Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,152)

Search Parameters:
Keywords = tail properties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 684 KB  
Article
A New Topp–Leone Odd Weibull Flexible-G Family of Distributions with Applications
by Fastel Chipepa, Mahmoud M. Abdelwahab, Wellington Fredrick Charumbira and Mustafa M. Hasaballah
Mathematics 2025, 13(17), 2866; https://doi.org/10.3390/math13172866 - 5 Sep 2025
Viewed by 158
Abstract
The acceptance of generalized distributions has significantly improved over the past two decades. In this paper, we introduce a new generalized distribution: Topp–Leone odd Weibull flexible-G family of distributions (FoD). The new FoD is a combination of two FOD; the Topp–Leone-G and odd [...] Read more.
The acceptance of generalized distributions has significantly improved over the past two decades. In this paper, we introduce a new generalized distribution: Topp–Leone odd Weibull flexible-G family of distributions (FoD). The new FoD is a combination of two FOD; the Topp–Leone-G and odd Weibull-flexible-G families. The proposed FoD possesses more flexibility compared to the two individual FoD when considered separately. Some selected statistical properties of this new model are derived. Three special cases from the proposed family are considered. The new model exhibits symmetry and long or short tails, and it also addresses various levels of kurtosis. Monte Carlo simulation studies were conducted to verify the consistency of the maximum likelihood estimators. Two real data examples were used as illustrations on the flexibility of the new model in comparison to other competing models. The developed model proved to perform better than all the selected competing models. Full article
(This article belongs to the Section D1: Probability and Statistics)
Show Figures

Figure 1

14 pages, 298 KB  
Article
Design and Analysis of Reliability Sampling Plans Based on the Topp–Leone Generated Weibull Distribution
by Jiju Gillariose, Mahmoud M. Abdelwahab, Rakshana Venkatesan, Joshin Joseph, Mohamed A. Abdelkawy and Mustafa M. Hasaballah
Symmetry 2025, 17(9), 1439; https://doi.org/10.3390/sym17091439 - 3 Sep 2025
Viewed by 215
Abstract
As part of this study, we design a reliability acceptance sampling plan under the assumption that the lifetime of a product follows the Topp–Leone generated Weibull (TLGW) distribution, a model that exhibits structural symmetry in its hazard rate behavior and distributional form. The [...] Read more.
As part of this study, we design a reliability acceptance sampling plan under the assumption that the lifetime of a product follows the Topp–Leone generated Weibull (TLGW) distribution, a model that exhibits structural symmetry in its hazard rate behavior and distributional form. The fundamental procedures for constructing such a plan are described. We compute and tabulate the minimum sample sizes required for given risk criteria using both binomial and Poisson models for the number of failures. We also provide the operating characteristic (OC) values for the proposed sampling plans, and determine the minimum ratios of true mean life to specified mean life needed to satisfy a given producer’s risk. The role of symmetry in the TLGW distribution is highlighted in its balanced tail properties and shape characteristics, which influence the performance of the acceptance sampling plan. Finally, we illustrate the applicability of the proposed plan with real-world data. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

