Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (449)

Search Parameters:
Keywords = sustainable fisheries management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 2171 KB  
Article
Sustainability Assessment and Sustainable Management Scenario of Lake Batur in Bali, Indonesia: Insights from a Multi-Aspect Approach
by Heri Apriyanto, Warseno Warseno, Handoyo Mukti, Aphang Suhendra, Taufiq Dwi Tamtomo, Hermawan Prasetya, Tukiyat Tukiyat, Hendro Wibowo, Temmy Wikaningrum, Rijal Hakiki and Janthy Trilusianthy Hidayat
Resources 2025, 14(9), 135; https://doi.org/10.3390/resources14090135 - 28 Aug 2025
Abstract
Lake Batur is part of the Batur UNESCO Global Geopark and an active caldera of Mount Batur on Bali Island, Indonesia, and it has no inlet or outlet. The current state of the lake has deteriorated due to severe environmental degradation. The lake’s [...] Read more.
Lake Batur is part of the Batur UNESCO Global Geopark and an active caldera of Mount Batur on Bali Island, Indonesia, and it has no inlet or outlet. The current state of the lake has deteriorated due to severe environmental degradation. The lake’s management will focus on the environment and other aspects planned in an integrated, sustainable lake management scenario. The research aims to develop a Key Performance Indicator instrument to determine the lake’s sustainable status. These indicators included environmental, socio-cultural, economic, institutional-management, and infrastructure-technology aspects. The method used is Multi-Aspect Sustainability Analysis to determine its sustainable status and identify the factors that have the most leverage in actions to restore Lake Batur. The primary data was collected through in-depth interviews, questionnaires, and field surveys. Respondents were stakeholders who knew the factual conditions of Lake Batur. The research results show that Lake Batur is in a state of alert or declining sustainability, even predicted to become critical if there is no significant management soon. The performance of all aspects is in the alert category (unsustainable or <50/100) except the social-cultural in the acceptable category (not yet ideal/sustainable). The management scenario of Lake Batur, at least increases to the acceptable category, includes controlling the number of floating net cages and the forest area, developing the potential of tourism and fisheries, reducing conflicts, establishing rules for lake use, increasing the role of the central government, and digitalization of lake management development, construction of water infrastructure and the use of renewable energy. Full article
23 pages, 2476 KB  
Article
Exploring Life History Traits and Catch Composition of Red Mullet (Mullus barbatus, L. 1758) in the Commercial Trawl Fisheries of the Eastern Aegean Sea
by Ilker Aydin, Alexandros Theocharis and Dimitris Klaoudatos
Water 2025, 17(17), 2540; https://doi.org/10.3390/w17172540 - 27 Aug 2025
Abstract
The red mullet (Mullus barbatus, Linnaeus 1758) is a commercially vital demersal species in the Eastern Aegean Sea, yet it is subjected to high fishing pressure. This study assesses the population dynamics, growth, and exploitation status of M. barbatus based on [...] Read more.
The red mullet (Mullus barbatus, Linnaeus 1758) is a commercially vital demersal species in the Eastern Aegean Sea, yet it is subjected to high fishing pressure. This study assesses the population dynamics, growth, and exploitation status of M. barbatus based on 64 commercial trawl surveys conducted between 2022 and 2024 in the Lesvos–Ayvalik region. Length-frequency data identified eight age classes, with dominant cohorts at ages 3 (26.4%) and 5 (25%). The von Bertalanffy growth model estimated an asymptotic length (L∞) of 27.9 cm and growth coefficient (k = 0.21 year−1), indicating a slow growth rate. The estimated fishing mortality (F = 0.74) exceeded natural mortality (M = 0.44), producing an exploitation rate (E = 0.63) that indicates overfishing. The length at 50% capture (LC50 = 10.92 cm) was substantially below the optimal biomass length (Le = 16.6 cm), highlighting gear selectivity issues. Net benefit analysis revealed optimal fishing at 50–85 m depth and during December. These findings underscore the urgent need for improved management, including gear modifications, seasonal closures, and reduced effort, to restore sustainability and protect juvenile fish in the Eastern Aegean trawl fishery. Full article
(This article belongs to the Section Biodiversity and Functionality of Aquatic Ecosystems)
Show Figures

