Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,360)

Search Parameters:
Keywords = synchronous machines

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 14799 KiB  
Article
Comparative Analysis of Weighting-Factor-Free Predictive Control Strategies for Direct Torque Control in Permanent Magnet Synchronous Machines
by Jakson Bonaldo, Jacopo Riccio, Emrah Zerdali, Marco Rivera, Raul Monteiro and Patrick Wheeler
Processes 2025, 13(8), 2614; https://doi.org/10.3390/pr13082614 - 18 Aug 2025
Abstract
Direct torque control (DTC) based on the finite control set model predictive control (FCS-MPC) provides a straightforward and intuitive solution for controlling permanent magnet synchronous motors (PMSMs). However, conventional FCS-MPC relies on appropriately tuned weighting factors in the cost function, which have a [...] Read more.
Direct torque control (DTC) based on the finite control set model predictive control (FCS-MPC) provides a straightforward and intuitive solution for controlling permanent magnet synchronous motors (PMSMs). However, conventional FCS-MPC relies on appropriately tuned weighting factors in the cost function, which have a significant impact on the control performance and increase design complexity. This paper presents a comprehensive experimental comparison of emerging FCS-MPC strategies for DTC of PMSMs that eliminate the need for weighting factors. Specifically, a sequential FCS-MPC approach is benchmarked against decision-making-based FCS-MPC methods that employ Euclidean distance normalisation. Extensive experimental results, obtained across a wide range of operating conditions, are used to assess current total harmonic distortion (THD), torque and flux ripple, and transient performance. Results indicate that while all methods yield comparable current THD, decision-making-based strategies achieve superior torque and flux regulation with reduced ripple compared to the sequential approach. These findings demonstrate that decision-making-based FCS-MPC methods provide additional flexibility in defining control objectives, eliminating the need to design weighting factors, such as those used in the sequential method while offering superior performance. Full article
Show Figures

Figure 1

15 pages, 2635 KiB  
Article
Transient Synchronous Stability Analysis and Control Improvement for Power Systems with Grid-Following Converters
by Zhiying Chen and Lin Guan
Electronics 2025, 14(16), 3263; https://doi.org/10.3390/electronics14163263 - 17 Aug 2025
Viewed by 164
Abstract
Amid the global transition towards sustainable energy, the increasing integration of power sources equipped with grid-following (GFL) voltage source converters (VSCs) into power systems has significantly impacted transient synchronous stability. How to analyze the transient synchronous mechanism of power systems with GFL and [...] Read more.
Amid the global transition towards sustainable energy, the increasing integration of power sources equipped with grid-following (GFL) voltage source converters (VSCs) into power systems has significantly impacted transient synchronous stability. How to analyze the transient synchronous mechanism of power systems with GFL and how to fully utilize GFL to enhance the transient synchronous stability are critical challenges. Therefore, based on the extended equal area criterion (EEAC), the influence mechanism of the transient voltage stability on the transient synchronous stability of multi-machine power systems is analyzed. Furthermore, an explicit power angle equation is derived, incorporating the distribution location and active power characteristics of GFL, to explain their impact on the transient synchronous stability between synchronous generators (SGs). Inspired by the above insights, an improved control strategy of GFL is proposed for transient stability enhancement. The proposed strategy can effectively accelerate the voltage recovery speed and enhance the transient synchronous stability under different coherence grouping scenarios. Finally, the correctness of the mechanism analysis and the effectiveness of the proposed control strategy are validated on the simplified system of a real power grid using the PSCAD platform. Full article
Show Figures

