Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (41,216)

Search Parameters:
Keywords = surface property

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4126 KB  
Article
Antimicrobial Sol–Gel Glassy Surfaces for Modification of Dental Implant Abutments to Reduce Microbial Adhesion
by Özlem Çölgeçen, Murat Akarsu, Esin Akarsu, Ataç Uzel, Feyzan Özdal Kurt, Eyüp Sabri Topal, Gül Merve Gençer, Ahmet Keski and Emre Yavuz
Gels 2025, 11(11), 882; https://doi.org/10.3390/gels11110882 (registering DOI) - 3 Nov 2025
Abstract
Microbial colonization is a major factor contributing to peri-implantitis, and creating durable glassy surfaces with antimicrobial agents such as silver and copper may reduce microbial accumulation on dental abutments. This study aimed to develop antimicrobial thin-film glassy surfaces on Ti6Al4V alloy and to [...] Read more.
Microbial colonization is a major factor contributing to peri-implantitis, and creating durable glassy surfaces with antimicrobial agents such as silver and copper may reduce microbial accumulation on dental abutments. This study aimed to develop antimicrobial thin-film glassy surfaces on Ti6Al4V alloy and to evaluate their surface and mechanical properties, antimicrobial effectiveness, and biocompatibility before and after thermal aging. A sol–gel-derived glassy matrix (G) was synthesized, and two antimicrobial coatings were prepared by incorporating ionic Ag (GAg) or a combination of Ag/Cu (GAgCu). Ti6Al4V specimens; these were either left uncoated or dip-coated with G, GAg, or GAgCu and cured at 450 °C. Half of the specimens underwent thermal aging between 5 °C and 55 °C for 3000 cycles. Surface roughness, contact angle, hardness, adhesion strength, scratch resistance, cytotoxicity (Agar diffusion and MTT assay on L929 fibroblasts), and microbial adhesion were evaluated using Streptococcus sanguinis, Porphyromonas gingivalis, and Candida albicans as representative oral microorganisms. Both coatings exhibited low surface roughness, hydrophilic surfaces, improved hardness, and significantly reduced microbial adhesion for all tested species. GAg showed superior mechanical properties, whereas GAgCu demonstrated a relatively stronger antimicrobial effect. Cytotoxicity tests indicated that all coatings were biocompatible at levels suitable for oral use. Overall, these coatings demonstrated strong adhesion, durability, and antimicrobial activity, suggesting their suitability for dental abutments made of Ti6Al4V. Full article
(This article belongs to the Special Issue Functional Gels for Dental Applications)
Show Figures

