Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (851)

Search Parameters:
Keywords = tension load test

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 11935 KB  
Article
Effect of SiO2 and MoS2 Particles as Lubricant Additives on Lubrication Performance in Sheet Metal Forming
by Krzysztof Szwajka, Tomasz Trzepieciński, Marek Szewczyk and Joanna Zielińska-Szwajka
Materials 2025, 18(19), 4605; https://doi.org/10.3390/ma18194605 - 4 Oct 2025
Abstract
Modifying lubricants with hard material particles improves lubricant performance by allowing the particles to penetrate the contact area and separate the contacting surfaces. The use of solid particles as additives in fluid lubricants presents a promising avenue for providing effective lubrication under high [...] Read more.
Modifying lubricants with hard material particles improves lubricant performance by allowing the particles to penetrate the contact area and separate the contacting surfaces. The use of solid particles as additives in fluid lubricants presents a promising avenue for providing effective lubrication under high loads in sheet metal forming. This article presents the results of friction tests using the bending under tension friction tribotester. Low-carbon DC01 steel sheets were used as the test material. The main goal of the study was to determine the effect of lubricant modification by adding MoS2 and SiO2 particles and the modification of 145Cr6 steel countersamples on the coefficient of friction (CoF), changes in friction-induced surface roughness and friction mechanisms. The surfaces of the countersamples were modified using electron beam melting and the ion implantation of lead (IPb). It was found that increasing the SiO2 and MoS2 content in DC01/145Cr6 and DC01/IPb contacts under base oil lubrication conditions resulted in a decrease in the CoF value. For the countersample subjected to electron beam melting, considering all friction conditions, the CoF decreased between 31.9% and 37.5%. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

21 pages, 25531 KB  
Article
Effect of Processing Parameters on the Mechanical Behavior of 3D-Printed Basalt Moon Dust Reinforced Polylactic Acid Composites
by Lucian Alexander-Roy, Meelad Ranaiefar, Mrityunjay Singh and Michael Halbig
Polymers 2025, 17(19), 2685; https://doi.org/10.3390/polym17192685 - 4 Oct 2025
Abstract
Advanced composite materials and manufacturing technologies are critical to sustain human presence in space. Mechanical testing and analysis are needed to elucidate the effect of processing parameters on composites’ material properties. In this study, test specimens are 3D printed via a fused-filament fabrication [...] Read more.
Advanced composite materials and manufacturing technologies are critical to sustain human presence in space. Mechanical testing and analysis are needed to elucidate the effect of processing parameters on composites’ material properties. In this study, test specimens are 3D printed via a fused-filament fabrication (FFF) approach from a basalt moon dust-polylactic acid (BMD-PLA) composite filament and from pure PLA filament. Compression and tensile testing were conducted to determine the yield strength, ultimate strength, and Young’s modulus of specimens fabricated under several processing conditions. The maximum compressive yield strength for the BMD-reinforced samples is 27.68 MPa with print parameters of 100% infill, one shell, and 90° print orientation. The maximum compressive yield strength for the PLA samples is 63.05 MPa with print parameters of 100% infill, three shells, and 0° print orientation. The composite samples exhibit an increase in strength when layer lines are aligned with loading axis, whereas the PLA samples decreased in strength. This indicates a fundamental difference in how the composite behaves in comparison to the pure matrix material. In tension, test specimens have unpredictable failure modes and often broke outside the gauge length. A portion of the tension test data is included to help guide future work. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