Figure 1

21 pages, 18290 KB  
Article
Nighttime Remote Sensing Analysis of Lit Fishing Boats: Fisheries Management Challenges in the South China Sea (2013–2022)
by Dongliang Wang, Wendi Zheng, Shilin Tang, Lei Zhang, Yupeng Liu and Jing Yu
Remote Sens. 2025, 17(17), 2967; https://doi.org/10.3390/rs17172967 - 27 Aug 2025
Abstract
The South China Sea (SCS) is a critical fishery region facing sustainability challenges due to overexploitation, geopolitical tensions, and inadequate monitoring. Traditional monitoring methods, such as AIS and VMS, have limitations due to data gaps and vessel deactivation. We developed an improved remote [...] Read more.
The South China Sea (SCS) is a critical fishery region facing sustainability challenges due to overexploitation, geopolitical tensions, and inadequate monitoring. Traditional monitoring methods, such as AIS and VMS, have limitations due to data gaps and vessel deactivation. We developed an improved remote sensing algorithm using VIIRS nighttime light observations (2013–2022) to detect and classify lit fishing boats in the SCS. The study introduces a Two-Dimensional Constant False Alarm Rate (2D-CFAR) algorithm integrated with morphological analysis, which enhances boats’ detection accuracy. The classification of fishing boat types was based on light power thresholds derived from spatial entropy analysis, where distinct clustering patterns indicated three operational categories: small interfering lights (<1.2–3.7 kW), small-to-medium-sized lit fishing boats (1.2–3.7 to 28.6–43.2 kW), and large lit fishing boats (>28.6–43.2 kW). Our findings reveal a 4.4-fold dominance of small-to-medium-sized lit fishing boats over large lit fishing boats. China’s summer fishing moratorium effectively reduces large lit fishing boats activity by 85%, yet small-to-medium-sized lit fishing boats, primarily from neighboring countries like Vietnam, persist, exploiting this period illegally. Spatially, small-to-medium-sized lit fishing boats concentrate in the central SCS, southeast Vietnam, and Nansha Islands, while large lit fishing boats target upwelling zones near Hainan and Guangdong. Moreover, a new fishing hotspot emerged in eastern SCS, reflecting intensified resource and geopolitical competition. Light intensity analysis reveals rapid growth in contested areas (10% annually, p < 0.01), underscoring ecological risks. These findings highlight the limitations of unilateral policies and the urgent need for regional cooperation to curb illegal, unreported, and unregulated (IUU) fishing. Our algorithm offers a robust tool for monitoring fishing dynamics, providing quantitative insights into vessel distribution, policy impacts, and resource-driven patterns. This supports evidence-based fisheries management and biodiversity conservation in the SCS, adaptable to other marine regions facing similar challenges. Full article
Show Figures

Figure 1

16 pages, 1640 KB  
Article
Study on Improving International Cooperation Frameworks for Combating Illegal, Unreported, and Unregulated Fishing to Achieve Sustainable Use of Fishery Resources
by Sung-Su Lim and Bong-Kyu Jung
Water 2025, 17(17), 2518; https://doi.org/10.3390/w17172518 - 23 Aug 2025
Viewed by 328
Abstract
Despite global initiatives to combat Illegal, Unreported, and Unregulated (IUU) fishing, such activities continue unabated. As a response, states are encouraged to join the Food and Agriculture Organization of the United Nations Port State Measures Agreement (PSMA) as a countermeasure. Despite these efforts, [...] Read more.
Despite global initiatives to combat Illegal, Unreported, and Unregulated (IUU) fishing, such activities continue unabated. As a response, states are encouraged to join the Food and Agriculture Organization of the United Nations Port State Measures Agreement (PSMA) as a countermeasure. Despite these efforts, it is suspected that many IUU fishing activities involve non-party or unknown vessels that evade international sanctions. This study aims to propose technical and institutional improvement measures in light of these challenges. First, using available IUU vessel lists, we conducted independent-sample comparisons and paired-sample comparisons to analyze the characteristics of IUU vessels. As key solutions, we propose the formation of a global collaborative body to facilitate an integrated information chain, the implementation of advanced technologies for systematic operations, strategies to encourage PSMA accession by non-parties, market investigations, and enhanced national inspection and organizational capabilities. Furthermore, this study seeks to strengthen global deterrence of IUU fishing activities by proposing a phased international cooperation framework to enhance the feasibility of integrating the PSMA, Global Record (GR), Global Information Exchange System (GIES), and Regional Fisheries Management Organization (RFMO) systems. These strategies are expected to contribute positively to the transparent governance, sustainable management of fishery resources, and safety officers and vessels. Full article
(This article belongs to the Special Issue Coastal Ecology and Fisheries Management)
Show Figures