Graphical abstract

22 pages, 3104 KB  
Article
A Novel Biomass-Based Catalyst Composite Using Waste Chicken Eggshells and Avocado Seeds for Biolubricant Production: Synthesis Route, Catalytic Property Characterization, and Performance
by Juan Esteban Foronda-Quiroz, Hilda Elizabeth Reynel-Ávila, Luiz Pereira-Ramos and Adrián Bonilla-Petriciolet
Molecules 2025, 30(21), 4280; https://doi.org/10.3390/molecules30214280 - 3 Nov 2025
Abstract
This study introduces the preparation and tailoring of the catalytic properties of a novel biomass-based composite to produce a sustainable biolubricant, trimethylolpropane fatty acid triester (TFATE), via the transesterification of fatty acid methyl esters (FAMEs). This novel catalyst was prepared from avocado seed [...] Read more.
This study introduces the preparation and tailoring of the catalytic properties of a novel biomass-based composite to produce a sustainable biolubricant, trimethylolpropane fatty acid triester (TFATE), via the transesterification of fatty acid methyl esters (FAMEs). This novel catalyst was prepared from avocado seed and chicken eggshell residues using a Taguchi experimental design to determine the best synthesis conditions. The variables tested in the catalyst preparation included CaO impregnation time and temperature, mass ratio of CaO/char, and activation temperature. The transesterification conditions to obtain TFATE were analyzed using the best eggshell-/char-based catalyst, and the reaction kinetics were measured at 120 and 150 °C. The results showed an endothermic reactive system with calculated kinetic rate constants of 7.45 × 10−3–10.31 × 10−3 L/mmol·min, and an activation energy of 15 kJ/mol. This new catalyst achieved 90% TFATE formation under optimized reaction conditions. Reuse tests indicated that catalyst deactivation occurred due to active-site poisoning, despite very low calcium leaching. Catalyst characterization confirmed the relevance of the crystalline structure and CaO loading on the avocado char surface to obtain the best catalytic properties, while 1H nuclear magnetic resonance analysis proved TFATE formation. This low-cost catalyst can be an alternative for enhancing sustainable biolubricant production with the aim of replacing petrochemical-based counterparts. Full article
(This article belongs to the Special Issue Nano and Micro Materials in Green Chemistry)
17 pages, 2210 KB  
Article
The Preparation and Properties of Polycrystalline Bi2O2Se—Pitfalls in Reproducibility and Charge-Transport Limiting Factors
by Jan Zich, Tomáš Plecháček, Antonín Sojka, Petr Levinský, Jiří Navrátil, Pavlína Ruleová, Stanislav Šlang, Karel Knížek, Jiří Hejtmánek, Vojtěch Nečina and Čestmír Drašar
Crystals 2025, 15(11), 951; https://doi.org/10.3390/cryst15110951 (registering DOI) - 3 Nov 2025
Abstract
Thermoelectric materials enable the direct conversion of heat into electricity, but progress is often limited by challenges in reproducibility and stability. Bi2O2Se has recently attracted attention as a promising candidate; however, reported transport properties of undoped polycrystalline samples vary [...] Read more.
Thermoelectric materials enable the direct conversion of heat into electricity, but progress is often limited by challenges in reproducibility and stability. Bi2O2Se has recently attracted attention as a promising candidate; however, reported transport properties of undoped polycrystalline samples vary by several orders of magnitude, complicating its use as a baseline for doping studies. In this work, we investigate the sources of variability and identify key factors including precursor contamination, reactions with quartz ampoules and graphite dies, grain size effects, and surface oxidation. To mitigate these issues, we employed calcination of Bi2O3 precursors, synthesis with controlled temperature gradients, coarse-fraction powders, and hot pressing in Si3N4 dies. The resulting polycrystalline Bi2O2Se exhibits improved reproducibility, reduced sensitivity to thermal cycling, and characteristic transport values around σRT ≈ 500 S·m−1 and S ≈ −300 μV·K−1 at room temperature. This is a good starting point for further doping studies and a prerequisite of thermoelectric efficiency studies in the future, which can reveal the true thermoelectric potential of this material. Full article
(This article belongs to the Special Issue Research Progress on Thermoelectric Materials)
Show Figures

Figure 1

18 pages, 1456 KB  
Article
Eu-Doped Nickelate as a Platform for an Enzyme-Based Resistive Biosensor for Glucose
by Gilson P. Lopes, Jéssica H. H. Rossato, Neftali L. V. Carreno, Iseli L. Nantes and Marcia T. Escote
Chemosensors 2025, 13(11), 387; https://doi.org/10.3390/chemosensors13110387 - 3 Nov 2025
Abstract
Nickelate oxides show promise for biosensing applications, especially in glucose detection. Creating nickelate-based biosensors involves utilizing their electron-correlated structure and the metal–insulator (MI) transition, which endows them with unique electronic, magnetic, and catalytic properties. Chemical or oxygen vacancies can alter their conductivity and [...] Read more.
Nickelate oxides show promise for biosensing applications, especially in glucose detection. Creating nickelate-based biosensors involves utilizing their electron-correlated structure and the metal–insulator (MI) transition, which endows them with unique electronic, magnetic, and catalytic properties. Chemical or oxygen vacancies can alter their conductivity and catalytic activity, enabling redox-based detection. In this study, Nd1−xEuxNiO3 films (0 < x < 0.35) functionalized with Glucose Oxidase (GOx) were tested for glucose sensing. Eu substitution shifts the MI transition temperature (TMI) from 200 K (x = 0) to 340 K (x = 35). At room temperature, these films undergo a metallic-to-insulator phase transition, which, along with the Ni3+/Ni2+ ratios, influences their sensing capabilities. Time-resolved electrical resistance measurements monitored how glucose interacts with the film surfaces. The sample with x = 0.3 exhibited a measurable resistance change in response to glucose concentrations ranging from 10−12 to 0.5 M, with a sensitivity of 9.1 mM−1 and a limit of detection (LOD) of approximately 0.47 μM. Reproducibility and interference tests with other sugars yielded good results across all samples. Eu doping in NdNiO3 enhances their sensing response, highlighting the importance of electronic state and MI transition in the sensing performance of these nickelate-based glucose sensors. Full article
Show Figures