18 pages, 2612 KB  
Article
Experimental Study on Basic Physical Parameters and Mechanical Properties of Codonopsis pilosula Seedlings
by Qingxu Yu, Yuan Wan, Yan Gong, Xiao Chen, Zhenwei Wang and Jianling Hu
AgriEngineering 2025, 7(9), 283; https://doi.org/10.3390/agriengineering7090283 - 1 Sep 2025
Viewed by 261
Abstract
This research investigates the physical and mechanical properties of Codonopsis pilosula seedlings to provide fundamental mechanical data to address issues like high damage rates and low efficiency in mechanized transplanting. After precise physical parameter measurements, we classified the seedlings into four types: l-type, [...] Read more.
This research investigates the physical and mechanical properties of Codonopsis pilosula seedlings to provide fundamental mechanical data to address issues like high damage rates and low efficiency in mechanized transplanting. After precise physical parameter measurements, we classified the seedlings into four types: l-type, Y-type, V-type, and W-type. The l-type was the most common, accounting for a large proportion (80.95%) of the total, with a median length of approximately 270 mm, a median diameter of around 5.0 mm, and an average individual weight of about 2.83 g. Freshly harvested seedlings had an average moisture content and density within the typical range for this species. Using the Box–Behnken design method, we determined that the primary and secondary factors affecting tensile force (FN) and tensile strength (σ) were sample diameter (D), sample length (L), and loading speed (V). Sample diameter had a significant impact: FN increased rapidly as the diameter grew, while tensile strength (σ) decreased. The tensile strength of different regions of the seedling (i.e., head, middle, and tail) showed distinct characteristics, with relatively small deviations between theoretical and experimental values. For the whole seedling, errors in tensile force (FN) and strength (σ) between measured and theoretical values were below 5%. The average Young’s modulus, Poisson’s ratio, and shear modulus were also calculated. These mechanical property indices thus provide crucial references for future related research. Full article
Show Figures

Figure 1

16 pages, 2312 KB  
Article
Study on the Possibilities of Utilizing Wastes of Polymetallic Combines in South Kazakhstan for the Production of Composite Heavy Concrete
by Raushan Nurymbetova, Rayimberdy Ristavletov, Nikolay Suzev, Alexandr Kolesnikov, Elmira Kalshabekova, Medetbek Kambarov, Ruslan Kudabayev, Gulzhan Kopzhasarova, Berik Omarov, Zholdybay Zhumayev, Mermurat Nigmetov and Gulbanu Yesbolay
J. Compos. Sci. 2025, 9(9), 468; https://doi.org/10.3390/jcs9090468 - 1 Sep 2025
Viewed by 293
Abstract
This article explores the use of waste from polymetallic combines in South Kazakhstan, specifically tailings from the Achisay and Ansay deposits, as aggregates (crushed stone, sand) and mineral additives (dispersed barite powder) for producing concrete with specified operational properties. These secondary raw materials [...] Read more.
This article explores the use of waste from polymetallic combines in South Kazakhstan, specifically tailings from the Achisay and Ansay deposits, as aggregates (crushed stone, sand) and mineral additives (dispersed barite powder) for producing concrete with specified operational properties. These secondary raw materials are now abundant in relation to their use, which makes them an affordable and accessible alternative for the manufacturing of concrete while also promoting environmental sustainability. X-ray diffraction, differential thermal analysis, and scanning electron microscopy of enriched barite ores in these tailings revealed valuable components, such as calcite, quartzite, and dolomite, suitable for use as aggregates and mineral additives. The calcite and quartzite content in the Ansay samples exceeds that in the Achisay samples. Concrete mixes with various proportions of crushed stone and sand from these tailings were prepared, and their working characteristics were analyzed. The impacts of filler content and grain composition on the characteristics of concrete mixtures were identified, and the requirements for optimizing aggregate grain composition to produce heavy concrete with desired qualities were determined. Heavy concrete with densities from 2300 to 2839 kg/m3 and compressive strengths from 41.6 to 58.2 MPa was developed. Physical and mechanical properties, including density, water absorption, frost resistance, and compressive strength, were also evaluated, confirming the feasibility of using technogenic waste in composite heavy concrete production. Full article
(This article belongs to the Special Issue From Waste to Advance Composite Materials, 2nd Edition)
Show Figures