Figure 1

19 pages, 3672 KB  
Article
Analysis of Fishery Resource Distribution and Seasonal Variations in the East China Sea: Utilizing Trawl Surveys, Environmental DNA, and Scientific Echo Sounders
by Sara Lee, Jung Kwan Lee, Guenchang Park, Wooseok Oh and Kyounghoon Lee
Water 2025, 17(16), 2477; https://doi.org/10.3390/w17162477 - 20 Aug 2025
Viewed by 342
Abstract
Assessing fishery resources is crucial for sustainable marine ecosystem management and the operation of fisheries. This study integrates trawl surveys, environmental DNA (eDNA) analysis, and scientific echo sounder techniques to analyze the fishery resource distribution of and seasonal variations in the East China [...] Read more.
Assessing fishery resources is crucial for sustainable marine ecosystem management and the operation of fisheries. This study integrates trawl surveys, environmental DNA (eDNA) analysis, and scientific echo sounder techniques to analyze the fishery resource distribution of and seasonal variations in the East China Sea. Surveys were conducted in April, July, August, and November 2022, utilizing bottom trawl sampling, eDNA metabarcoding, and acoustic data collection. The results revealed temporal differences in species composition, with crustaceans dominating in terms of abundance and fish species in biomass. The integration of eDNA analysis provided broader species detection, including cryptic and pelagic species, while acoustic techniques enabled large-scale resource assessment. However, discrepancies between methods highlighted the need for methodological refinement. Dominant species exhibited seasonal variation, with Portunus trituberculatus prevailing in spring (April), Trachurus japonicus and Scomber japonicus in summer (July–August), and Pampus argenteus in late autumn (November). A comparative analysis revealed that eDNA is sensitive to pelagic and cryptic species, trawl surveys effectively detect demersal fish, and acoustics allow for broad-scale biomass estimation, highlighting the complementary value of method integration. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

18 pages, 5228 KB  
Article
Detection, Tracking, and Statistical Analysis of Mesoscale Eddies in the Bay of Bengal
by Hafez Ahmad, Felix Jose, Padmanava Dash and Shakila Islam Jhara
Oceans 2025, 6(3), 52; https://doi.org/10.3390/oceans6030052 - 20 Aug 2025
Viewed by 428
Abstract
Mesoscale eddies have a significant influence on primary productivity and upper-ocean variability, particularly in stratified and monsoon-driven basins like the Bay of Bengal (BoB). This study analyzes mesoscale eddies in the BoB from January 2010 to March 2020 using post-processed and gridded daily [...] Read more.
Mesoscale eddies have a significant influence on primary productivity and upper-ocean variability, particularly in stratified and monsoon-driven basins like the Bay of Bengal (BoB). This study analyzes mesoscale eddies in the BoB from January 2010 to March 2020 using post-processed and gridded daily sea surface height anomaly (SLA) data from the Copernicus Marine Environment Monitoring Service. We used a hybrid detection method combining the Okubo–Weiss parameter and SLA contour analysis to identify 1880 anticyclonic and 1972 cyclonic eddies. Cyclonic eddies were mainly found in the western BoB along the east Indian coast, while anticyclonic eddies were less frequent in this area. Analysis of eddy lifespans revealed that short-lived (1-week) eddies were nearly equally distributed between anticyclonic (48.81%) and cyclonic (51.19%) types. However, for longer-lived eddies, cyclonic eddies became more prevalent, comprising 83.33% of 30-week eddies. A notable, consistent eddy presence was observed east of Sri Lanka, influencing the East India Coastal Current. Most eddies (91%) propagated west/southwestward along the western slope of the Andaman Archipelago, likely influenced by ocean currents and coastal topography, with concentrations in the Andaman Sea and central BoB. These patterns suggest significant interactions between eddies, coastal upwelling zones, and boundary currents, impacting nutrient transport and marine ecosystem productivity. This study contributes valuable insights into the dynamics of ocean circulation and the impacts of eddies, which can inform fisheries management strategies, advance climate resilience measures, expand scientific knowledge, and guide policies related to conservation and sustainable resource utilization. Full article
Show Figures