Figure 1

18 pages, 2243 KB  
Article
A Novel Fixed-Time Super-Twisting Control with I&I Disturbance Observer for Uncertain Manipulators
by Lin Xu, Jiahao Zhang, Chunwu Yin and Rui Dai
Sensors 2025, 25(21), 6723; https://doi.org/10.3390/s25216723 (registering DOI) - 3 Nov 2025
Abstract
This paper proposes a novel fixed-time super-twisting sliding mode control (ST-SMC) strategy for uncertain robotic arm systems, aiming to address the issues of control chattering and the uncontrollable upper bound of convergence time in traditional sliding mode control algorithms. The proposed approach enhances [...] Read more.
This paper proposes a novel fixed-time super-twisting sliding mode control (ST-SMC) strategy for uncertain robotic arm systems, aiming to address the issues of control chattering and the uncontrollable upper bound of convergence time in traditional sliding mode control algorithms. The proposed approach enhances system robustness, suppresses chattering, and ensures that the convergence time of the robotic arm can be explicitly bounded. First, a sliding surface with fixed-time convergence characteristics is constructed to guarantee that the tracking errors on this surface converge to the origin within a prescribed time. Then, an immersion and invariance (I&I) disturbance observer with exponential convergence properties is designed to estimate large, time-varying disturbances in real time, thereby compensating for system uncertainties. Based on this observer, a new super-twisting sliding mode controller is developed to drive the trajectory tracking errors toward the sliding surface within fixed time, achieving global fixed-time convergence of the tracking errors. Simulation results demonstrate that, regardless of the initial conditions, the proposed controller ensures fixed-time convergence of the tracking errors, effectively eliminates control torque chattering, and achieves a tracking error accuracy as low as 2 × 10−9. These results validate the proposed method’s applicability and robustness for high-precision robotic systems. Full article
(This article belongs to the Special Issue Dynamics and Control System Design for Robotics)
Show Figures

Figure 1

12 pages, 1396 KB  
Article
Optimizing Roller Burnishing of Aluminum Alloy 6061-T6: Comparative Analysis of Dry and Lubricated Conditions for Enhanced Surface Quality and Mechanical Properties
by Avinash Somatkar, Prashant Anerao, Atul Kulkarni, Abhijeet Deshpande and Jozsef Kertesz
J. Manuf. Mater. Process. 2025, 9(11), 360; https://doi.org/10.3390/jmmp9110360 - 3 Nov 2025
Abstract
The present study demonstrates the roller burnishing process of aluminum alloy 6061-T6 by using a combination of aluminum oxide and vegetable oil as a lubricant. Machining parameters were explored, varying speed (v) (range 100–300 rpm), feed (f) (range 0.1–0.3 mm), and number of [...] Read more.
The present study demonstrates the roller burnishing process of aluminum alloy 6061-T6 by using a combination of aluminum oxide and vegetable oil as a lubricant. Machining parameters were explored, varying speed (v) (range 100–300 rpm), feed (f) (range 0.1–0.3 mm), and number of passes (nop) (range 1 to 3). However, performance was measured in terms of surface roughness, microhardness, and roundness. According to the results obtained from experiments, it was found that lubrication had a significant impact on performance in terms of surface roughness, mmicrohardness and roundness. Under lubricated conditions, surface roughness ranged from 0.012 µm to 1.7 µm. However, an increase in mimicrohardnessrom 92 HV to 96 HV and an improvement in roundness from 0.07 mm up to 0.05 mm were observed. Additionally, the findings indicated that high speeds with low feed rates yielded the best results: for instance, at a feed of 0.1 mm/rev, speed (v) of 300 rpm, and number of passes of three, a surface roughness of about 0.8 µm, microhardness of approximately 94 HV, and roundness of about 0.02 mm were recorded when applying lubrication. This study demonstrates how minimal lubrication techniques can be used to improve the roller burnishing process, thereby achieving better mechanical properties and surface finishes while extending the lifespan of the burnishing tool. The study has brought about a conclusion that optimizing v and f during burnishing while including relevant lubricant helps manufacturers to realize significant product quality improvements and enhance production efficiency. Full article
Show Figures

