Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = techno–enviro–economic study

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
39 pages, 6883 KB  
Article
Techno–Enviro–Economic Feasibility Assessment of Family-Scale Solar Still (F-SSS) Desalination Plant in Central American and Caribbean Sites for Sustainable Clean Water Supply
by Hilarydoss Sharon, Mansi Prasad, Lakkoju Gowtham, Putta Venu Gopal and S. Aswin
Energies 2025, 18(6), 1431; https://doi.org/10.3390/en18061431 - 13 Mar 2025
Viewed by 1012
Abstract
The viability of the family-scale solar still (F-SSS) desalination plant in nine low- and middle-income Central American and Caribbean sites, with improper water treatment facilities and supply networks, has been analyzed and reported in detail. The sizing of the desalination plant was done [...] Read more.
The viability of the family-scale solar still (F-SSS) desalination plant in nine low- and middle-income Central American and Caribbean sites, with improper water treatment facilities and supply networks, has been analyzed and reported in detail. The sizing of the desalination plant was done based on the still’s performance, clean water requirement and solar radiation potential. The still’s performance was estimated using an experimentally validated thermodynamic model. Annual desalinated water productivity per still was about 979.0 L (highest) and 836.0 L (lowest) in Port-au-Prince and Belize City, respectively. The lowest and highest potable water production price was observed in Havana (19.75 to 20.22 USD/m3) and Port-au-Prince (59.23 to 60.62 USD/m3) due to their low and high local interest rates, respectively. The decarbonization potential of the F-SSS desalination plant with a 25-year lifetime ranged between 37 and 641 tons of CO2 emission. The specific CO2 generated was found to be the least and highest in San Salvador (4.24 to 4.34 g/L of desalinated water) and Port-au-Price (13.70 to 14.04 g/L of desalinated water), respectively. The energy, finance payback time and sustainability index of the F-SSS desalination plant ranged between 0.59 and 0.67 years, 1.2 and 18.0 months, and 1.03 and 1.04, respectively. The performance, economic and environmental aspects revealed positive signs on the applicability of the F-SSS desalination plant in Central American and Caribbean sites for reliable and sustainable clean water supply. However, this process can be ratified if the concerned governments implement a reasonable subsidy, as is the case with other renewable energy systems. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Graphical abstract

13 pages, 2110 KB  
Article
Uncertainty Covered Techno-Enviro-Economic Viability Evaluation of a Solar Still Water Desalination Unit Using Monte Carlo Approach
by Saba Sedayevatan, Armida Bahrami, Fatemeh Delfani and Ali Sohani
Energies 2023, 16(19), 6924; https://doi.org/10.3390/en16196924 - 2 Oct 2023
Cited by 11 | Viewed by 2332
Abstract
Due to much lower initial and operating costs, as well as a great environmental and energy performance, there has been a growing tendency towards the application of solar still desalination systems to deal with water scarcity issues. By taking advantage of higher investments [...] Read more.
Due to much lower initial and operating costs, as well as a great environmental and energy performance, there has been a growing tendency towards the application of solar still desalination systems to deal with water scarcity issues. By taking advantage of higher investments and providing incentives to policy makers, the application could be even broader. In order to convince the policy makers and investors, it is important to provide a clear and realistic overview of the technical, economic, and environmental viability of solar stills, and several studies have evaluated them from different viewpoints. Nonetheless, the economic and environmental factors have uncertainties, which have not been taken into account. Therefore, this study uses the Monte Carlo approach to consider the effects of the uncertainty of inflation and discount rates, in addition to emission factors, on the system’s techno-enviro-economic viability. The study is performed by covering cost per liter (CPL) and the annual saving of CO2 (SCO2) as the most important key techno-economic and environmental indicators of the system. The results show that the best probability distribution functions for inflation, discount, and emission factors are normal, log-normal, and their summation, respectively. Furthermore, both SCO2 and CPL are found to have considerable uncertainty. The former has a variation ranging from 317.7 to 427.9 g, while the corresponding values for the latter are 0.0212 to 0.0270 $ · L−1, respectively. With the amounts of 0.1716 and 0.1727, the values of 378.9 g and 0.0245 $ · L−1 are the values with the highest chance of occurrence for SCO2, as well as for CPL, respectively. Full article
(This article belongs to the Special Issue Selected Papers from the 16th Conference 'Air, Heat and Energy')
Show Figures