Figure 1

23 pages, 1835 KB  
Article
STACS: A Spatiotemporal Adaptive Clustering–Segmentation Algorithm for Fishing Activity Recognition
by Jingyi Liu, Zhiyuan Hu, Jianbo Tang, Ju Peng, Qi Guo and Xinyu Pei
Appl. Sci. 2025, 15(16), 9107; https://doi.org/10.3390/app15169107 - 19 Aug 2025
Viewed by 186
Abstract
To ensure sustainable marine resource utilization, advanced monitoring methods are urgently needed to mitigate overfishing and ecological imbalances. Conventional fishing activity detection methods, including speed threshold-based approaches and Gaussian Mixture Models, often fail to accurately handle complex vessel trajectories, resulting in imprecise quantification [...] Read more.
To ensure sustainable marine resource utilization, advanced monitoring methods are urgently needed to mitigate overfishing and ecological imbalances. Conventional fishing activity detection methods, including speed threshold-based approaches and Gaussian Mixture Models, often fail to accurately handle complex vessel trajectories, resulting in imprecise quantification of fishing effort and hindering effective monitoring of illegal, unreported, and unregulated (IUU) fishing activities. To address these limitations, we propose a spatiotemporal adaptive clustering and segmentation (STACS) framework for recognizing fishing activities. First, ST-DBSCAN clustering distinguishes concentrated fishing operations from transit movements. Second, an adaptive segmentation algorithm that incorporates heading stability and local density dynamically partitions trajectories into coherent segments, using spatiotemporal clusters as the basic units. Third, multiple features capturing temporal dynamics and spatial patterns are extracted to characterize fishing behaviors. Finally, an XGBoost classifier with run-length encoding post-processing converts point-level predictions to continuous fishing episodes. Experiments on fishing vessel trajectory datasets demonstrate that STACS outperforms conventional methods and advanced segmentation approaches, improving both point-level classification and segment-level coherence across diverse fishing scenarios. By enhancing IUU fishing detection and reducing classification inconsistencies, STACS provides valuable insights for marine conservation, policymaking, and fisheries management, bridging local behavioral dynamics with global trajectory analysis. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

18 pages, 1663 KB  
Article
Turning the Tide: Ecosystem-Based Management Reforms and Fish Stock Recovery in Abu Dhabi Waters, United Arab Emirates
by Dario Pinello, Mohamed Abdulla Ahmed Almusallami, Franklin Francis, Ahmed Tarish Al Shamsi, Ahmed Esmaeil Alsayed Alhashmi, Mohamed Hasan Ali Al Marzooqi and Shaikha Salem Al Dhaheri
Sustainability 2025, 17(16), 7467; https://doi.org/10.3390/su17167467 - 18 Aug 2025
Viewed by 405
Abstract
Fisheries management in Abu Dhabi has undergone a significant transformation over the past two decades, shifting from an open-access system to a more regulated framework aimed at stock recovery and sustainability. This study evaluates the status of 13 commercially important fish species—accounting for [...] Read more.
Fisheries management in Abu Dhabi has undergone a significant transformation over the past two decades, shifting from an open-access system to a more regulated framework aimed at stock recovery and sustainability. This study evaluates the status of 13 commercially important fish species—accounting for 95% of total landings—using two complementary stock assessment methods: CMSY++, a Bayesian catch-based model, and the Length-Converted Catch Curve (LCCC), a length-based mortality estimation approach. Fisheries-dependent and fisheries-independent data collected from 2001 to 2024 were analyzed to assess trends in biomass, exploitation rates, and spawning stock biomass per recruit (SBR). CMSY++ outputs indicate that in 2005, only 1 out of 13 stocks was sustainable, with biomass (B) above the biomass that can reproduce maximum sustainable yield (BMSY) and fishing mortality (F) below the fishing mortality that gives the maximum sustainable yield (FMSY), and 5 stocks were overexploited. By 2024, seven stocks had recovered to sustainable levels, with biomass at or above BMSY and exploitation rates below FMSY. LCCC results for 2024 further confirm these findings, with most species exhibiting SBR values above the 30% threshold, except for Lethrinus nebulosus (Forsskål, 1775), which remains close to overexploitation limits. The observed stock recovery coincides with effective governance and key fisheries management measures, including effort reduction, gear restrictions, and spatial protections. While most stocks are now within sustainable biological reference points, transboundary species such as Scomberomorus commerson (Lacépède, 1800) require continued regional cooperation for effective management. These findings contribute to ongoing efforts to achieve and maintain fully sustainable fisheries in the Arabian Gulf while aligning with international conservation frameworks, biodiversity protection goals, and climate-resilient fisheries management strategies. Full article
Show Figures