Graphical abstract

20 pages, 4060 KB  
Article
Evaluating the Single and Combined Effects of BMDM and PS Microplastics on Chlorella sp.: Physiological and Transcriptomic Insights
by Jin Liu, Yankun Zhang, Fengyuan Chen, Dandan Duan and Xiaoping Diao
Toxics 2025, 13(11), 946; https://doi.org/10.3390/toxics13110946 (registering DOI) - 3 Nov 2025
Abstract
In the environment, the coexistence of microplastics (MPs) with other pollutants may either enhance or reduce the toxicity of MPs themselves or the co-occurring pollutants toward microalgae. This phenomenon is particularly notable when MPs interact with emerging pollutants, such as ultraviolet absorbers. This [...] Read more.
In the environment, the coexistence of microplastics (MPs) with other pollutants may either enhance or reduce the toxicity of MPs themselves or the co-occurring pollutants toward microalgae. This phenomenon is particularly notable when MPs interact with emerging pollutants, such as ultraviolet absorbers. This study investigates the single and combined exposure effects of ultraviolet absorber (Butyl methoxydibenzoylmethane, BMDM, 50 μg/L) and MPs (Polystyrene, PS, 10 mg/L, d = 1 μm) on Chlorella sp. with a stress duration of 7 days. The results showed that cell density, chlorophyll a (Chla) concentration, and physical properties of cell surface integrity were higher in the combined stress group compared to the BMDM single stress group. Furthermore, transcriptome sequencing analysis revealed that the number of differentially expressed genes (DEGs) in the combined exposure group (885 DEGs) was lower than in the single exposure groups (BMDM: 1870 DEGs and PS: 9109 DEGs). Transcriptomic profiling indicated that individual stressors of BMDM and PS disrupted 113 and 123 pathways, respectively, predominantly associated with protein synthesis and energy metabolism. Conversely, combined exposure significantly enriched 86 pathways, including ribosome function and oxidative phosphorylation, thereby manifesting an antagonistic effect. This study provides new insights into the effects of BMDM and PS on Chlorella sp. and offers valuable information for the risk assessment of multiple pollutants. Full article
Show Figures

Figure 1

20 pages, 4305 KB  
Article
Novel Enzymes for Biologics with Hydrolytic Activity Against Thiolactones: Computational, Catalytic and Antimicrobial Study
by Maksim Domnin, Anastasia Sarapina, Aysel Aslanli, Olga Senko and Elena Efremenko
Biologics 2025, 5(4), 34; https://doi.org/10.3390/biologics5040034 - 3 Nov 2025
Abstract
Background: Various thiolactones are known as biologically active compounds, capable of stimulating the development of several human diseases and quorum sensing of Gram–positive bacteria. The enzymatic hydrolysis of thiolactones represents a promising approach to preventing their action. Methods: Thirteen enzymes, including various lactonases [...] Read more.
Background: Various thiolactones are known as biologically active compounds, capable of stimulating the development of several human diseases and quorum sensing of Gram–positive bacteria. The enzymatic hydrolysis of thiolactones represents a promising approach to preventing their action. Methods: Thirteen enzymes, including various lactonases and serine hydrolases were studied in this work using several substrates including the homocysteine thiolactone (HTL), and its derivatives the N–acetylhomocysteine thiolactone (C2–HTL) and the isobutyryl–homocystein thiolactone (i–but–HTL). The potential interactions of the ligands with the surface of enzymes molecules were predicted in silico using computational modeling and checked in wet experiments in vitro. Results: Based on the data obtained several enzymes were selected with localization of the thiolactones near their active sites, indicating the possibility of effective catalysis. The lactonase (AiiA), metallo-β-lactamase (NDM-1) and the organophosphate hydrolase with hexahistidine tag (His6–OPH) were among them. Determination of catalytic characteristics of enzymes in the hydrolytic reactions with the HTL and the C2–HTL revealed the maximal value of catalytic efficiency constant for the NDM-1 in the hydrolysis of the HTL (826 M−1 s−1). The maximal activity in the hydrolysis of C2–HTL was established for AiiA (137 M−1 s−1). The polyaspartic (PLD50) and the polyglutamic (PLE50) acids were used to obtain polyelectrolyte complexes with enzymes. The further combination of these complexes with the clotrimazole and polymyxin B possessing antimicrobial properties resulted in notable improvement of their action in relation to Staphylococcus cells. Conclusions: It was revealed that the antimicrobial activity of the polymyxin B is enhanced by 9–10 times against bacteria and yeast when combined with the His6–OPH polyelectrolyte complexes. The antimicrobial activity of clotrimazole was increased by ~7 times against Candida tropicalis cells in the case of the AiiA/PLE50/Clotrimazole combination. These results make the obtained biology attractive and promising for their further advancement to practical application. Full article
Show Figures