Figure 1

21 pages, 5996 KB  
Article
Yield Stress Prediction of Filling Slurry Based on Rheological Experiments and Machine Learning
by Xue Li, Kailong Qian, Rui Tian, Zhipeng Xiong, Xinke Chang and Hairui Du
Minerals 2025, 15(9), 931; https://doi.org/10.3390/min15090931 - 1 Sep 2025
Viewed by 210
Abstract
Cemented filling technology is an effective approach to solving tailings accumulation and goaf, with rheological properties serving as key indicators of slurry fluidity. Since slurry rheology is influenced by multiple factors, accurate prediction of its parameters is essential for optimizing filling design. In [...] Read more.
Cemented filling technology is an effective approach to solving tailings accumulation and goaf, with rheological properties serving as key indicators of slurry fluidity. Since slurry rheology is influenced by multiple factors, accurate prediction of its parameters is essential for optimizing filling design. In this study, we developed a model to predict static and dynamic yield stress using the extreme gradient boosting (XGBoost) algorithm, trained on 140 experimental samples (105 for training and 35 for validation, split 75:25). For comparison, adaptive boosting tree (ADBT), gradient boosting decision tree (GBDT), and random forest (RF) algorithms were also applied. Model performance was evaluated using four metrics: coefficient of determination (R2), mean absolute error (MAE), root mean square error (RMSE), and explained variance score (EVS). The Shapley additive explanation (SHAP) method was employed to interpret model outputs. The results show that XGBoost achieved superior predictive accuracy for slurry yield stress compared with other models. Analysis of importance revealed that underflow concentration had the strongest influence on predictions, followed by the binder-to-tailings ratio, while the fine-to-coarse tailings ratio contributed least. These findings highlight the potential of machine learning as a powerful tool for modeling the rheological parameters of filling slurry, offering valuable guidance for engineering applications. Full article
Show Figures

Graphical abstract

44 pages, 4026 KB  
Review
State of the Art of Cyclic Lipopeptide–Membrane Interactions: Pore Formation and Bilayer Permeability
by Anastasiia A. Zakharova, Svetlana S. Efimova and Olga S. Ostroumova
Pharmaceutics 2025, 17(9), 1142; https://doi.org/10.3390/pharmaceutics17091142 - 31 Aug 2025
Viewed by 290
Abstract
Background/Objectives: Resistance of pathogenic microorganisms to antibiotics poses a serious threat to public health and often leads to devastating consequences. In this context, one of the pressing challenges in pharmacochemistry is the search for new, effective antibiotics to combat severe human diseases. [...] Read more.
Background/Objectives: Resistance of pathogenic microorganisms to antibiotics poses a serious threat to public health and often leads to devastating consequences. In this context, one of the pressing challenges in pharmacochemistry is the search for new, effective antibiotics to combat severe human diseases. Cyclic lipopeptides have emerged as some of the most promising candidates and have been widely studied. These compounds are a class of microbial secondary metabolites produced by various microorganisms, and they possess significant medical and biotechnological importance. The defining structural feature of these compounds is the presence of both a hydrophobic fragment, primarily a hydrocarbon tail of varying length, and a hydrophilic cyclic peptide moiety. This hydrocarbon tail confers amphiphilic properties to the lipopeptides, which are essential for their broad spectrum of biological activities. Their mechanism of action involves disruption of the cell membrane, and in many cases, the formation of ion-permeable defects has also been shown. Results: This review summarizes the data on cyclic lipopeptides produced by Pseudomonas spp., Streptomyces spp., and Bacillus spp. that modify membrane permeability through the formation of ion channels. The main emphasis is on understanding how the structure of the CLP can be related to the probability and mode of pore formation. Conclusions: The findings can contribute to expanding the arsenal of effective antimicrobial agents with a mechanism of action that reduces the risk of developing resistance. Full article
Show Figures