Figure 1

27 pages, 20003 KB  
Article
Spatiotemporal Patterns of Algal Blooms in Lake Bosten Driven by Climate and Human Activities: A Multi-Source Remote-Sensing Perspective for Sustainable Water-Resource Management
by Haowei Wang, Zhoukang Li, Yang Wang and Tingting Xia
Water 2025, 17(16), 2394; https://doi.org/10.3390/w17162394 - 13 Aug 2025
Viewed by 337
Abstract
Algal blooms pose a serious threat not only to the lake ecosystem of Lake Bosten but also by negatively impacting its rapidly developing fisheries and tourism industries. This study focuses on Lake Bosten as the research area and utilizes multi-source remote sensing imagery [...] Read more.
Algal blooms pose a serious threat not only to the lake ecosystem of Lake Bosten but also by negatively impacting its rapidly developing fisheries and tourism industries. This study focuses on Lake Bosten as the research area and utilizes multi-source remote sensing imagery from Landsat TM/ETM+/OLI and Sentinel-2 MSI. The Adjusted Floating Algae Index (AFAI) was employed to extract algal blooms in Lake Bosten from 2004 to 2023, analyze their spatiotemporal evolution characteristics and driving factors, and construct a Long Short Term Memory (LSTM) network model to predict the spatial distribution of algal-bloom frequency. The stability of the model was assessed through temporal segmentation of historical data combined with temporal cross-validation. The results indicate that (1) during the study period, algal blooms in Lake Bosten were predominantly of low-risk level, with low-risk bloom coverage accounting for over 8% in both 2004 and 2005. The intensity of algal blooms in summer and autumn was significantly higher than in spring. The coverage of medium- and high-risk blooms reached 2.74% in the summer of 2004 and 3.03% in the autumn of 2005, while remaining below 1% in spring. (2) High-frequency algal bloom areas were mainly located in the western and northwestern parts of the lake, and the central region experienced significantly more frequent blooms during 2004–2013 compared to 2014–2023, particularly in spring and summer. (3) The LSTM model achieved an R2 of 0.86, indicating relatively stable performance. The prediction results suggest a continued low frequency of algal blooms in the future, reflecting certain achievements in sustainable water-resource management. (4) The interactions among meteorological factors exhibited significant influence on bloom formation, with the q values of temperature and precipitation interactions both exceeding 0.5, making them the most prominent meteorological driving factors. Monitoring of sewage discharge and analysis of agricultural and industrial expansion revealed that human activities have a more direct impact on the water quality of Lake Bosten. In addition, changes in lake area and water environment were mainly influenced by anthropogenic factors, ultimately making human activities the primary driving force behind the spatiotemporal variations of algal blooms. This study improved the timeliness of algal-bloom monitoring through the integration of multi-source remote sensing and successfully predicted the future spatial distribution of bloom frequency, providing a scientific basis and decision-making support for the sustainable management of water resources in Lake Bosten. Full article
(This article belongs to the Special Issue Use of Remote Sensing Technologies for Water Resources Management)
Show Figures

