy flow, males exhibited higher thigh muscle power, segmental net power during both phases, and greater shank joint power before seat-off. In contrast, females showed higher thigh joint power before seat-off and greater shank joint power after seat-off (p < 0.05). Conclusions: Significant sex differences in foot arch function influence postural control and energy transfer during STS. Compared to males, females rely on more frequent postural adjustments to compensate for lower arch stiffness, which may increase mechanical loading on the knee and ankle and elevate injury risk. Full article
(This article belongs to the Special Issue Focus on Exercise Physiology and Sports Performance: 2nd Edition)
Show Figures

Figure 1

13 pages, 1846 KB  
Article
Toward Circular Carbon: Upcycling Coke Oven Waste into Graphite Anodes for Lithium-Ion Batteries
by Seonhui Choi, Inchan Yang, Byeongheon Lee, Tae Hun Kim, Sei-Min Park and Jung-Chul An
Batteries 2025, 11(10), 365; https://doi.org/10.3390/batteries11100365 - 2 Oct 2025
Viewed by 288
Abstract
This study presents a sustainable upcycling strategy to convert “Pit,” a carbon-rich coke oven by-product from steel manufacturing, into high-purity graphite for use as an anode material in lithium-ion batteries. Despite its high carbon content, raw Pit contains significant impurities and has irregular [...] Read more.
This study presents a sustainable upcycling strategy to convert “Pit,” a carbon-rich coke oven by-product from steel manufacturing, into high-purity graphite for use as an anode material in lithium-ion batteries. Despite its high carbon content, raw Pit contains significant impurities and has irregular particle morphology, which limits its direct application in batteries. We employed a multi-step, additive-free refinement process—including jet milling, spheroidization, and high-temperature graphitization—to enhance carbon purity and structural properties. The processed Pit-derived graphite showed a much-improved particle size distribution (D50 reduced from 25.3 μm to 14.8 μm & Span reduced from 1.72 to 1.23), increased tap density (from 0.54 to 0.80 g/cm3), and reduced BET surface area, making it suitable for high-performance lithium-ion batteries anodes. Structural characterization by XRD and TEM confirmed dramatically enhanced crystallinity after graphitization (graphitization degree increasing from ~13 for raw Pit to 95.7% for graphitized Pit at 3000 °C). The fully processed graphite (denoted S_Pit3000) delivered a reversible discharge capacity of 346.7 mAh/g with an initial Coulombic efficiency of 93.5% in half-cell tests—comparable to commercial artificial graphite. Furthermore, when composited with silicon oxide to form a hybrid anode, the material achieved an even higher capacity of 418.0 mAh/g under high mass loading conditions. These results highlight the feasibility of transforming industrial coke waste into value-added electrode materials through environmentally friendly physical processes. The upcycled graphite anode meets industrial performance standards, demonstrating a promising route toward circular economy solutions in both the steel and battery industries. Full article
Show Figures

Figure 1

15 pages, 3022 KB  
Article
Preparation and Performance of 3D-Printed TiO2-Supported TPMS Structures for Photocatalytic Applications
by Xi Chen, Chenxi Zhang, Xiao Chen and Ningning Li
Molecules 2025, 30(19), 3891; https://doi.org/10.3390/molecules30193891 - 26 Sep 2025
Viewed by 290
Abstract
This study addresses critical bottlenecks in photocatalytic water treatment technologies, including difficulties in recovering traditional powdered catalysts, low mass transfer efficiency in immobilized reactors, and limited structural diversity. By integrating topology optimization with 3D printing technology, we designed and fabricated five types of [...] Read more.
This study addresses critical bottlenecks in photocatalytic water treatment technologies, including difficulties in recovering traditional powdered catalysts, low mass transfer efficiency in immobilized reactors, and limited structural diversity. By integrating topology optimization with 3D printing technology, we designed and fabricated five types of triply periodic minimal surface photocatalytic reactors (TPMS-PCRs) with hierarchical porous structures—Fischer-Radin-Dunn (FRD), Neovius (N), Diamond (D), I-graph Wrapped Package (IWP) and Gyroid (G). Using fused deposition modeling (FDM), these TPMS configurations were manufactured from polylactic acid (PLA), 1.5 wt% TiO2/PLA, and 2.5 wt% TiO2/PLA. The catalytic degradation performance of these structurally distinct reactors for organic pollutants varied significantly. Notably, the FRD-type TPMS-PCR loaded with 2.5 wt% TiO2 achieved a methylene blue (MB) degradation rate of 93.4% within 2.5 h under rotational flow conditions, compared to 87.5% under horizontal flow conditions. Full article
(This article belongs to the Special Issue New Research on Novel Photo-/Electrochemical Materials)
Show Figures