Graphical abstract

57 pages, 10086 KB  
Review
Engineered Covalent Organic Frameworks with Green Future for Environmentally Sustainable Production of Hydrogen Peroxide: A Critical Review
by Abdulhaleem Abdulkareem Ahmad, Ruimin Chu, Yanqiu Li, Xiao Wang, Ling Li and Peng Zhang
Catalysts 2025, 15(11), 1047; https://doi.org/10.3390/catal15111047 - 3 Nov 2025
Abstract
Hydrogen peroxide (H2O2) is a vital chemical with extensive applications in industries such as agriculture, pharmaceuticals, textiles, water treatment, and food preservation. However, traditional production methods, particularly the anthraquinone process, are energy-intensive, environmentally detrimental, and economically challenging. This review [...] Read more.
Hydrogen peroxide (H2O2) is a vital chemical with extensive applications in industries such as agriculture, pharmaceuticals, textiles, water treatment, and food preservation. However, traditional production methods, particularly the anthraquinone process, are energy-intensive, environmentally detrimental, and economically challenging. This review explores the emerging role of covalent organic frameworks (COFs) as sustainable and efficient catalysts for environmentally sustainable generation of H2O2 through photocatalytic and electrocatalytic pathways. COFs, with their tunable porosity, high surface area, and functionalization capabilities, offer unique advantages in enhancing catalytic performance, including improved mass transport, optimized charge transfer, and stabilization of reaction intermediates. Recent advancements in COF-based systems have demonstrated significant improvements in H2O2 yields, driven by innovative designs such as hierarchical pore structures, functional group incorporation, and hybrid composites with conductive materials. Additionally, the integration of COFs into flexible electrode architectures and on-site detection technologies highlights their potential for scalable and practical applications. Despite these advancements, challenges related to catalytic stability, scalability, and industrial integration remain. This review provides a comprehensive overview of the mechanisms, design principles, and performance of COF-based H2O2 generation systems, while identifying future research directions to address existing limitations. By leveraging the unique properties of engineered COFs, this work underscores their transformative potential in advancing sustainable H2O2 production, paving the way for greener and more efficient industrial processes. Full article
Show Figures

Figure 1

15 pages, 6916 KB  
Article
Elucidation of the Neuroprotective Effects of Astaxanthin Against Amyloid β Toxicity in the SH-SY5Y Human Neuroblastoma Cell Line
by Sahithya Hulimane Ananda, Masahiro Kuragano and Kiyotaka Tokuraku
Molecules 2025, 30(21), 4271; https://doi.org/10.3390/molecules30214271 - 3 Nov 2025
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by memory loss and cognitive decline, primarily due to amyloid β (Aβ) aggregation in the brain. Astaxanthin (AxN), a xanthophyll carotenoid derived from Haematococcus pluvialis, possesses antioxidant and neuroprotective properties. This study investigated the [...] Read more.
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by memory loss and cognitive decline, primarily due to amyloid β (Aβ) aggregation in the brain. Astaxanthin (AxN), a xanthophyll carotenoid derived from Haematococcus pluvialis, possesses antioxidant and neuroprotective properties. This study investigated the neuroprotective effects of AxN against Aβ aggregation in human neuroblastoma SH-SY5Y cells. Initially, AxN inhibited Aβ aggregation in DMEM/F12 culture medium but not in PBS, suggesting a medium-dependent effect. Using quantum dot nanoprobes, Aβ aggregation was visualized in the presence of SH-SY5Y cells. AxN treatment (0.032–20 µM) significantly reduced Aβ aggregation and accumulation on SH-SY5Y cells. AxN also prevented Aβ-induced early apoptotic cell death but was less effective against late necrosis. Furthermore, a wound-healing assay showed that AxN restored the impaired cell motility caused by Aβ aggregation. Thioflavin T staining confirmed the reduction in Aβ fibril formation around the cells following AxN treatment. In conclusion, our study suggests that AxN prevents Aβ aggregation and accumulation on the cell surface, thereby restoring cell motility and preventing early apoptosis in neuronal cells. Full article
Show Figures