Figure 1

14 pages, 8640 KB  
Article
Effects of Poly(ethylene oxide) on the Foam Properties of Anionic Surfactants: Experiment and Molecular Dynamics Simulation
by Chaohang Xu, Ran Bi, Sijing Wang, Xiaojun Tang, Xiaolong Zhu and Guochun Li
Polymers 2025, 17(17), 2361; https://doi.org/10.3390/polym17172361 - 30 Aug 2025
Viewed by 333
Abstract
Water-soluble polymers are often used as additives to adjust the foam properties of surfactant. In this study, the effects of water-soluble polymer poly(ethylene oxide) (PEO) on foam properties of two anionic surfactants, i.e., ammonium lauryl ether sulfate (ALES) and sodium dodecyl sulfate (SDS), [...] Read more.
Water-soluble polymers are often used as additives to adjust the foam properties of surfactant. In this study, the effects of water-soluble polymer poly(ethylene oxide) (PEO) on foam properties of two anionic surfactants, i.e., ammonium lauryl ether sulfate (ALES) and sodium dodecyl sulfate (SDS), were investigated by experimental and molecular dynamics simulation methods. Experimental results show that the addition of PEO can reduce the foaming ability of the two surfactants, but the inhibitory effect of PEO on the foaming ability is weakened at high surfactant concentration. Compared with ALES, PEO has a more significant inhibitory effect on the foaming ability of SDS. With the increase in PEO concentration, the half-life time of foam drainage in surfactant/water-soluble polymer composite systems gradually increases. The synergistic effect between PEO and ALES is stronger than that between PEO and SDS, resulting in a longer half-life time of foam drainage in ALES/PEO composite system. Molecular dynamics simulation results indicate that the addition of PEO can decline the air–water interface thickness of bubble films and the tail tilt angle of surfactant molecules at the air–water interface. The reduction in tail tilt angle means that the surfactant molecules are more vertical to the air–water interface and the hydrophobic interaction between adjacent tail chains of surfactants is weakened, which is unfavorable to the formation of bubble films, thus decreasing the foaming ability of surfactants. Because the ALES/PEO system has larger air–water interface thickness and surfactant tail tilt angle than the SDS/PEO system, the inhibitory effect of PEO on the foaming ability of ALES is weaker than that of SDS. Adding PEO can lower the peak position of the first hydration layer of surfactant head groups, increase the number of hydrogen bonds, and reduce the diffusion coefficient of water molecules, so that the surfactant/water-soluble polymer system has longer half-life time of foam drainage than the pure surfactant system. Due to the synergistic effect between ALES and PEO, the ALES/PEO system has a higher peak value of the first hydration layer of surfactant head groups, more hydrogen bonds, and lower diffusion coefficient of water molecules than the SDS/PEO system. Therefore, the half-life time of foam drainage in the ALES/PEO system is longer than that in the SDS/PEO system. Full article
Show Figures

Graphical abstract

33 pages, 19810 KB  
Review
Research and Application of Green Technology Based on Microbially Induced Carbonate Precipitation (MICP) in Mining: A Review
by Yuzhou Liu, Kaijian Hu, Meilan Pan, Wei Dong, Xiaojun Wang and Xingyu Zhu
Sustainability 2025, 17(17), 7587; https://doi.org/10.3390/su17177587 - 22 Aug 2025
Viewed by 618
Abstract
Microbially induced carbonate precipitation (MICP), as an eco-friendly biomineralization technology, has opened up an innovative path for the green and low-carbon development of the mining industry. Unlike conventional methods, its in situ solidification minimizes environmental disturbances and reduces carbon emissions during construction. This [...] Read more.
Microbially induced carbonate precipitation (MICP), as an eco-friendly biomineralization technology, has opened up an innovative path for the green and low-carbon development of the mining industry. Unlike conventional methods, its in situ solidification minimizes environmental disturbances and reduces carbon emissions during construction. This article reviews the research on MICP technology in various scenarios within the mining industry, summarizes the key factors influencing the application of MICP, and proposes a future research direction to fill the gap of the lack of systematic guidance for the application of MICP in this field. Specifically, it elaborates on the solidification mechanism of MICP and its current application in the solidification and storage of tailings, heavy metal immobilization, waste resource utilization, carbon sequestration, and field-scale deployment, establishing a technical foundation for broader implementation in the mining sector. Key influencing factors that affect the solidification effect of MICP are discussed, along with critical engineering challenges such as the attenuation of microbial activity and the low uniformity of calcium carbonate precipitation under extreme conditions. Proposed solutions include environmentally responsive self-healing technologies (the stimulus-responsive properties of the carriers extend the survival window of microorganisms), a one-phase low-pH injection method (when the pH = 5, the delay time for CaCO3 to appear is 1.5 h), and the incorporation of auxiliary additives (the auxiliary additives provided more adsorption sites for microorganisms). Future research should focus on in situ real-time monitoring of systems integrated with deep learning, systematic mineralization evaluation standard system, and urea-free mineralization pathways under special conditions. Through interdisciplinary collaboration, MICP offers significant potential for integrated scientific and engineering solutions in mine waste solidification and sustainable resource utilization. Full article
Show Figures