Graphical abstract

18 pages, 4455 KB  
Article
Influence of Tiered Cyclic Shear Stress on Shear Friction and Instability Behavior of Marble Specimens with the Fractures
by Yinghu Li, Ze Xia, Changhao Shan, Qiang Xu, Qiangling Yao and Haitao Li
Appl. Sci. 2025, 15(19), 10308; https://doi.org/10.3390/app151910308 - 23 Sep 2025
Viewed by 231
Abstract
Fractured rock masses are susceptible to stress-induced disturbances, which can lead to severe geological disasters. In recent years, the shear deformation and failure characteristics of fractured rock under cyclic shear loading have become a frontier issue in rock mechanics and engineering. A thorough [...] Read more.
Fractured rock masses are susceptible to stress-induced disturbances, which can lead to severe geological disasters. In recent years, the shear deformation and failure characteristics of fractured rock under cyclic shear loading have become a frontier issue in rock mechanics and engineering. A thorough understanding of the failure mechanism of fractured rock masses is of great significance for the scientific evaluation of their long-term stability in engineering applications. In this study, experiments were conducted on marble specimens with artificial fractures under constant normal stress using the RDS-200 rock mechanics shear test system. The results reveal the following three key findings: First, the residual shear displacement increases linearly with cycling numbers, and the fractures demonstrate memory functions under pre-peak tiered cyclic shear loading, with shear displacement exhibiting hysteresis effects. Second, significant differences were observed between tiered cyclic shear (TCS) and direct shear test (DST) outcomes in terms of peak shear stress and failure patterns. The peak shear strength under TCS was 17.76–24.04% lower than under DST, with the strength-weakening effect increasing with normal stress. The fracture surfaces showed more severe damage and debris accumulation under TCS compared to DST, with the contour area ratio decline rate correlating with both normal stress and initial surface conditions. Third, energy evolution analysis indicates that as cyclic shear stress increases, the elastic energy release rate exceeds the dissipation rate, and the elastic energy index progressively rises through the loading cycles. The findings of this research contribute to a better understanding of the shear instability of rock fractures under pre-peak tiered cyclic shear loading with constant normal stress. Full article
Show Figures

Figure 1

36 pages, 32453 KB  
Article
Tribological Response of Glass Fiber/Polyester Composites After Pressurized Water-Immersion Aging Assessed by Reciprocating and Ball-on-Disc Wear Testing
by Sinan Fidan, Satılmış Ürgün, Mehmet İskender Özsoy, Mustafa Özgür Bora and Erman Güleç
Polymers 2025, 17(18), 2503; https://doi.org/10.3390/polym17182503 - 17 Sep 2025
Viewed by 460
Abstract
This study quantifies how pressurized water-immersion aging degrades the tribological response of cross-ply E-glass/polyester laminates by coupling dual-mode testing with surface metrology and factorial ANOVA. Eleven-ply [0/90]s plates were aged at 10 bar for 0, 7, 14, and 21 days, gaining 10% mass [...] Read more.
This study quantifies how pressurized water-immersion aging degrades the tribological response of cross-ply E-glass/polyester laminates by coupling dual-mode testing with surface metrology and factorial ANOVA. Eleven-ply [0/90]s plates were aged at 10 bar for 0, 7, 14, and 21 days, gaining 10% mass (72.2 to 79.4 g), then tested under 20 N in ball-on-disc (50–100 mm s−1; 100–200 m) and reciprocating modes (1–2 Hz; 10–20 m). In ball-on-disc tests, steady-state COF rose from 0.40 to 0.47 (unaged) to 0.49 to 0.52 (14–21 days), and the low-friction run-in largely vanished with aging. Wear scar width and depth increased from 1.38 to 1.90 mm and 75 to 117 µm, respectively. Reciprocating tests showed a non-monotonic trend: moderate aging lowered COF to 0.50, whereas 21 days produced the harshest response (up to 0.78) and the widest/deepest scars (1.15 to 1.95 mm; 40 to 110 µm). ANOVA revealed that, in ball-on-disc tests, the COF was governed by sliding distance (28.70%) and speed (24.64%), with a strong Days × Speed interaction (31.66%); track-depth variance was dominated by distance (42.16%) and aging (32.16%). For the COF under reciprocating tests, aging was the leading main effect (21.21%), with large Days × Frequency (20.36%) and Days × Track (20.03%) interactions. Uniquely, this study isolates the effect of controlled hydrostatic aging (10 bar) and compares two sliding kinematics under identical loads, establishing quantitative thresholds (14 and 21 days) where interfacial debonding and third-body abrasion accelerate. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Figure 1