Figure 1

19 pages, 3819 KB  
Article
Research on the Physical Properties and Internal Structure of PVP/Nb2O5 Nanocomposite Coatings
by Paweł Jarka, Pallavi Kumari, Małgorzata Łazarska, Marcin Godzierz, Sonia Kotowicz, Marek Marcisz, Marcelina Bochenek, Łucja Hajduk, Magdalena M. Szindler and Barbara Hajduk
Polymers 2025, 17(21), 2939; https://doi.org/10.3390/polym17212939 - 3 Nov 2025
Abstract
The subject of this study is the effects of various concentrations of niobium pentoxide nanoparticles (Nb2O5 NPs) on the physical, optical, and thermal properties of thin films of poly(N-vinylpyrrolidone) (PVP). The obtained results indicate that the addition of nanoparticles significantly [...] Read more.
The subject of this study is the effects of various concentrations of niobium pentoxide nanoparticles (Nb2O5 NPs) on the physical, optical, and thermal properties of thin films of poly(N-vinylpyrrolidone) (PVP). The obtained results indicate that the addition of nanoparticles significantly affects the physical properties of the investigated materials, limiting their optical UV transmittance in the range of 300–500 nm by approximately 20–40% and increasing the material’s resistance to moisture that is present in the surrounding environment. Based on the thermal measurements performed using differential scanning calorimetry (DSC) and variable temperature spectroscopic ellipsometry (VASE), two distinct glass transition temperatures Tg for pure PVP and its Nb2O5 composites were revealed, with an additional intermediate Tg appearing in the composites, varying in the range of 135–168 °C (ellipsometric temperature cycle). This intermediate transition indicates the formation of an interfacial region with modified polymer chain mobility due to the interactions occurring between Nb2O5 nanoparticles and the PVP matrix. The results obtained from the scanning electron microscopy (SEM), Energy Dispersive Spectroscopy (EDS), and detailed Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) analyses also confirmed the presence of this interfacial area and indicated that it arises from nanoparticle agglomeration and surface cluster formation. The contact angle measurements revealed that the composites containing 15% and 25% Nb2O5 exhibited greater hydrophobicity. These results suggest that the investigated composite coatings could be employed as surface coverings to protect against external, environmental influences, such as moisture and UV radiation. Full article
Show Figures