Figure 1

24 pages, 3590 KB  
Article
Palmitic Acid Esterification Boosts Epigallocatechin Gallate’s Immunomodulatory Effects in Intestinal Inflammation
by Raúl Domínguez-Perles, Concepción Medrano-Padial, Cristina García-Viguera and Sonia Medina
Biomolecules 2025, 15(8), 1208; https://doi.org/10.3390/biom15081208 - 21 Aug 2025
Viewed by 417
Abstract
Lipophenols, combining phenolic and lipid moieties in a single molecule, are valuable candidates for providing enhanced bioactive properties with therapeutic potential, including anti-inflammatory functions associated with immune-mediated diseases such as intestinal bowel disease (IBD). Thus, palmitoyl–epigallocatechin gallate (PEGCG), a lipophilic derivative of epigallocatechin [...] Read more.
Lipophenols, combining phenolic and lipid moieties in a single molecule, are valuable candidates for providing enhanced bioactive properties with therapeutic potential, including anti-inflammatory functions associated with immune-mediated diseases such as intestinal bowel disease (IBD). Thus, palmitoyl–epigallocatechin gallate (PEGCG), a lipophilic derivative of epigallocatechin gallate (EGCG), has been highlighted for its enhanced stability in lipid-rich environments and bioavailability due to improved cellular uptake. However, the contribution of lipophilic esterification to PEGCG’s capacity to inhibit inflammation and the development of harmful autoimmune responses remains underexplored. This work uncovered the differential efficiency of EGCG and its palmitoyl derivative in modulating, in vitro, the interleukin profile generated by intestinal epithelium under inflammatory conditions. Therefore, both could attenuate the immune response by lowering macrophage migration and polarisation towards pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes. While the fatty acid moiety gave PEGCG a functional advantage over EGCG in adjusting the interleukin-based response of intestinal epithelium to inflammation—since both of them decreased, to a similar extent, the expression of pro-inflammatory interleukins, namely IL-6, IL-17, IL-18, IL-23, and TNF-α (which lowered by 11.2%, on average)—the former was significantly more efficient in cushioning the increase in IL-1β and IL-12p70 (by 9.2% and 10.4%, respectively). This immune modulation capacity did not significantly impact the migration and expression of costimulatory molecules featuring M1 (CD86+) or M2 (CD206+) phenotypes by THP-1-derived macrophages, for which both bioactive compounds exhibited equivalent efficiency. Nonetheless, the analysis of the pro- and anti-inflammatory interleukins secreted by differentiated macrophages allowed the identification of an advantage for PEGCG, which decreased the expression of the pro-inflammatory immune mediators IL-1β and IL-12p70, IL-23, and TNF-α more efficiently. These results suggest that lipophilisation of phenolic compounds presents exciting potential for extending their application as functional molecules by combining the effects of their polar head with their ability to interfere with membranes, conveyed by their lipophilic tail. In addition, the enhanced reactivity would confer a higher capacity to interact with cellular signalling molecules and thus inhibit or attenuate the immune response, which is of special interest for preventing the onset and severity of immune-mediated pathologies such as IBD. Full article
(This article belongs to the Special Issue Recent Advances in the Enzymatic Synthesis of Bioactive Compounds)
Show Figures