Figure 1

11 pages, 697 KiB  
Data Descriptor
A Multi-Sensor Dataset for Human Activity Recognition Using Inertial and Orientation Data
by Jhonathan L. Rivas-Caicedo, Laura Saldaña-Aristizabal, Kevin Niño-Tejada and Juan F. Patarroyo-Montenegro
Data 2025, 10(8), 129; https://doi.org/10.3390/data10080129 - 14 Aug 2025
Viewed by 187
Abstract
Human Activity Recognition (HAR) using wearable sensors is an increasingly relevant area for applications in healthcare, rehabilitation, and human–computer interaction. However, publicly available datasets that provide multi-sensor, synchronized data combining inertial and orientation measurements are still limited. This work introduces a publicly available [...] Read more.
Human Activity Recognition (HAR) using wearable sensors is an increasingly relevant area for applications in healthcare, rehabilitation, and human–computer interaction. However, publicly available datasets that provide multi-sensor, synchronized data combining inertial and orientation measurements are still limited. This work introduces a publicly available dataset for Human Activity Recognition, captured using wearable sensors placed on the chest, hands, and knees. Each device recorded inertial and orientation data during controlled activity sessions involving participants aged 20 to 70. A standardized acquisition protocol ensured consistent temporal alignment across all signals. The dataset was preprocessed and segmented using a sliding window approach. An initial baseline classification experiment, employing a Convolutional Neural Network (CNN) and Long-Short Term Memory (LSTM) model, demonstrated an average accuracy of 93.5% in classifying activities. The dataset is publicly available in CSV format and includes raw sensor signals, activity labels, and metadata. This dataset offers a valuable resource for evaluating machine learning models, studying distributed HAR approaches, and developing robust activity recognition pipelines utilizing wearable technologies. Full article
Show Figures

Figure 1

16 pages, 3316 KiB  
Article
Intelligent and Precise Textile Drop-Off: A New Strategy for Integrating Soft Fingers and Machine Vision Technology
by Jinzhu Shen, Álvaro Ramírez-Gómez, Jianping Wang, Fan Zhang and Yitong Li
Textiles 2025, 5(3), 34; https://doi.org/10.3390/textiles5030034 - 12 Aug 2025
Viewed by 324
Abstract
This study presents a novel drop-off strategy for automated fabric handling in intelligent apparel manufacturing, addressing the critical challenge of drift-free placement of lightweight, flexible textiles. A pneumatically driven retractable plate is introduced as an auxiliary device, along with machine vision technology, to [...] Read more.
This study presents a novel drop-off strategy for automated fabric handling in intelligent apparel manufacturing, addressing the critical challenge of drift-free placement of lightweight, flexible textiles. A pneumatically driven retractable plate is introduced as an auxiliary device, along with machine vision technology, to eliminate drop-off deviations inherent in traditional soft grippers. By synchronizing the retraction motion of the plate with soft gripper release, the fabric is transferred onto the target surface without free-fall drift, achieving sub-0.5 mm alignment accuracy across 15 fabric types. Machine vision-based inspection validates drop-off quality in real time. This work offers a low-cost, drift-free drop-off solution for pre-sewing automation. Full article
Show Figures

Figure 1

18 pages, 8000 KiB  
Article
Phenology-Aware Machine Learning Framework for Chlorophyll Estimation in Cotton Using Hyperspectral Reflectance
by Chunbo Jiang, Yi Cheng, Yongfu Li, Lei Peng, Gangshang Dong, Ning Lai and Qinglong Geng
Remote Sens. 2025, 17(15), 2713; https://doi.org/10.3390/rs17152713 - 6 Aug 2025
Viewed by 312
Abstract
Accurate and non-destructive monitoring of leaf chlorophyll content (LCC) is essential for assessing crop photosynthetic activity and nitrogen status in precision agriculture. This study introduces a phenology-aware machine learning framework that combines hyperspectral reflectance data with various regression models to estimate leaf chlorophyll [...] Read more.
Accurate and non-destructive monitoring of leaf chlorophyll content (LCC) is essential for assessing crop photosynthetic activity and nitrogen status in precision agriculture. This study introduces a phenology-aware machine learning framework that combines hyperspectral reflectance data with various regression models to estimate leaf chlorophyll content (LCC) in cotton at six key reproductive stages. Field experiments utilized synchronized spectral and SPAD measurements, incorporating spectral transformations—such as vegetation indices (VIs), first-order derivatives, and trilateration edge parameters (TEPs, a new set of geometric metrics for red-edge characterization)—for evaluation. Five regression approaches were evaluated, including univariate and multivariate linear models, along with three machine learning algorithms: Random Forest, K-Nearest Neighbor, and Support Vector Regression. Random Forest consistently outperformed the other models, achieving the highest R2 (0.85) and the lowest RMSE (4.1) during the bud stage. Notably, the optimal prediction accuracy was achieved with fewer than five spectral features. The proposed framework demonstrates the potential for scalable, stage-specific monitoring of chlorophyll dynamics and offers valuable insights for large-scale crop management applications. Full article
Show Figures