Figure 1

17 pages, 2243 KB  
Article
Long-Term Changes in Fish Landings and Fish Community Structure in Nile Delta Lakes: Implications for Fisheries Sustainability
by Mohamed Samy-Kamal and Ahmed A. Abdelhady
Fishes 2025, 10(8), 404; https://doi.org/10.3390/fishes10080404 - 13 Aug 2025
Viewed by 326
Abstract
This study examined long-term trends (1991–2019) in landings and fish community structure in the four Egyptian Nile Delta lakes. Using fisheries data, we explored trends in the catch per unit effort (CPUE) and temporal dynamics of landings and fishing effort. Non-metric Multidimensional Scaling [...] Read more.
This study examined long-term trends (1991–2019) in landings and fish community structure in the four Egyptian Nile Delta lakes. Using fisheries data, we explored trends in the catch per unit effort (CPUE) and temporal dynamics of landings and fishing effort. Non-metric Multidimensional Scaling (nMDS) and Similarity Percentage Analysis (SIMPER) were employed to assess long-term changes in fish community structure. The results revealed variable productivity across the lakes. Lake Manzala often exhibited higher yields between 1991 and 2004, and notably in 2013 (e.g., 62,372 tons), while Lake Burullus peaked at 81,399 tons in 2019. A reciprocal trend was often observed in their total yields. Lake Burullus catches were dominated by Tilapia and Mullets, while Edku and Mariout showed lower productivity. CPUE patterns varied, with Lake Manzala showing a notable increase, peaking at approximately 52 tons per boat per year in 2013, and Lake Burullus experienced a sharp increase to about 29 tons per boat per year in 2019. A shift towards amateur fishing was observed predominantly in Lake Manzala, alongside a decline in traditional licensing. An increase in fishers operating without boats was also noted across all the Northern Lakes, with contributions from Lake Edko and Lake Manzala. nMDS and SIMPER analyses revealed distinct temporal groupings of years within each lake, indicating significant shifts in fish community structure, likely in response to invasive species, pollution, and habitat degradation. These findings underscore the need for lake-specific management and long-term monitoring to address unsustainable fishing and ecological changes, ensuring biodiversity conservation and fisheries sustainability in the region. Full article
Show Figures

Figure 1

23 pages, 2431 KB  
Review
Systematic Review: The Ecology and Cultural Significance of Oysters in the Arabian Gulf
by Manaf Alkhuzaei, Sabah Aljenaid and Ghadeer Mohamed
Diversity 2025, 17(8), 565; https://doi.org/10.3390/d17080565 - 12 Aug 2025
Viewed by 387
Abstract
Arabian Gulf oyster reefs, dominated by the pearl oyster Pinctada radiata, function simultaneously as ecological keystones and cultural touchstones. Rapid coastal urbanization and escalating pollution now threaten reef integrity. This systematic review of 1400 publications distilled 42 rigorously screened studies (3%) that [...] Read more.
Arabian Gulf oyster reefs, dominated by the pearl oyster Pinctada radiata, function simultaneously as ecological keystones and cultural touchstones. Rapid coastal urbanization and escalating pollution now threaten reef integrity. This systematic review of 1400 publications distilled 42 rigorously screened studies (3%) that document reef distribution, ecological roles, contaminant burdens, and socio-historical context. The results show that reef structures stabilize sediments, enhance water clarity through exceptional filtration rates, and furnish nursery habitats for commercially important fisheries, while heavy metal bioaccumulation in oyster tissues indicates widespread coastal contamination. The Gulf’s economy and identity were historically anchored in pearling; contemporary restoration initiatives already deploying dozens of sustainable reef modules across hundreds of traditional dive sites seek to revive this heritage and bolster ecological resilience. Persistent knowledge gaps include comprehensive spatial mapping, the effects of climate change and pollutant interactions, and long-term restoration success in hypersaline conditions. An integrated management framework that couples stringent monitoring, pollution mitigation, adaptive restoration, and heritage-centered community engagement is essential to safeguard Gulf oyster ecosystems and the cultural narratives entwined with them. Full article
(This article belongs to the Section Marine Diversity)
Show Figures

Figure 1

16 pages, 3173 KB  
Article
A Quantitative Approach to Prior Setting for Relative Biomass (B/k) in CMSY++: Application to Snow Crabs (Chionoecetes opilio) in Korean Waters
by Ji-Hyun Eom, Sung-Il Lee and Sang-Chul Yoon
Fishes 2025, 10(8), 400; https://doi.org/10.3390/fishes10080400 - 11 Aug 2025
Viewed by 290
Abstract
Snow crabs (Chionoecetes opilio), a commercially valuable species in Korean waters, have been managed under the Total Allowable Catch (TAC) system since 2002. However, stock assessment has been limited due to difficulties in estimating key ecological traits such as growth, maturity, [...] Read more.
Snow crabs (Chionoecetes opilio), a commercially valuable species in Korean waters, have been managed under the Total Allowable Catch (TAC) system since 2002. However, stock assessment has been limited due to difficulties in estimating key ecological traits such as growth, maturity, and mortality. In this study, the Bayesian Schaefer Model (BSM), implemented within CMSY++ framework, was applied to assess the stock status of snow crabs in Korean waters. BSM requires catch and abundance index data, such as catch per unit effort (CPUE) or biomass, as well as prior information on species resilience and relative biomass (B/k). To improve the reliability of B/k priors, we developed a method to calculate them quantitatively using fishery data, sales amounts, and biological information, unlike the qualitative assumptions on stock and fishing conditions proposed in previous research. Two standardized CPUE indices with differing temporal trends in recent years were used as abundance indices. To address the structural uncertainty associated with these divergent trends, we applied a grid-based approach by treating each CPUE index as an independent model scenario and integrating the posterior distributions. A total of 12,000 posterior estimates (6000 per index) were generated through the BSM and used to construct a Kobe plot. Results indicate that the current biomass is slightly above the level supporting maximum sustainable yield, and fishing mortality slightly below the optimal level, suggesting that the stock is healthy and sustainably exploited. Future research should aim to establish a systematic framework for developing quantitative B/k priors to enhance stock assessment accuracy. Full article
(This article belongs to the Special Issue Modeling Approach for Fish Stock Assessment)
Show Figures