26 pages, 28301 KB  
Article
Small but Notable Influence of Numerical Diffusion on Super Coarse Dust Sedimentation: Insights from UNO3 vs. Upwind Schemes
by Eleni Drakaki, Sotirios Mallios, Carlos Perez García-Pando, Petros Katsafados and Vassilis Amiridis
Atmosphere 2025, 16(9), 1086; https://doi.org/10.3390/atmos16091086 - 15 Sep 2025
Viewed by 356
Abstract
Mineral dust plays a vital role in the Earth’s climate system, influencing radiation, cloud formation, biogeochemical cycles, and air quality. Accurately simulating dust transport in atmospheric models remains challenging, particularly for coarse and super-coarse particles, which are often underrepresented due to limitations in [...] Read more.
Mineral dust plays a vital role in the Earth’s climate system, influencing radiation, cloud formation, biogeochemical cycles, and air quality. Accurately simulating dust transport in atmospheric models remains challenging, particularly for coarse and super-coarse particles, which are often underrepresented due to limitations in model physics and numerical treatment. Observations have shown that particles larger than 20 μm can remain airborne longer than expected, suggesting that standard gravitational settling formulations may be insufficient. One potential contributor to this discrepancy is the numerical diffusion introduced by advection schemes used to model sedimentation processes. In this study, we compare the commonly used first-order upwind advection scheme, which is highly diffusive, to a third-order scheme (UNO3) that reduces numerical diffusion while maintaining computational efficiency. Using 2-D sensitivity tests, we show that UNO3 retains up to 50% more dust mass for the coarsest particles compared to the default scheme, although overall dust lifetime shows little change. In 3-D simulations of the ASKOS 2022 dust campaign, both schemes reproduced similar large-scale dust patterns, with UNO3 yielding slightly lower dust. Overall, domain-averaged dust load differences remain small (less than 2%), with minor decreases in fine dust ~3% and slight increases in coarse dust ~2%, indicating that reducing numerical diffusion modestly enhances the presence of larger particles. Near the surface, UNO3 produces a ~4% increase in dust concentration, with local differences up to 50 μg/m3. These results highlight that while numerical diffusion does affect dust transport—especially for super-coarse fractions—its impact is relatively small compared to the larger underestimation of super-coarse dust commonly observed in models compared to measurements. Addressing the fundamental physics of super-coarse dust emission and lofting may therefore be a higher priority for improving dust model fidelity than further refining advection numerics. Future studies may also consider implementing more computationally intensive schemes, such as the Prather scheme, to further minimize numerical diffusion where highly accurate size-resolved transport is critical. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

9 pages, 2299 KB  
Article
Neuromuscular and Performance Responses to Resisted Sprint Loads in Elite Female Sprinters
by Mieszko Bartosz-Jeffries, Irineu Loturco, Adam Zając, Adam Maszczyk, Tomás T. Freitas, Pedro E. Alcaraz, Lucas A. Pereira and Artur Gołaś
Sports 2025, 13(9), 327; https://doi.org/10.3390/sports13090327 - 15 Sep 2025
Viewed by 605
Abstract
This study examined the effects of motorized resisted sprint training (RST) on neuromuscular activation and sprint performance in elite female sprinters. Ten highly trained athletes (age: 23 ± 2.8 years; body mass: 58.3 ± 4.7 kg) performed two maximal 30 m unresisted sprints [...] Read more.
This study examined the effects of motorized resisted sprint training (RST) on neuromuscular activation and sprint performance in elite female sprinters. Ten highly trained athletes (age: 23 ± 2.8 years; body mass: 58.3 ± 4.7 kg) performed two maximal 30 m unresisted sprints and six resisted sprints under three different load conditions (i.e., 5%, 10%, and 15% of body mass [BM]), randomized in a counterbalanced design. Surface electromyography (EMG) of eight lower-limb muscles was recorded bilaterally using wearable EMG-integrated shorts. Sprint times were captured using dual-beam photocells, and motorized resistance was applied with the SPRINT 1080 device. Repeated-measures ANOVA revealed a significant load-dependent effect on sprint time (p < 0.001, η2 = 0.926), with performance decreasing as resistance increased. However, no significant changes were observed in most muscle groups across load conditions, except for a non-significant trend toward increased left gluteus maximus activity (p = 0.053, η2 = 0.136). Interestingly, greater inter-individual variability in both sprint performance and muscle activation was observed as external loads increased. These findings suggest that elite female sprinters maintain highly stable neuromuscular recruitment patterns, particularly in the quadriceps and hamstrings, when sprinting with external loads up to 15% BM, potentially reflecting a ceiling effect in their neuromuscular responsiveness. From a practical perspective, light-to-moderate RST may effectively stimulate posterior chain muscles without disrupting sprinting mechanics. Future longitudinal studies are warranted to explore the chronic adaptations to motorized RST and to determine whether the observed neuromuscular strategies are consistent across sexes. Full article
Show Figures

