Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = tantalum–titanium interlayer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5833 KB  
Article
Performance Enhancement of Ti/IrO2-Ta2O5 Anode through Introduction of Tantalum–Titanium Interlayer via Double-Glow Plasma Surface Alloying Technology
by Mingshuai Guo, Yueren Liu, Yonglei Xin, Likun Xu, Lili Xue, Tigang Duan, Rongrong Zhao, Junji Xuan and Li Li
Nanomaterials 2024, 14(14), 1219; https://doi.org/10.3390/nano14141219 - 18 Jul 2024
Cited by 1 | Viewed by 2272
Abstract
Ti/IrO2-Ta2O5 electrodes are extensively utilized in the electrochemical industries such as copper foil production, cathodic protection, and wastewater treatment. However, their performance degrades rapidly under high current densities and severe oxygen evolution conditions. To address this issue, we [...] Read more.
Ti/IrO2-Ta2O5 electrodes are extensively utilized in the electrochemical industries such as copper foil production, cathodic protection, and wastewater treatment. However, their performance degrades rapidly under high current densities and severe oxygen evolution conditions. To address this issue, we have developed a composite anode of Ti/Ta-Ti/IrO2-Ta2O5 with a Ta-Ti alloy interlayer deposited on a Ti substrate by double-glow plasma surface alloying, and the IrO2-Ta2O5 surface coating prepared by the traditional thermal decomposition method. This investigation indicates that the electrode with Ta-Ti alloy interlayer reduces the agglomerates of precipitated IrO2 nanoparticles and refines the grain size of IrO2, thereby increasing the number of active sites and enhancing the electrocatalytic activity. Accelerated lifetime tests demonstrate that the Ti/Ta-Ti/IrO2-Ta2O5 electrode exhibits a much higher stability than the Ti/IrO2-Ta2O5 electrode. The significant improvement in electrochemical stability is attributed to the Ta-Ti interlayer, which offers high corrosion resistance and effective protection for the titanium substrate. Full article
Show Figures

Figure 1

8 pages, 1247 KB  
Article
Titanium and Tantalum Used as Functional Gradient Interlayer to Join Tungsten and Eurofer97
by Marianne Richou, Isabelle Chu, Geoffrey Darut, Raphael Maestracci, Manda Ramaniraka and Erick Meillot
J. Nucl. Eng. 2022, 3(4), 453-460; https://doi.org/10.3390/jne3040031 - 13 Dec 2022
Cited by 2 | Viewed by 2066
Abstract
For the DEMO reactor, tungsten is considered as an armor material. Eurofer97 is planned to be used as a structural material for the first wall and in the divertor region, especially for the shielding liner component. To date, several joining solutions between W [...] Read more.
For the DEMO reactor, tungsten is considered as an armor material. Eurofer97 is planned to be used as a structural material for the first wall and in the divertor region, especially for the shielding liner component. To date, several joining solutions between W and Eurofer97 have been developed (copper brazing, W and Eurofer97 functional gradient material (FGM), etc.). Each existing joining solution has its own advantages (joining material, improved manufacturing process). In the present study, the choice of the joining material is driven, among other constraints, by a desire to minimize the thermal stresses at the materials’ interface. In this regard, FGM represents a promising solution. Another constraint that is taken into account in this study concerns the manufacturing process involved, which should be an improved industrial process. The present study proposes a joining solution, based on FGM, which, additionally to the advantages of the existing solutions, could reduce the long-term activation of the joining material. The development of a joining solution via Ti and Ta as materials constituting the FGM (Ti/Ta FGM) is presented in this paper. Due to the achieved density and the composition’s accuracy, the cold spray process is shown to be adapted for the Ti/Ta FGM’s manufacturing. Based on the feedback on the experience of joining between W, W/Cu FGM and CuCrZr, the final joining between W, Ti/Ta FGM and Eurofer97 is achieved using hot isostatic pressing, followed by a thermal treatment to recover Eurofer97’s mechanical properties, resulting in good joining quality. Full article
Show Figures

Figure 1

17 pages, 10924 KB  
Article
Biocompatibility and Microstructure-Based Stress Analyses of TiNbZrTa Composite Films
by Bo-Wei Lai, Yin-Yu Chang, Tzong-Ming Shieh and Heng-Li Huang
Materials 2022, 15(1), 29; https://doi.org/10.3390/ma15010029 - 21 Dec 2021
Cited by 10 | Viewed by 3313
Abstract
Background: the clinical application of orthopedic or dental implants improves the quality of the lives of patients. However, the long-term use of implants may lead to implant loosening and related complications. The purpose of this study is to deposit titanium (Ti)-niobium (Nb)-zirconium (Zr)-tantalum [...] Read more.
Background: the clinical application of orthopedic or dental implants improves the quality of the lives of patients. However, the long-term use of implants may lead to implant loosening and related complications. The purpose of this study is to deposit titanium (Ti)-niobium (Nb)-zirconium (Zr)-tantalum (Ta) alloys on the surface of Ti-6Al-4V to increase structural strength and biocompatibility for the possible future application of implants. Materials and methods: Ti, Nb, Zr, and Ta served as the materials for the surface modification of the titanium alloy. TiNbZr and TiNbZrTa coatings were produced using cathodic arc evaporation, and a small amount of nitrogen was added to produce TiNbZrTa(N) film. Annealing and oxidation were then conducted to produce TiNbZrTa-O and TiNbZrTa(N)-O coatings. In this study, biological tests and finite element analyses of those five alloy films, as well as uncoated Ti-6Al-4V, were performed. Human osteosarcoma cells (MG-63) and mouse fibroblast cells (L-929) were used to analyze cytotoxicity, cell viability, and cell morphology, and the bone differentiation of MG-63 was evaluated in an alkaline phosphatase experiment. Furthermore, for measuring the gene expression level of L-929, reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) was conducted. The three-dimensional (3D) computational models of the coated and uncoated sample films were constructed using images of transmission electron microscopy and computer-aided design software and, then, the stress distributions of all models were evaluated by finite element analysis. Result: the cytotoxicity test revealed that the surface treatment had no significant cytotoxic effects on MG-63 and L-929 cells. According to the results of the cell viability of L-929, more cell activity was observed in the surface-treated experimental group than in the control group; for MG-63, the cell viability of the coated samples was similar to that of the uncoated samples. In the cell morphology analysis, both MG-63 and L-929 exhibited attached filopodia and lamellipodia, verifying that the cells were well attached. The alkaline phosphatase experiment demonstrated that the surface treatment did not affect the characteristics of early osteogenic differentiation, whereas RT-qPCR analysis showed that surface treatment can promote better performance of L-929 cells in collagen, type I, α1, and fibronectin 1. Finally, the results of the finite element analysis revealed that the coated TiNb interlayer can effectively reduce the stress concentration inside the layered coatings. Conclusions: TiNbZrTa series films deposited using cathodic arc evaporation had excellent biocompatibility with titanium alloys, particularly in regard to soft tissue cells, which exhibited an active performance. The finite element analysis verified that the TiNb interlayer can reduce the stress concentration inside TiNbZrTa series films, increasing their suitability for application in biomedical implants in the future. Full article
(This article belongs to the Special Issue Prospects for Dental Materials in Prosthodontics)
Show Figures

Figure 1

Back to TopTop