Graphical abstract

14 pages, 2548 KiB  
Article
Multi-Probe Measurement Method for Error Motion of Precision Rotary Stage Based on Reference Plate
by Xiaofeng Zheng, Tianhao Zheng, Daowei Zhang, Zhixue Ni, Lei Zhang and Deqiang Mu
Appl. Sci. 2025, 15(15), 8643; https://doi.org/10.3390/app15158643 - 4 Aug 2025
Viewed by 286
Abstract
The error motion of the precision rotary stage, particularly the tilt error motion, significantly influences the accuracy of machining and measuring equipment. Nonetheless, reliable and effective in situ measurement methods for tilt error motion are still limited. Based on the analysis of the [...] Read more.
The error motion of the precision rotary stage, particularly the tilt error motion, significantly influences the accuracy of machining and measuring equipment. Nonetheless, reliable and effective in situ measurement methods for tilt error motion are still limited. Based on the analysis of the conventional three-probe measurement method, this paper proposes a multi-probe measurement method using an ultra-precision reference plate with high-resolution displacement sensors. This method employs principles and methods to avoid harmonic suppression issues through optimal probe designs, enabling simultaneous quantification of tilt and axial error motions via error separation. Error separation techniques can effectively decouple motion errors from artifact form error, making them widely applicable in precision measurement data processing. Experimental validation confirmed that the synchronous measurement error is not greater than 4.69%, consequently affirming the metrological efficacy and reliability of the method. This study provides an effective method for real-time error characterization of rotary stages. Full article
Show Figures

Figure 1

32 pages, 3972 KiB  
Article
A Review and Case of Study of Cooling Methods: Integrating Modeling, Simulation, and Thermal Analysis for a Model Based on a Commercial Electric Permanent Magnet Synchronous Motor
by Henrry Gabriel Usca-Gomez, David Sebastian Puma-Benavides, Victor Danilo Zambrano-Leon, Ramón Castillo-Díaz, Milton Israel Quinga-Morales, Javier Milton Solís-Santamaria and Edilberto Antonio Llanes-Cedeño
World Electr. Veh. J. 2025, 16(8), 437; https://doi.org/10.3390/wevj16080437 - 4 Aug 2025
Viewed by 397
Abstract
The efficiency of electric motors is highly dependent on their operating temperature, with lower temperatures contributing to enhanced performance, reliability, and extended service life. This study presents a comprehensive review of state-of-the-art cooling technologies and evaluates their impact on the thermal behavior of [...] Read more.
The efficiency of electric motors is highly dependent on their operating temperature, with lower temperatures contributing to enhanced performance, reliability, and extended service life. This study presents a comprehensive review of state-of-the-art cooling technologies and evaluates their impact on the thermal behavior of a commercial motor–generator system in high-demand applications. A baseline model of a permanent magnet synchronous motor (PMSM) was developed using MotorCAD 2023® software, which was supported by reverse engineering techniques to accurately replicate the motor’s physical and thermal characteristics. Subsequently, multiple cooling strategies were simulated under consistent operating conditions to assess their effectiveness. These strategies include conventional axial water jackets as well as advanced oil-based methods such as shaft cooling and direct oil spray to the windings. The integration of these systems in hybrid configurations was also explored to maximize thermal efficiency. Simulation results reveal that hybrid cooling significantly reduces the temperature of critical components such as stator windings and permanent magnets. This reduction in thermal stress improves current efficiency, power output, and torque capacity, enabling reliable motor operation across a broader range of speeds and under sustained high-load conditions. The findings highlight the effectiveness of hybrid cooling systems in optimizing both thermal management and operational performance of electric machines. Full article
Show Figures