Figure 1

18 pages, 2307 KB  
Article
Technological Properties Contrast of Galena, Sphalerite, Carbonaceous Material and Choice of Flotation Technology
by Akim Yergeshev, Rustam Tokpayev, Marina Karmeeva, Tamina Khavaza, Nazymarzu Yergesheva, Azhar Atchabarova, Mikhail Nauryzbayev and Vladislava Ignatkina
Minerals 2025, 15(8), 883; https://doi.org/10.3390/min15080883 - 21 Aug 2025
Viewed by 324
Abstract
The presence of galena, sphalerite (cleiophane), and Carbonaceous Material (CM) in sulphide ore complicates the application of a direct-differential flotation flowsheet due to increased mutual interactions between both marketable concentrates and final tailings. Flotation tests, measurements of electrokinetic (zeta) potential, adsorption of sulphydric [...] Read more.
The presence of galena, sphalerite (cleiophane), and Carbonaceous Material (CM) in sulphide ore complicates the application of a direct-differential flotation flowsheet due to increased mutual interactions between both marketable concentrates and final tailings. Flotation tests, measurements of electrokinetic (zeta) potential, adsorption of sulphydric collectors, and colorimetric indicators were employed to elucidate the cause-and-effect relationships underlying the reduction in contrast of the flotation properties of galena and cleiophane surfaces. It was established that galena and cleiophane exhibit comparable flotation responses when using diesel oil within a pH range of 6–8. While high galena recovery is anticipated, the similar recovery of cleiophane is attributed to the ZnS zeta potential approaching zero in this pH interval. Experimental results demonstrated a distinct difference in the flotation behavior of galena and cleiophane, both with natural surface oxidation and following the removal of sulphoxy films. The application of Carbonaceous Material depressants derived from wood processing by-products (lignin-sulphonates) resulted in a significant decrease in sphalerite recovery. Although the flotation rate constant for Carbonaceous Material in the presence of lignin-sulphonate-based depressants decreases, the overall recovery to concentrate increases over time. The implementation of a bulk-differential flowsheet, involving the preliminary removal of CM prior to the bulk Pb-Zn flotation of lead-zinc sulphide ore, has been demonstrated to be effective. Full article
(This article belongs to the Special Issue Mineral Processing and Recycling Technologies for Sustainable Future)
Show Figures

Figure 1

16 pages, 4167 KB  
Article
A Novel Lytic Salmonella Phage Harboring an Unprecedented Tail-Protein Domain Combination Capable of Lysing Cross-Host-Transmitted Salmonella Strains
by Ling Zhang, Mingqiang Guo, Xiaoyu Ma, Wei Wang, Wanpeng Ma, Yifan Liu, Junxiang Wei and Zhanqiang Su
Foods 2025, 14(16), 2850; https://doi.org/10.3390/foods14162850 - 17 Aug 2025
Viewed by 488
Abstract
The emergence of multidrug-resistant Salmonella poses a significant threat to global public health and food safety, necessitating the urgent search for new strategies to replace conventional antibiotics. Phages are viruses that can directly target bacteria and have garnered attention in recent years for [...] Read more.
The emergence of multidrug-resistant Salmonella poses a significant threat to global public health and food safety, necessitating the urgent search for new strategies to replace conventional antibiotics. Phages are viruses that can directly target bacteria and have garnered attention in recent years for their development as antibiotic alternatives. In this study, 4458 samples were collected from farms, supermarkets, and human feces, yielding 65 strains of Salmonella, which were serotyped using multiplex PCR. Subsequently, a lytic phage was isolated and identified using the dominant serotype of Salmonella as the host bacterium. We further explored the biological characteristics of this phage through host range, growth properties, and genomic analysis. Finally, we analyzed the potential of the phage to block the cross-host transmission of Salmonella, combining PFGE Salmonella classification, strain sources, and phage lytic phenotypes. The results showed that phage gmqsjt-1 could lyse 69.23% (45/65) of Salmonella, of which 75.56% (34/45) were resistant strains. The optimal multiplicity of infection (MOI) for gmqsjt-1 was 0.01, with a latent period of about 10 min, maintaining high activity within the temperature range of 30 to 60 °C and pH range of 2 to 13. No virulence or resistance genes were detected in the gmqsjt-1 genome, which carries two tail spike proteins (contain FAD binding_2 superfamily, the Tail spike TSP1/Gp66 N-terminal domain, and the Pectin lyase fold) and a holin–lysozyme–spanin lytic system. Phylogenetic classification indicates that phage gmqsjt-1 belongs to a new genus and species of an unnamed family within the class Caudoviricetes. PFGE classification results show a high genetic relationship among human, farm animal, and food source Salmonella, and the comprehensive lytic phenotype reveals that phage gmqsjt-1 can lyse Salmonella with high genetic correlation. These results suggest that this novel lytic Salmonella phage has the potential to inhibit cross-host transmission of Salmonella, making it a promising candidate for developing alternative agents to control Salmonella contamination sources (farms), thereby reducing the risk of human infection with Salmonella through ensuring food system safety. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