Figure 1

25 pages, 20039 KB  
Article
Buoyant Convective Thermal Transport in a Discretely Heated–Cooled Porous Parallelogrammic Configuration Saturated with Nanofluids: A Tiwari and Das Approach
by Vishwanatha Shivakumar, Vinay C. Veeranna, Mani Sankar, Sebastian A. Altmeyer and Abdulrahman Al Maqbali
Mathematics 2025, 13(21), 3516; https://doi.org/10.3390/math13213516 - 3 Nov 2025
Abstract
The strategic positioning of heating and cooling segments within complex non-rectangular geometries has emerged as a critical engineering challenge across multiple industries in thermal management systems for electronic components. This analysis presents a numerical inspection of buoyancy-driven convective flow and thermal transport mechnisms [...] Read more.
The strategic positioning of heating and cooling segments within complex non-rectangular geometries has emerged as a critical engineering challenge across multiple industries in thermal management systems for electronic components. This analysis presents a numerical inspection of buoyancy-driven convective flow and thermal transport mechnisms of nanofluids in a parallelogrammic porous geometry. A single discrete heating–cooling segment has been placed along the slanting surfaces of the geometry. The mathematical model is formulated utilizing Darcy’s law, incorporating the Tiwari and Das approach to characterize the thermophysical properties of the nanofluid. The governing model equations corresponding to the physical process are solved numerically using finite-difference-based alternating direction implicit (ADI) and successive line over-relaxation (SLOR) techniques. Computational simulations are performed for various parametric conditions, including different nanoparticle volume fractions (ϕ=00.05), Rayleigh numbers (Ra=101103), and parallelogram geometry (α) and sidewall (γ) tilting angles (45°α+45° and 45°γ+45°), while examining the effect of discrete thermal locations. The results reveal a significant decrement in thermal transfer rates with an increasing nanoparticle concentration, particularly at higher Rayleigh numbers. The skewness of the parallelogrammic boundaries is found to substantially influence flow patterns and thermal transport characteristics compared to conventional rectangular enclosures. Further, the discrete placement of heating and cooling sources creates unique thermal plumes that modify circulation patterns within the domain. The predictions suggest profound insights for optimizing thermal management systems by employing nanofluids in non-rectangular porous configurations, with potential applications in geothermal energy extraction, electronic cooling systems, and thermal energy storage devices. Full article
(This article belongs to the Special Issue Numerical Simulation and Methods in Computational Fluid Dynamics)
Show Figures

Figure 1

12 pages, 1865 KB  
Article
The Effect of Current Density and Cathode Position on the Corrosion Resistance and Thermal Emission Properties of Nickel Electroplated Layers on Brass Surfaces
by Lin Zhang, Mingyue Lv, Haoqian Zhang, Xuan Zhang, Mingyue Zhao and Min Zhang
Coatings 2025, 15(11), 1276; https://doi.org/10.3390/coatings15111276 - 3 Nov 2025
Abstract
Brass components are widely used in heat dissipation and thermal emission devices due to their high thermal conductivity and ease of processing. However, these applications demand good thermal oxidation resistance, high emissivity, and excellent corrosion resistance. In this study, nickel coatings were deposited [...] Read more.
Brass components are widely used in heat dissipation and thermal emission devices due to their high thermal conductivity and ease of processing. However, these applications demand good thermal oxidation resistance, high emissivity, and excellent corrosion resistance. In this study, nickel coatings were deposited on brass substrates by direct current electroplating, and the effects of current density and cathode configuration on the microstructure, emissivity, and corrosion resistance of the coatings were systematically investigated. The results show that the emissivity of the coatings first increased and then decreased with increasing current density. Optimal performance was achieved when the cathode and anode were positioned perpendicular to the horizontal plane at a current density of 3.0 A·dm−2. Under these conditions, the coatings exhibited a smooth, uniform, and dense microstructure, with evenly distributed metallic grains. Electrochemical polarization and impedance measurements further confirmed the superior corrosion resistance of this coating, with a minimum corrosion current density of 0.259 μA·cm−2, a maximum polarization resistance of 6381.55 Ω·cm2, and a minimum corrosion rate of 0.023 mm/a. These findings demonstrate a simple and effective approach to enhancing both the emissivity and corrosion resistance of brass substrates, offering practical value for thermal management applications. Full article
Show Figures