Figure 1

16 pages, 2365 KB  
Article
Preparation of Pt/xMnO2-CNTs Catalyst and Its Electrooxidation Performance in Methanol
by Guang Chen, Zhijun Teng, Hanqiao Xu and Hongwei Li
Catalysts 2025, 15(9), 864; https://doi.org/10.3390/catal15090864 - 7 Sep 2025
Viewed by 523
Abstract
In this study, MnO2-CNTs composite support was prepared by citric acid reduction method, and then, Pt nanoparticles were loaded on the surface by ethylene glycol reduction method to obtain a series of Pt/xMnO2-CNTs catalysts. Structural characterization (TEM, XRD, HRTEM) [...] Read more.
In this study, MnO2-CNTs composite support was prepared by citric acid reduction method, and then, Pt nanoparticles were loaded on the surface by ethylene glycol reduction method to obtain a series of Pt/xMnO2-CNTs catalysts. Structural characterization (TEM, XRD, HRTEM) showed that Pt nanoparticles were uniformly dispersed on the surface of the catalyst with an average particle size of 3.6 nm. Electrochemical tests show that when the content of MnO2 is 20 wt.%, the Pt/20wt.%MnO2-CNTs catalyst has the best methanol oxidation performance, and its mass activity and long-term stability are 4.0 times and 5.41 times that of commercial Pt/C, respectively. The in situ FTIR results showed that MnO2 promoted the dissociation of water through synergistic effect, generated abundant OH species, accelerated the oxidation of CO intermediates, and inhibited the poisoning of Pt sites. In this study, it is clear that the excellent performance of Pt/xMnO2-CNTs is due to multiple synergistic effects. Modified carbon nanotubes facilitate proton conduction, Pt nanoparticles effectively activate methanol, and MnO2 modulates reaction intermediates via its bifunctional mechanism. This comprehensive mechanism understanding provides a theoretical basis for the design of high-performance catalysts for direct methanol fuel cells. Full article
Show Figures

Graphical abstract

18 pages, 5808 KB  
Article
Numerical Investigation of the Reinforcement Effect of Fully Grouted Bolts on Layered Rock Masses Under Triaxial Loading with One Free Surface
by Shiming Jia, Yiming Zhao, Zhengzheng Xie, Zhe Xiang and Yanpei An
Appl. Sci. 2025, 15(17), 9689; https://doi.org/10.3390/app15179689 - 3 Sep 2025
Viewed by 509
Abstract
The layered composite roof of a coal mine roadway exhibits heterogeneity, with pronounced variations in layer thickness and strength. Fully grouted rock bolts installed in such layered roofs usually penetrate two or more strata and bond with them to form an integrated anchorage [...] Read more.
The layered composite roof of a coal mine roadway exhibits heterogeneity, with pronounced variations in layer thickness and strength. Fully grouted rock bolts installed in such layered roofs usually penetrate two or more strata and bond with them to form an integrated anchorage system. Roof failure typically initiates in the shallow strata and progressively propagates to deeper layers; thus, the mechanical properties of the rock at the free surface critically influence the overall stability of the layered roof and the load-transfer behavior of the bolts. In this study, a layered rock mass model was developed using three-dimensional particle flow code (PFC3D), and a triaxial loading scheme with a single free surface was applied to investigate the effects of free-surface rock properties, support parameters, and confining pressure on the load-bearing performance of the layered rock mass. The main findings are as follows: (1) Without support, the ultimate bearing capacity of a hard-rock-free-surface specimen is about 1.2 times that of a soft-rock-free-surface specimen. Applying support strengths of 0.2 MPa and 0.4 MPa enhanced the bearing capacity by 29–38% and 46–75%, respectively. (2) The evolution of axial stress in the bolts reflects the migration of the load-bearing core of the anchored body. Enhancing support strength improves the stress state of bolts and effectively mitigates the effects of high-stress conditions. (3) Under loading, soft rock layers exhibit greater deformation than hard layers. A hard-rock free surface effectively resists extrusion deformation from deeper soft rocks and provides higher bearing capacity. Shallow free-surface failure is significantly suppressed in anchored bodies, and “compression arch” zones are formed within multiple layers due to bolt support. Full article
(This article belongs to the Special Issue Innovations in Rock Mechanics and Mining Engineering)
Show Figures