29 pages, 2318 KB  
Article
A Bounded Sine Skewed Model for Hydrological Data Analysis
by Tassaddaq Hussain, Mohammad Shakil, Mohammad Ahsanullah and Bhuiyan Mohammad Golam Kibria
Analytics 2025, 4(3), 19; https://doi.org/10.3390/analytics4030019 - 13 Aug 2025
Viewed by 569
Abstract
Hydrological time series frequently exhibit periodic trends with variables such as rainfall, runoff, and evaporation rates often following annual cycles. Seasonal variations further contribute to the complexity of these data sets. A critical aspect of analyzing such phenomena is estimating realistic return intervals, [...] Read more.
Hydrological time series frequently exhibit periodic trends with variables such as rainfall, runoff, and evaporation rates often following annual cycles. Seasonal variations further contribute to the complexity of these data sets. A critical aspect of analyzing such phenomena is estimating realistic return intervals, making the precise determination of these values essential. Given this importance, selecting an appropriate probability distribution is paramount. To address this need, we introduce a flexible probability model specifically designed to capture periodicity in hydrological data. We thoroughly examine its fundamental mathematical and statistical properties, including the asymptotic behavior of the probability density function (PDF) and hazard rate function (HRF), to enhance predictive accuracy. Our analysis reveals that the PDF exhibits polynomial decay as x, ensuring heavy-tailed behavior suitable for extreme events. The HRF demonstrates decreasing or non-monotonic trends, reflecting variable failure risks over time. Additionally, we conduct a simulation study to evaluate the performance of the estimation method. Based on these results, we refine return period estimates, providing more reliable and robust hydrological assessments. This approach ensures that the model not only fits observed data but also captures the underlying dynamics of hydrological extremes. Full article
Show Figures