Figure 1

25 pages, 394 KiB  
Article
SMART DShot: Secure Machine-Learning-Based Adaptive Real-Time Timing Correction
by Hyunmin Kim, Zahid Basha Shaik Kadu and Kyusuk Han
Appl. Sci. 2025, 15(15), 8619; https://doi.org/10.3390/app15158619 - 4 Aug 2025
Viewed by 304
Abstract
The exponential growth of autonomous systems demands robust security mechanisms that can operate within the extreme constraints of real-time embedded environments. This paper introduces SMART DShot, a groundbreaking machine learning-enhanced framework that transforms the security landscape of unmanned aerial vehicle motor control systems [...] Read more.
The exponential growth of autonomous systems demands robust security mechanisms that can operate within the extreme constraints of real-time embedded environments. This paper introduces SMART DShot, a groundbreaking machine learning-enhanced framework that transforms the security landscape of unmanned aerial vehicle motor control systems through seamless integration of adaptive timing correction and real-time anomaly detection within Digital Shot (DShot) communication protocols. Our approach addresses critical vulnerabilities in Electronic Speed Controller (ESC) interfaces by deploying four synergistic algorithms—Kalman Filter Timing Correction (KFTC), Recursive Least Squares Timing Correction (RLSTC), Fuzzy Logic Timing Correction (FLTC), and Hybrid Adaptive Timing Correction (HATC)—each optimized for specific error characteristics and attack scenarios. Through comprehensive evaluation encompassing 32,000 Monte Carlo test iterations (500 per scenario × 16 scenarios × 4 algorithms) across 16 distinct operational scenarios and PolarFire SoC Field-Programmable Gate Array (FPGA) implementation, we demonstrate exceptional performance with 88.3% attack detection rate, only 2.3% false positive incidence, and substantial vulnerability mitigation reducing Common Vulnerability Scoring System (CVSS) severity from High (7.3) to Low (3.1). Hardware validation on PolarFire SoC confirms practical viability with minimal resource overhead (2.16% Look-Up Table utilization, 16.57 mW per channel) and deterministic sub-10 microsecond execution latency. The Hybrid Adaptive Timing Correction algorithm achieves 31.01% success rate (95% CI: [30.2%, 31.8%]), representing a 26.5% improvement over baseline approaches through intelligent meta-learning-based algorithm selection. Statistical validation using Analysis of Variance confirms significant performance differences (F(3,1996) = 30.30, p < 0.001) with large effect sizes (Cohen’s d up to 4.57), where 64.6% of algorithm comparisons showed large practical significance. SMART DShot establishes a paradigmatic shift from reactive to proactive embedded security, demonstrating that sophisticated artificial intelligence can operate effectively within microsecond-scale real-time constraints while providing comprehensive protection against timing manipulation, de-synchronization, burst interference, replay attacks, coordinated multi-channel attacks, and firmware-level compromises. This work provides essential foundations for trustworthy autonomous systems across critical domains including aerospace, automotive, industrial automation, and cyber–physical infrastructure. These results conclusively demonstrate that ML-enhanced motor control systems can achieve both superior security (88.3% attack detection rate with 2.3% false positives) and operational performance (31.01% timing correction success rate, 26.5% improvement over baseline) simultaneously, establishing SMART DShot as a practical, deployable solution for next-generation autonomous systems. Full article
Show Figures

Figure 1

32 pages, 1970 KiB  
Review
A Review of New Technologies in the Design and Application of Wind Turbine Generators
by Pawel Prajzendanc and Christian Kreischer
Energies 2025, 18(15), 4082; https://doi.org/10.3390/en18154082 - 1 Aug 2025
Viewed by 418
Abstract
The growing global demand for electricity, driven by the development of electromobility, data centers, and smart technologies, necessitates innovative approaches to energy generation. Wind power, as a clean and renewable energy source, plays a pivotal role in the global transition towards low-carbon power [...] Read more.
The growing global demand for electricity, driven by the development of electromobility, data centers, and smart technologies, necessitates innovative approaches to energy generation. Wind power, as a clean and renewable energy source, plays a pivotal role in the global transition towards low-carbon power systems. This paper presents a comprehensive review of generator technologies used in wind turbine applications, ranging from conventional synchronous and asynchronous machines to advanced concepts such as low-speed direct-drive (DD) generators, axial-flux topologies, and superconducting generators utilizing low-temperature superconductors (LTS) and high-temperature superconductors (HTS). The advantages and limitations of each design are discussed in the context of efficiency, weight, reliability, scalability, and suitability for offshore deployment. Special attention is given to HTS-based generator systems, which offer superior power density and reduced losses, along with challenges related to cryogenic cooling and materials engineering. Furthermore, the paper analyzes selected modern generator designs to provide references for enhancing the performance of grid-synchronized hybrid microgrids integrating solar PV, wind, battery energy storage, and HTS-enhanced generators. This review serves as a valuable resource for researchers and engineers developing next-generation wind energy technologies with improved efficiency and integration potential. Full article
(This article belongs to the Special Issue Advancements in Marine Renewable Energy and Hybridization Prospects)
Show Figures