Figure 1

16 pages, 2135 KB  
Article
Population Structure and Resource Dynamics of Three Schizothoracinae Species in the Duoxiong Zangbo River Tributary of the Yarlung Zangbo River, Tibet: Threat Assessment and Conservation Insights
by Haoxiang Han, Lin Wang, Chi Zhang, Hongchi Li and Bo Ma
Animals 2025, 15(16), 2340; https://doi.org/10.3390/ani15162340 - 10 Aug 2025
Viewed by 304
Abstract
The Yarlung Zangbo River (With a total length of 2057 km, the river forms part of the Ganges–Brahmaputra River system), located in the core region of the Tibetan Plateau, hosts a unique yet fragile aquatic ecosystem. Fish populations inhabiting this ecosystem have been [...] Read more.
The Yarlung Zangbo River (With a total length of 2057 km, the river forms part of the Ganges–Brahmaputra River system), located in the core region of the Tibetan Plateau, hosts a unique yet fragile aquatic ecosystem. Fish populations inhabiting this ecosystem have been significantly impacted by external factors, leading to declining resources. This decline is particularly evident in local tributaries, including the DuoXiong Zangbo River—a main tributary where scientific research remains scarce due to its geographic remoteness. Consequently, the status of schizothoracinae in this river remains poorly understood, necessitating research on their population structure, growth characteristics, and resource dynamics, as well as the extent of external disturbances. During the 2023–2024 season, fishery surveys were conducted during two sampling periods: summer (June–July) and autumn (September–October). This study focuses on the Duoxiong Zangbo River, a tributary of the Yarlung Zangbo River, targeting three schizothoracinae fish species: Schizothorax o’connori, Oxygymnocypris stewartii, and Ptychobarbus dipogon. The results show that their body lengths ranged from 23.02 to 440.00 mm, 23.02 to 460.00 mm, and 45.18 to 418.00 mm, with body weights ranging from 0.30 to 1394.30 g, 0.20 to 1013.00 g, and 1.20 to 814.30 g. Age distributions spanned 0–14, 0–16, and 0–13 years, respectively, indicating a trend toward younger and smaller individuals. Von Bertalanffy growth modeling revealed asymptotic body lengths (L) of 591.233 mm, 507.557 mm, and 515.292 mm, with growth coefficients (k) of 0.098, 0.122, and 0.118, respectively. These parameters suggest that the populations are exhibiting accelerated growth strategies in response to fishing pressure. Using FiSAT II, exploitation rates (E) were calculated as 0.547, 0.758, and 0.711 for the three species, with predicted maximum sustainable exploitation rates of 0.579, 0.882, and 0.884, respectively. These findings indicate that the three schizothoracinae species have approached the threshold of overexploitation and are facing threats of overexploitation. In summary, this study demonstrates that schizothoracinae in the DuoXiong Zangbo River are experiencing adverse effects from external pressures, with populations at risk of decline. These results underscore the urgent need for targeted conservation and management strategies. Full article
(This article belongs to the Special Issue Global Fisheries Resources, Fisheries, and Carbon-Sink Fisheries)
Show Figures