Figure 1

33 pages, 415 KB  
Article
A Statistical Characterization of Median-Based Inequality Measures
by Charles M. Beach and Russell Davidson
Econometrics 2025, 13(3), 31; https://doi.org/10.3390/econometrics13030031 - 9 Aug 2025
Viewed by 305
Abstract
For income distributions divided into middle, lower, and higher regions based on scalar median cut-offs, this paper establishes the asymptotic distribution properties—including explicit empirically applicable variance formulas and hence standard errors—of sample estimates of the proportion of the population within the group, their [...] Read more.
For income distributions divided into middle, lower, and higher regions based on scalar median cut-offs, this paper establishes the asymptotic distribution properties—including explicit empirically applicable variance formulas and hence standard errors—of sample estimates of the proportion of the population within the group, their share of total income, and the groups’ mean incomes. It then applies these results for relative mean income ratios, various polarization measures, and decile-mean income ratios. Since the derived formulas are not distribution-free, the study advises using a density estimation technique proposed by Comte and Genon-Catalot. A shrinking middle-income group with declining relative incomes and marked upper-tail polarization among men’s incomes are all found to be highly statistically significant. Full article
14 pages, 950 KB  
Article
Synthesis and Antifungal Evaluation Against Candida spp. of 5-Arylfuran-2-Carboxamide Derivatives
by Salvatore Mirabile, Giovanna Ginestra, Rosamaria Pennisi, Davide Barreca, Giuseppina Mandalari and Rosaria Gitto
Microorganisms 2025, 13(8), 1835; https://doi.org/10.3390/microorganisms13081835 - 6 Aug 2025
Viewed by 409
Abstract
Candidiasis arises from the proliferation of Candida species in the human body, especially in individuals with compromised immune systems. Efficient therapeutic management of candidiasis is often hampered by the limited availability of potent antifungal drugs and the emergence of drug-resistant strains. We have [...] Read more.
Candidiasis arises from the proliferation of Candida species in the human body, especially in individuals with compromised immune systems. Efficient therapeutic management of candidiasis is often hampered by the limited availability of potent antifungal drugs and the emergence of drug-resistant strains. We have previously identified the N-[(4-sulfamoylphenyl)methyl][1,1′-biphenyl]-4-carboxamide to have fungistatic and fungicidal properties, likely due to the hydrophobic biphenyl–chemical features affecting the structural organization of Candida spp. cell membrane. Here, we designed and synthesized a novel series of twelve 5-arylfuran-2-carboxamide derivatives bearing a new hydrophobic tail as bioisosteric replacement of the diphenyl fragment. Its antifungal effectiveness against C. albicans, C. glabrata, and C. parapsilosis, including ATCC and clinically isolated strains, was assessed for all compounds. The most active compound was N-benzyl-5-(3,4-dichlorophenyl)furan-2-carboxamide (6), with fungistatic and fungicidal effects against C. glabrata and C. parapsilosis strains (MIC = 0.062–0.125 and 0.125–0.250 mg/mL, respectively). No synergistic effects were observed when combined with fluconazole. Interestingly, fluorescent microscopy analysis after staining with SYTO 9 and propidium iodide revealed that compound 6 affected the cell membrane integrity in C. albicans strain 16. Finally, carboxamide 6 exhibited a dose-dependent cytotoxicity on erythrocytes, based on assessing the LDH release. Full article
(This article belongs to the Collection Feature Papers in Antimicrobial Agents and Resistance)
Show Figures

Figure 1

37 pages, 1664 KB  
Review
Mining Waste in Asphalt Pavements: A Critical Review of Waste Rock and Tailings Applications
by Adeel Iqbal, Nuha S. Mashaan and Themelina Paraskeva
J. Compos. Sci. 2025, 9(8), 402; https://doi.org/10.3390/jcs9080402 - 1 Aug 2025
Viewed by 603
Abstract
This paper presents a critical and comprehensive review of the application of mining waste, specifically waste rock and tailings, in asphalt pavements, with the aim of synthesizing performance outcomes and identifying key research gaps. A systematic literature search yielded a final dataset of [...] Read more.
This paper presents a critical and comprehensive review of the application of mining waste, specifically waste rock and tailings, in asphalt pavements, with the aim of synthesizing performance outcomes and identifying key research gaps. A systematic literature search yielded a final dataset of 41 peer-reviewed articles for detailed analysis. Bibliometric analysis indicates a notable upward trend in annual publications, reflecting growing academic and practical interest in this field. Performance-based evaluations demonstrate that mining wastes, particularly iron and copper tailings, have the potential to enhance the high-temperature performance (i.e., rutting resistance) of asphalt binders and mixtures when utilized as fillers or aggregates. However, their effects on fatigue life, low-temperature cracking, and moisture susceptibility are inconsistent, largely influenced by the physicochemical properties and dosage of the specific waste material. Despite promising results, critical knowledge gaps remain, particularly in relation to long-term durability, comprehensive environmental and economic Life-Cycle Assessments (LCA), and the inherent variability of waste materials. This review underscores the substantial potential of mining wastes as sustainable alternatives to conventional pavement materials, while emphasizing the need for further multidisciplinary research to support their broader implementation. Full article
(This article belongs to the Special Issue Advanced Asphalt Composite Materials)
Show Figures

Figure 1

Back to TopTop