Figure 1

21 pages, 4147 KiB  
Article
OLTEM: Lumped Thermal and Deep Neural Model for PMSM Temperature
by Yuzhong Sheng, Xin Liu, Qi Chen, Zhenghao Zhu, Chuangxin Huang and Qiuliang Wang
AI 2025, 6(8), 173; https://doi.org/10.3390/ai6080173 - 31 Jul 2025
Viewed by 441
Abstract
Background and Objective: Temperature management is key for reliable operation of permanent magnet synchronous motors (PMSMs). The lumped-parameter thermal network (LPTN) is fast and interpretable but struggles with nonlinear behavior under high power density. We propose OLTEM, a physics-informed deep model that combines [...] Read more.
Background and Objective: Temperature management is key for reliable operation of permanent magnet synchronous motors (PMSMs). The lumped-parameter thermal network (LPTN) is fast and interpretable but struggles with nonlinear behavior under high power density. We propose OLTEM, a physics-informed deep model that combines LPTN with a thermal neural network (TNN) to improve prediction accuracy while keeping physical meaning. Methods: OLTEM embeds LPTN into a recurrent state-space formulation and learns three parameter sets: thermal conductance, inverse thermal capacitance, and power loss. Two additions are introduced: (i) a state-conditioned squeeze-and-excitation (SC-SE) attention that adapts feature weights using the current temperature state, and (ii) an enhanced power-loss sub-network that uses a deep MLP with SC-SE and non-negativity constraints. The model is trained and evaluated on the public Electric Motor Temperature dataset (Paderborn University/Kaggle). Performance is measured by mean squared error (MSE) and maximum absolute error across permanent-magnet, stator-yoke, stator-tooth, and stator-winding temperatures. Results: OLTEM tracks fast thermal transients and yields lower MSE than both the baseline TNN and a CNN–RNN model for all four components. On a held-out generalization set, MSE remains below 4.0 °C2 and the maximum absolute error is about 4.3–8.2 °C. Ablation shows that removing either SC-SE or the enhanced power-loss module degrades accuracy, confirming their complementary roles. Conclusions: By combining physics with learned attention and loss modeling, OLTEM improves PMSM temperature prediction while preserving interpretability. This approach can support motor thermal design and control; future work will study transfer to other machines and further reduce short-term errors during abrupt operating changes. Full article
Show Figures