Figure 1

19 pages, 5803 KB  
Article
A Backcasting Analysis toward a 100% Renewable Energy Transition by 2040 for Off-Grid Islands
by Khrisydel Rhea M. Supapo, Lorafe Lozano, Ian Dominic F. Tabañag and Edward M. Querikiol
Energies 2022, 15(13), 4794; https://doi.org/10.3390/en15134794 - 30 Jun 2022
Cited by 8 | Viewed by 4565
Abstract
The rapid increase in energy consumption results from population growth and technological advancement, while economic growth also relies heavily on the availability of energy. As fossil fuels become scarcer and greenhouse gas emissions increase, renewable energy sources are regarded as practical solutions to [...] Read more.
The rapid increase in energy consumption results from population growth and technological advancement, while economic growth also relies heavily on the availability of energy. As fossil fuels become scarcer and greenhouse gas emissions increase, renewable energy sources are regarded as practical solutions to meet increasing energy demands. This study aims to develop a sustainable energy transition pathway for off-grid island communities in the Philippines. It adopts the concept of backcasting analysis, focusing on the demand and supply side of the energy transition. The transition considers three milestones: business as usual (BAU), minimal transition scenario (MTS), and absolute transition scenario (ATS). The techno-enviro-economic analysis is performed for each milestone to determine the optimal energy resource mix while addressing the three dimensions of the Energy Trilemma: energy security, energy equity, and environmental sustainability. The approach is implemented in three off-grid island municipalities in Palawan, Philippines: Araceli, Balabac, and Cuyo. The results suggest that the optimal electrification configuration for each island at the MTS is a hybrid system consisting of a diesel generator and solar photovoltaics with batteries, while at the ATS, it is a hybrid system of solar photovoltaics and wind with batteries. In addition, greenhouse gas emissions are reduced by 79.7% in Araceli, 78.7% in Balabac, and 41.2% in Cuyo from the BAU scenario to MTS. The actors involved in said transition are identified. A transitional pathway can be seen as a strategic plan to achieve the desired goal: to have a sustainable energy transition. Full article
Show Figures

Figure 1

32 pages, 9288 KB  
Article
Balancing Energy Trilemma Using Hybrid Distributed Rooftop Solar PV (DRSP)/Battery/Diesel Microgrid: A Case Study in Gilutongan Island, Cordova, Cebu, Philippines
by Jaybee Lacea, Edward Querikiol and Evelyn Taboada
Energies 2021, 14(21), 7358; https://doi.org/10.3390/en14217358 - 5 Nov 2021
Cited by 10 | Viewed by 6076
Abstract
Design strategies for achieving reliable, affordable, and clean electricity are crucial for energy sustainability. Attaining it requires managing the three core factors (TCF) of the energy trilemma (ET) to increase reliability (energy equity), minimize the levelized cost of electricity (LCOE) (energy equity), and [...] Read more.
Design strategies for achieving reliable, affordable, and clean electricity are crucial for energy sustainability. Attaining it requires managing the three core factors (TCF) of the energy trilemma (ET) to increase reliability (energy equity), minimize the levelized cost of electricity (LCOE) (energy equity), and avoid potential CO2 emission (environmental sustainability) simultaneously. This paper aims to present a design strategy for the hybrid energy system microgrid (HESM) model, consisting of a distributed rooftop solar PV (DRSP), battery, and diesel-generator to meet the increasing demand while balancing the TCF of the ET. The design strategy was applied in a cluster of 11 households in Gilutongan Island, Cebu, Philippines, where there is no open land space for a solar PV microgrid system. This study used PVSyst and HOMER Pro software to perform the techno-enviro-economic (TEE) analysis to select all feasible system configurations (FSCs). To identify the optimal FSC, a scoring mechanism that considers the LCOE based on the 5% household electricity expense limit, the 5% unmet load fraction, and the renewable penetration fraction was used. Results show that the optimal system requires an average of 32.2% excess energy from DRSP to balance the TCF of the ET based on the energy demand considered. Thus, planning when energy demand increases is vital to map the next appropriate steps toward sustainable energy transition. Overall, the obtained results can support project developers and policymakers to make informed decisions in balancing the ET from various trade-offs of energy systems. Full article
Show Figures

Figure 1

Back to TopTop