Figure 1

17 pages, 2943 KB  
Article
Overview of a Keystone Small Pelagic Fish in the North-Western Black Sea: Biometry, Age and Stock Status of Horse Mackerel Trachurus mediterraneus (Steindachner, 1868)
by Cătălin Păun, Aurelia Țoțoiu, George Țiganov, Mădălina Galațchi, Magda Nenciu and Victor Niță
Fishes 2025, 10(8), 390; https://doi.org/10.3390/fishes10080390 - 7 Aug 2025
Viewed by 348
Abstract
As a semi-pelagic fish with commercial value, Mediterranean horse mackerel, Trachurus mediterraneus (Steindachner, 1868), is highly important both for the ecosystem, as a link between trophic levels, and for fisheries and local livelihoods. This study investigates the T. mediterraneus stock along the Romanian [...] Read more.
As a semi-pelagic fish with commercial value, Mediterranean horse mackerel, Trachurus mediterraneus (Steindachner, 1868), is highly important both for the ecosystem, as a link between trophic levels, and for fisheries and local livelihoods. This study investigates the T. mediterraneus stock along the Romanian coast for more than 10 years (2014–2024), reporting the following data on its bio-ecological characteristics and stock status: size, age, sex ratio, and estimated biomass. Horse mackerel at the Romanian coast revealed an initially slower growth rate followed by acceleration in later years, which may reflect local ecological influences such as resource availability, environmental conditions, or selective pressure. The spatial distribution of the species along the Romanian shelf indicates a clear pattern of coastal aggregation, highlighting the need for targeted and precautionary fisheries management measures, aiming to ensure a sustainable stock. Full article
Show Figures

Graphical abstract

17 pages, 5553 KB  
Article
Effects of Interspecific Competition on Habitat Shifts of Sardinops melanostictus (Temminck et Schlegel, 1846) and Scomber japonicus (Houttuyn, 1782) in the Northwest Pacific
by Siyuan Liu, Hanji Zhu, Jianhua Wang, Famou Zhang, Shengmao Zhang and Heng Zhang
Biology 2025, 14(8), 968; https://doi.org/10.3390/biology14080968 - 1 Aug 2025
Viewed by 298
Abstract
As economically important sympatric species in the Northwest Pacific, the Japanese sardine (Sardinops melanostictus) and Chub mackerel (Scomber japonicus) exhibit significant biological interactions. Understanding the impact of interspecies competition on their habitat dynamics can provide crucial insights for the [...] Read more.
As economically important sympatric species in the Northwest Pacific, the Japanese sardine (Sardinops melanostictus) and Chub mackerel (Scomber japonicus) exhibit significant biological interactions. Understanding the impact of interspecies competition on their habitat dynamics can provide crucial insights for the sustainable development and management of these interconnected species resources. This study utilizes fisheries data of S. melanostictus and S. japonicus from the Northwest Pacific, collected from June to November between 2017 and 2020. We integrated various environmental parameters, including temperature at different depths (0, 50, 100, 150, and 200 m), eddy kinetic energy (EKE), sea surface height (SSH), chlorophyll-a concentration (Chl-a), and the oceanic Niño index (ONI), to construct interspecific competition species distribution model (icSDM) for both species. We validated these models by overlaying the predicted habitats with fisheries data from 2021 and performing cross-validation to assess the models’ reliability. Furthermore, we conducted correlation analyses of the habitats of these two species to evaluate the impact of interspecies relationships on their habitat dynamics. The results indicate that, compared to single-species habitat models, the interspecific competition species distribution model (icSDM) for these two species exhibit a significantly higher explanatory power, with R2 values increasing by up to 0.29; interspecific competition significantly influences the habitat dynamics of S. melanostictus and S. japonicus, strengthening the correlation between their habitat changes. This relationship exhibits a positive correlation at specific stages, with the highest correlations observed in June, July, and October, at 0.81, 0.80, and 0.88, respectively; interspecific competition also demonstrates stage-specific differences in its impact on the habitat dynamics of S. melanostictus and S. japonicus, with the most pronounced differences occurring in August and November. Compared to S. melanostictus, interspecific competition is more beneficial for the expansion of the optimal habitat (HIS ≥ 0.6) for S. japonicus and, to some extent, inhibits the habitat expansion of S. melanostictus. The variation in migratory routes and predatory interactions (with larger individuals of S. japonicus preying on smaller individuals of S. melanostictus) likely constitutes the primary factors contributing to these observed differences. Full article
(This article belongs to the Special Issue Adaptation of Living Species to Environmental Stress)
Show Figures

Figure 1

Back to TopTop