Figure 1

13 pages, 1009 KB  
Article
Effect of Hydrothermal Aging on Mechanical and Microstructural Properties of Zirconia Ceramics
by Çağlayan Sayla Çelik and Merve Çakırbay Tanış
Nanomaterials 2025, 15(21), 1669; https://doi.org/10.3390/nano15211669 - 3 Nov 2025
Abstract
The mechanical and microstructural properties of monolithic zirconia ceramics are significant factors for their long-term clinical performance. This study aims to investigate the effects of hydrothermal aging on these properties for the 3Y-TZP, 4Y-TZP, and 5Y-TZP formulations. Specimens were prepared from 3 different [...] Read more.
The mechanical and microstructural properties of monolithic zirconia ceramics are significant factors for their long-term clinical performance. This study aims to investigate the effects of hydrothermal aging on these properties for the 3Y-TZP, 4Y-TZP, and 5Y-TZP formulations. Specimens were prepared from 3 different zirconia blocks: 3Y-TZP (HT), 4Y-TZP (ST), and 5Y-TZP (XT). Half of the specimens were aged in an autoclave (134 °C, 2 bar, 5 h) while the others remained as controls. Three-point flexural strength, Vickers hardness, and surface roughness tests, as well as XRD, AFM, and SEM/EDS analysis, were performed. The material type significantly affected the flexural strength, Vickers hardness, and surface roughness. Aging did not significantly affect the flexural strength or surface roughness but reduced the Vickers hardness in the 3Y-TZP sample. The 3Y-TZP and 5Y-TZP samples displayed the highest and lowest flexural strength, respectively. In the non-aged groups, 3Y-TZP and 5Y-TZP exhibited higher hardness than 4Y-TZP, and after aging, 3Y-TZP displayed the lowest hardness. Further, 5Y-TZP showed the highest surface roughness before and after aging. XRD revealed an increased monoclinic phase in the aged 3Y-TZP and 4Y-TZP. No monoclinic phase was observed in 5Y-TZP. According to AFM measurements, aging led to a smoother surface in 3Y-TZP but increased roughness in 4Y-TZP and 5Y-TZP. SEM/EDS revealed changes in the elemental compositions following aging. According to the results of this study, different material formulations affect the mechanical behavior and microstructural properties of monolithic zirconia ceramics. Further, hydrothermal aging displayed effects on the Vickers hardness and phase transformations. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Graphical abstract

24 pages, 15484 KB  
Article
On the Process Optimization, Microstructure Characterization and Mechanical Performance of Ti65 Titanium Alloy Produced by Laser Powder Bed Fusion
by Yuan Meng, Xianglong Wang, Jinjun Wu, Haojie Wang, Ping Gan, Lei Lu, Chengjie Li, Tongling Ma, Jun Niu and Zhigang Zhang
Appl. Sci. 2025, 15(21), 11717; https://doi.org/10.3390/app152111717 - 3 Nov 2025
Abstract
Ti65 high-temperature titanium alloy, known for its exceptional high-temperature mechanical properties and oxidation resistance, demonstrates considerable potential for aerospace applications. Nevertheless, conventional manufacturing techniques are often inadequate for achieving high design freedom and fabricating complex geometries. This study presents a systematic investigation into [...] Read more.
Ti65 high-temperature titanium alloy, known for its exceptional high-temperature mechanical properties and oxidation resistance, demonstrates considerable potential for aerospace applications. Nevertheless, conventional manufacturing techniques are often inadequate for achieving high design freedom and fabricating complex geometries. This study presents a systematic investigation into the process optimization, microstructure characterization, and mechanical performance of Ti65 alloy produced by laser powder bed fusion (LPBF). Via meticulously designed single-track, multi-track, and bulk sample experiments, the influences of laser power (P), scanning speed (V), and hatch spacing (h) on molten pool behavior, defect formation, microstructural evolution, and surface roughness were thoroughly examined. The results indicate that under optimized parameters, the specimens attain ultra-high dimensional accuracy, with a near-full density (>99.99%) and reduced surface roughness (Ra = 3.9 ± 1.3 μm). Inadequate energy input (low P or high V) led to lack-of-fusion defects, whereas excessive energy (high P or low V) resulted in keyhole porosity. Microstructural analysis revealed that the rapid solidification inherent to LPBF promotes the formation of fine acicular α′-phase (0.236–0.274 μm), while elevated laser power or reduced scanning speed facilitated the development of coarse lamellar α′-martensite (0.525–0.645 μm). Tensile tests demonstrated that samples produced under the optimized parameters exhibit high ultimate tensile strength (1489 ± 7.5 MPa), yield strength (1278 ± 5.2 MPa), and satisfactory elongation (5.7 ± 0.15%), alongside elevated microhardness (446.7 ± 1.7 HV0.2). The optimized microstructure thereby enables the simultaneous achievement of high density and superior mechanical properties. The fundamental mechanism is attributed to precise control over volumetric energy density, which governs melt pool mode, defect generation, and solidification kinetics, thereby tailoring the resultant microstructure. This study offers valuable insights into defect suppression, microstructure control, and process optimization for LPBF-fabricated Ti65 alloy, facilitating its application in high-temperature structural components. Full article
Show Figures

Figure 1

Back to TopTop