Figure 1

25 pages, 12557 KB  
Article
Nonlinear Dynamic Analysis of High-Speed Aerostatic Conical Bearing–Rotor System with Micro-Orifice Frictional Loss
by Qilong Han, Xiaoli Wang and Chen Zheng
Machines 2025, 13(9), 797; https://doi.org/10.3390/machines13090797 - 2 Sep 2025
Viewed by 446
Abstract
Aerostatic conical bearings with micro-orifices (ACBMOs) can simultaneously withstand both radial and axial external loads and have high power density. Nevertheless, due to the larger surface-to-volume ratio and length-to-diameter ratio of micro-orifices, the gas flow through micro-orifices is more susceptible to frictional loss. [...] Read more.
Aerostatic conical bearings with micro-orifices (ACBMOs) can simultaneously withstand both radial and axial external loads and have high power density. Nevertheless, due to the larger surface-to-volume ratio and length-to-diameter ratio of micro-orifices, the gas flow through micro-orifices is more susceptible to frictional loss. Since frictional loss in micro-orifices has been ignored in the literature, an aerostatic conical bearing lubrication model with frictional loss in micro-orifices and a transient model of their nonlinear dynamics are established. The effects of the micro-orifice length-to-diameter ratio and relative roughness on lubrication performance, nonlinear behaviors, and ACBMO–rotor system stability are investigated, followed by experimental validation. The results indicate that the gas mass flow rate of the micro-orifices, gas film pressure, and load capacity in the ACBMOs decrease with the increase in micro-orifice relative roughness and length-to-diameter ratio, which cannot be observed in the conventional model without frictional loss. Meanwhile, both the onset speed of instability and the failure speed decrease when frictional loss occurs in micro-orifices are considered. Full article
Show Figures

Figure 1

28 pages, 5782 KB  
Article
Design of a Shipping Container-Based Home: Structural, Thermal, and Acoustic Conditioning
by Javier Pinilla-Melo, Jose Ramón Aira-Zunzunegui, Giuseppe La Ferla, Daniel de la Prida and María Ángeles Navacerrada
Buildings 2025, 15(17), 3127; https://doi.org/10.3390/buildings15173127 - 1 Sep 2025
Viewed by 1236
Abstract
The construction of buildings using shipping containers (SCs) is a way to extend their useful life. They are constructed by modifying the structure, thermal, and acoustic conditioning by improving the envelope and creating openings for lighting and ventilation purposes. This study explores the [...] Read more.
The construction of buildings using shipping containers (SCs) is a way to extend their useful life. They are constructed by modifying the structure, thermal, and acoustic conditioning by improving the envelope and creating openings for lighting and ventilation purposes. This study explores the architectural adaptation of SCs to sustainable residential housing, focusing on structural, thermal, and acoustic performance. The project centers on a case study in Madrid, Spain, transforming four containers into a semi-detached, multilevel dwelling. The design emphasizes modular coordination, spatial flexibility, and structural reinforcement. The retrofit process includes the integration of thermal insulation systems in the ventilated façades and sandwich roof panels to counteract steel’s high thermal conductivity, enhancing energy efficiency. The acoustic performance of the container-based dwelling was assessed through in situ measurements of façade airborne sound insulation and floor impact noisedemonstrating compliance with building code requirements by means of laminated glazing, sealed joints, and floating floors. This represents a novel contribution, given the scarcity of experimental acoustic data for residential buildings made from shipping containers. Results confirm that despite the structure’s low surface mass, appropriate design strategies can achieve the required sound insulation levels, supporting the viability of this lightweight modular construction system. Structural calculations verify the building’s load-bearing capacity post-modification. Overall, the findings support container architecture as a viable and eco-efficient alternative to conventional construction, while highlighting critical design considerations such as thermal performance, sound attenuation, and load redistribution. The results offer valuable data for designers working with container-based systems and contribute to a strategic methodology for the sustainable refurbishment of modular housing. Full article
Show Figures