Figure 1

32 pages, 9710 KiB  
Article
Early Detection of ITSC Faults in PMSMs Using Transformer Model and Transient Time-Frequency Features
by Ádám Zsuga and Adrienn Dineva
Energies 2025, 18(15), 4048; https://doi.org/10.3390/en18154048 - 30 Jul 2025
Viewed by 381
Abstract
Inter-turn short-circuit (ITSC) faults in permanent magnet synchronous machines (PMSMs) present a significant reliability challenge in electric vehicle (EV) drivetrains, particularly under non-stationary operating conditions characterized by inverter-driven transients, variable loads, and magnetic saturation. Existing diagnostic approaches, including motor current signature analysis (MCSA) [...] Read more.
Inter-turn short-circuit (ITSC) faults in permanent magnet synchronous machines (PMSMs) present a significant reliability challenge in electric vehicle (EV) drivetrains, particularly under non-stationary operating conditions characterized by inverter-driven transients, variable loads, and magnetic saturation. Existing diagnostic approaches, including motor current signature analysis (MCSA) and wavelet-based methods, are primarily designed for steady-state conditions and rely on manual feature selection, limiting their applicability in real-time embedded systems. Furthermore, the lack of publicly available, high-fidelity datasets capturing the transient dynamics and nonlinear flux-linkage behaviors of PMSMs under fault conditions poses an additional barrier to developing data-driven diagnostic solutions. To address these challenges, this study introduces a simulation framework that generates a comprehensive dataset using finite element method (FEM) models, incorporating magnetic saturation effects and inverter-driven transients across diverse EV operating scenarios. Time-frequency features extracted via Discrete Wavelet Transform (DWT) from stator current signals are used to train a Transformer model for automated ITSC fault detection. The Transformer model, leveraging self-attention mechanisms, captures both local transient patterns and long-range dependencies within the time-frequency feature space. This architecture operates without sequential processing, in contrast to recurrent models such as LSTM or RNN models, enabling efficient inference with a relatively low parameter count, which is advantageous for embedded applications. The proposed model achieves 97% validation accuracy on simulated data, demonstrating its potential for real-time PMSM fault detection. Additionally, the provided dataset and methodology contribute to the facilitation of reproducible research in ITSC diagnostics under realistic EV operating conditions. Full article
(This article belongs to the Special Issue Application of Artificial Intelligence in Power and Energy Systems)
Show Figures

Figure 1

20 pages, 28928 KiB  
Article
Evaluating the Effectiveness of Plantar Pressure Sensors for Fall Detection in Sloped Surfaces
by Tarek Mahmud, Rujan Kayastha, Krishna Kisi, Anne Hee Ngu and Sana Alamgeer
Electronics 2025, 14(15), 3003; https://doi.org/10.3390/electronics14153003 - 28 Jul 2025
Viewed by 342
Abstract
Falls are a major safety concern in physically demanding occupations such as roofing, where workers operate on inclined surfaces under unstable postures. While inertial measurement units (IMUs) are widely used in wearable fall detection systems, they often fail to capture early indicators of [...] Read more.
Falls are a major safety concern in physically demanding occupations such as roofing, where workers operate on inclined surfaces under unstable postures. While inertial measurement units (IMUs) are widely used in wearable fall detection systems, they often fail to capture early indicators of instability related to foot–ground interactions. This study evaluates the effectiveness of plantar pressure sensors, alone and combined with IMUs, for fall detection on sloped surfaces. We collected data in a controlled laboratory environment using a custom-built roof mockup with incline angles of 0°, 15°, and 30°. Participants performed roofing-relevant activities, including standing, walking, stooping, kneeling, and simulated fall events. Statistical features were extracted from synchronized IMU and plantar pressure data, and multiple machine learning models were trained and evaluated, including traditional classifiers and deep learning architectures, such as MLP and CNN. Our results show that integrating plantar pressure sensors significantly improves fall detection. A CNN using just three IMUs and two plantar pressure sensors achieved the highest F1 score of 0.88, outperforming the full 17-sensor IMU setup. These findings support the use of multimodal sensor fusion for developing efficient and accurate wearable systems for fall detection and physical health monitoring. Full article
Show Figures

Figure 1

33 pages, 3019 KiB  
Article
Aging Assessment of Power Transformers with Data Science
by Samuel Lessinger, Alzenira da Rosa Abaide, Rodrigo Marques de Figueiredo, Lúcio Renê Prade and Paulo Ricardo da Silva Pereira
Energies 2025, 18(15), 3960; https://doi.org/10.3390/en18153960 - 24 Jul 2025
Viewed by 439
Abstract
Maintenance techniques are fundamental in the context of the safe operation of continuous process installations, especially in electrical energy-transmission and/or -distribution substations. The operating conditions of power transformers are fundamental for the safe functioning of the electrical power system. Predictive maintenance consists of [...] Read more.
Maintenance techniques are fundamental in the context of the safe operation of continuous process installations, especially in electrical energy-transmission and/or -distribution substations. The operating conditions of power transformers are fundamental for the safe functioning of the electrical power system. Predictive maintenance consists of periodically monitoring the asset in use, in order to anticipate critical situations. This article proposes a methodology based on data science, machine learning and the Internet of Things (IoT), to track operational conditions over time and evaluate transformer aging. This characteristic is achieved with the development of a synchronization method for different databases and the construction of a model for estimating ambient temperatures using k-Nearest Neighbors. In this way, a history assessment is carried out with more consistency, given the environmental conditions faced by the equipment. The work evaluated data from three power transformers in different geographic locations, demonstrating the initial applicability of the method in identifying equipment aging. Transformer TR1 showed aging of 3.24×103%, followed by TR2 with 8.565×103% and TR3 showing 294.17×106% in the evaluated period of time. Full article
(This article belongs to the Special Issue Energy, Electrical and Power Engineering: 4th Edition)
Show Figures