Figure 1

20 pages, 3937 KB  
Article
Influence of Two Types of Microcapsule Composites on the Performance of Thermochromic UV Coatings on Bleached Poplar Wood Surfaces
by Wenjie Zhang, Yuming Zou, Xiaoxing Yan and Jun Li
Coatings 2025, 15(9), 1001; https://doi.org/10.3390/coatings15091001 - 29 Aug 2025
Viewed by 609
Abstract
To meet the growing demand for intelligent surfaces in furniture and interior design, this study developed thermochromic UV coatings for bleached poplar. While conventional UV coatings are valued for their ecofriendliness and rapid curing, their functionality remains limited; integrating thermochromic capability offers a [...] Read more.
To meet the growing demand for intelligent surfaces in furniture and interior design, this study developed thermochromic UV coatings for bleached poplar. While conventional UV coatings are valued for their ecofriendliness and rapid curing, their functionality remains limited; integrating thermochromic capability offers a highly promising solution. We examined how the combination of two microcapsule systems (UF@TS and UF@TS-R) influenced the performance of UV coatings on bleached poplar by applying a two-primer/two-topcoat protocol with varied microcapsule loadings to impart color-changing behavior. The effects were then analyzed from multiple perspectives—type, application layer, and concentration gradient—covering optical and mechanical properties as well as thermochromic response. Results indicated that the optimum performance was achieved when UF@TS was incorporated into the UV topcoat and UF@TS-R into the UV primer at specific mass concentrations. The resulting coating delivered temperature-responsive color variation, providing both theoretical and technical support for developing high-value-added UV finishes for wooden furniture and advancing the use of fast-growing timber in high-end applications. Full article
(This article belongs to the Special Issue Innovations in Functional Coatings for Wood Processing)
Show Figures

Figure 1

27 pages, 9585 KB  
Article
Shock Response Characteristics and Equation of State of High-Mass-Fraction Pressed Tungsten Powder/Polytetrafluoroethylene-Based Composites
by Wei Zhu, Weihang Li, Wenbin Li, Xiaoming Wang and Wenjin Yao
Polymers 2025, 17(17), 2309; https://doi.org/10.3390/polym17172309 - 26 Aug 2025
Viewed by 538
Abstract
Tungsten powder/polytetrafluoroethylene (W/PTFE) composites have the potential to replace traditional metallic materials as casings for controllable power warheads. Under explosive loading, they generate high-density and relatively uniformly distributed metal powder particles, thereby enhancing close-range impact effects while reducing collateral damage. To characterize the [...] Read more.
Tungsten powder/polytetrafluoroethylene (W/PTFE) composites have the potential to replace traditional metallic materials as casings for controllable power warheads. Under explosive loading, they generate high-density and relatively uniformly distributed metal powder particles, thereby enhancing close-range impact effects while reducing collateral damage. To characterize the material’s response under impact loading, plate impact tests were conducted to investigate the effects of tungsten content (70 wt%, 80 wt%, and 90 wt%) and tungsten particle size (200 μm, 400 μm, and 600 μm) on the impact behavior of the composites. The free surface velocity histories of the target plates were measured using a 37 mm single-stage light gas gun and a full-fiber laser interferometer (DISAR), enabling the determination of the shock velocity–particle velocity relationship to establish the equation of state. Experimental data show a linear relationship between shock velocity and particle velocity, with the 80 wt% and 90 wt% composites exhibiting similar shock velocities. The fitted slope increases from 2.792 to 2.957 as the tungsten mass fraction rises from 70 wt% to 90 wt%. With particle size increasing from 200 μm to 600 μm, the slope decreases from 3.204 to 2.756, while c0 increases from 224.7 to 633.3. Comparison of the Hugoniot pressure curves of different specimens indicated that tungsten content significantly affects the impact behavior, whereas variations in tungsten particle size have a negligible influence on the Hugoniot pressure. A high tungsten content with small particle size (e.g., 90 wt% with ~200 μm) improves the overall compressive properties of composite materials. Based on the experimental results, a mesoscale finite element model consistent with the tests was developed. The overall error between the numerical simulations and experimental results was less than 5% under various conditions, thereby validating the accuracy of the model. Numerical simulations revealed the coupling mechanism between tungsten particle plastic deformation and matrix flow. The strong rarefaction unloading effect initiated at the composite’s free surface caused matrix spallation and jetting. Multiple wave systems were generated at the composite–copper interface, whose interference and coupling ultimately resulted in a nearly uniform macroscopic pressure field. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

Back to TopTop