Figure 1

20 pages, 4459 KiB  
Article
Analytical Model and Feasibility Assessment of a Synchronous Reluctance Tubular Machine with an Additively Manufactured Mover
by Giada Sala, Nicola Giannotta, Mattia Vogni, Claudio Bianchini and Fabio Immovilli
Energies 2025, 18(15), 3918; https://doi.org/10.3390/en18153918 - 23 Jul 2025
Viewed by 195
Abstract
This paper presents the analytical model, feasibility assessment, and testing of a novel synchronous reluctance tubular machine, whose mover is manufactured using additive techniques. This approach enables the maximization of the machine’s saliency. The analytical model traditionally used for rotating machines was adapted [...] Read more.
This paper presents the analytical model, feasibility assessment, and testing of a novel synchronous reluctance tubular machine, whose mover is manufactured using additive techniques. This approach enables the maximization of the machine’s saliency. The analytical model traditionally used for rotating machines was adapted to match the geometric characteristics of the innovative tubular design proposed in this work. The analytical results were validated through 2D finite element analysis (FEA). Subsequently, several mock-ups were 3D-printed using iron metal powder to evaluate the manufacturing feasibility of the proposed machine. Finally, the machine was tested to verify the accuracy of the analytical model. Full article
Show Figures

Figure 1

31 pages, 4435 KiB  
Article
A Low-Cost IoT Sensor and Preliminary Machine-Learning Feasibility Study for Monitoring In-Cabin Air Quality: A Pilot Case from Almaty
by Nurdaulet Tasmurzayev, Bibars Amangeldy, Gaukhar Smagulova, Zhanel Baigarayeva and Aigerim Imash
Sensors 2025, 25(14), 4521; https://doi.org/10.3390/s25144521 - 21 Jul 2025
Viewed by 629
Abstract
The air quality within urban public transport is a critical determinant of passenger health. In the crowded and poorly ventilated cabins of Almaty’s metro, buses, and trolleybuses, concentrations of CO2 and PM2.5 often accumulate, elevating the risk of respiratory and cardiovascular [...] Read more.
The air quality within urban public transport is a critical determinant of passenger health. In the crowded and poorly ventilated cabins of Almaty’s metro, buses, and trolleybuses, concentrations of CO2 and PM2.5 often accumulate, elevating the risk of respiratory and cardiovascular diseases. This study investigates the air quality along three of the city’s busiest transport corridors, analyzing how the concentrations of CO2, PM2.5, and PM10, as well as the temperature and relative humidity, fluctuate with the passenger density and time of day. Continuous measurements were collected using the Tynys mobile IoT device, which was bench-calibrated against a commercial reference sensor. Several machine learning models (logistic regression, decision tree, XGBoost, and random forest) were trained on synchronized environmental and occupancy data, with the XGBoost model achieving the highest predictive accuracy at 91.25%. Our analysis confirms that passenger occupancy is the primary driver of in-cabin pollution and that these machine learning models effectively capture the nonlinear relationships among environmental variables. Since the surveyed routes serve Almaty’s most densely populated districts, improving the ventilation on these lines is of immediate importance to public health. Furthermore, the high-temporal-resolution data revealed short-term pollution spikes that correspond with peak ridership, advancing the current understanding of exposure risks in transit. These findings highlight the urgent need to combine real-time monitoring with ventilation upgrades. They also demonstrate the practical value of using low-cost IoT technologies and data-driven analytics to safeguard public health in urban mobility systems. Full article
(This article belongs to the Special Issue IoT-Based Sensing Systems for Urban Air Quality Forecasting)
Show Figures

Figure 1

Back to TopTop