29 pages, 37875 KB  
Article
Hardware-in-the-Loop Testing of Spacecraft Relative Dynamics and Tethered Satellite System on a Tip-Tilt Flat-Table Facility
by Giuseppe Governale, Armando Pastore, Matteo Clavolini, Mattia Li Vigni, Christian Bellinazzi, Catello Leonardo Matonti, Stefano Aliberti, Riccardo Apa and Marcello Romano
Aerospace 2025, 12(10), 884; https://doi.org/10.3390/aerospace12100884 - 29 Sep 2025
Abstract
This article presents a compact tip-tilting platform designed for hardware-in-the-loop emulation of spacecraft relative dynamics and a physical setup for testing tethered systems. The architecture consists of a granite slab supported by a universal joint and two linear actuators to control its orientation. [...] Read more.
This article presents a compact tip-tilting platform designed for hardware-in-the-loop emulation of spacecraft relative dynamics and a physical setup for testing tethered systems. The architecture consists of a granite slab supported by a universal joint and two linear actuators to control its orientation. This configuration allows a Floating Spacecraft Simulator to move on the surface in a quasi-frictionless environment under the effect of gravitational acceleration. The architecture includes a dedicated setup to emulate tethered satellite dynamics, providing continuous feedback on the tension along the tether through a mono-axial load cell. By adopting the Buckingham “π” theorem, the dynamic similarity is introduced for the ground-based experiment to reproduce the orbital dynamics. Proof-of-concept results demonstrate the testbed’s capability to accurately reproduce the Hill–Clohessy–Wiltshire equations. Moreover, the results of the deployed tethered system dynamics are presented. This paper also details the system architecture of the testbed and the methodologies employed during the experimental campaign. Full article
19 pages, 4348 KB  
Article
Mechanical Performance and Failure Modes of High-Strength Adhesives in Aluminum Adherend Joints for Aerospace Applications
by Baojiang Hou, Lifeng Jia, Lisheng Zhang, Bo Xu and Jie Hou
Materials 2025, 18(19), 4445; https://doi.org/10.3390/ma18194445 - 23 Sep 2025
Viewed by 105
Abstract
Focusing on the practical application requirements of adhesive-bonded structures in aerospace engineering, this study aims to investigate the mechanical performance and failure mechanisms of adhesive interfaces. Adhesive bonding, valued for its uniform load distribution, low stress concentration, superior sealing, and lightweight properties, serves [...] Read more.
Focusing on the practical application requirements of adhesive-bonded structures in aerospace engineering, this study aims to investigate the mechanical performance and failure mechanisms of adhesive interfaces. Adhesive bonding, valued for its uniform load distribution, low stress concentration, superior sealing, and lightweight properties, serves as a critical joining technology in aerospace engineering. However, its reliable application is constrained by complex multimode failure issues, such as cohesive failure, interfacial debonding, and matrix damage. To address these challenges, a comprehensive evaluation of the novel high-strength epoxy adhesive Dq622JD-136 (Adhesive III) was conducted through systematic tests, including bulk tension, butt joint tension, single lap shear, compressive shear, and fracture toughness (TDCB/ENF) tests. These tests characterized its mechanical properties and fracture behavior under mode-I and mode-II loading, with comparative analyses against conventional adhesives HYJ-16 (Adhesive I) and HYJ-29 (Adhesive II). Key findings reveal that Adhesive III exhibits outstanding elastic modulus, significantly outperforming the comparative adhesives. While its normal and shear strengths are slightly lower than Adhesive I, they surpass Adhesive II. A common characteristic across all adhesives is that normal strength exceeds shear strength. In terms of fracture toughness, Adhesive III demonstrates superior mode-II toughness but relatively lower mode-I toughness. These results elucidate the brittle characteristics of such adhesives, mixed failure modes under normal loading, and cohesive failure behavior under shear loading. The innovation of this work lies in systematically correlating the macroscopic performance of adhesives with failure mechanisms through multi-dimensional testing. Its findings provide critical technical support for multiscale performance evaluation and adhesive selection in aerospace joints subjected to extreme thermomechanical loads. Full article
(This article belongs to the Special Issue Fatigue Damage, Fracture Mechanics of Structures and Materials)
Show Figures

Figure 1

26 pages, 4121 KB  
Article
An Experimental Investigation of Twelve Concrete Beams Post-Tensioned with Unbonded Tendons Under Center-Point and Third-Point Loading
by Wojciech Politalski and Andrzej Seruga
Materials 2025, 18(18), 4333; https://doi.org/10.3390/ma18184333 - 16 Sep 2025
Viewed by 284
Abstract
The first concrete structures post-tensioned with unbonded tendons were constructed in the 1950s. Despite the popularity of such a type of construction solution, the theory describing the behavior of members with unbonded prestress remains relatively unknown. Different standards, provisions, and theories described by [...] Read more.
The first concrete structures post-tensioned with unbonded tendons were constructed in the 1950s. Despite the popularity of such a type of construction solution, the theory describing the behavior of members with unbonded prestress remains relatively unknown. Different standards, provisions, and theories described by scientists can be found in the literature. The main problem is related to determining the value of the prestressing force and its increments because it is dependent upon the member rather than the section due to a lack of bond between the concrete and the tendons. Both theoretical and experimental studies enable the definition of parameters that have an influence on stress increase. Three of the most important of these parameters were investigated in tests conducted by the authors. This paper presents the findings of an experimental study conducted on twelve simply supported RC beams that were prestressed with unbonded tendons. A total of twelve elements were grouped according to various criteria, including their span-to-depth ratio, prestressed reinforcement ratio, and type of loading. All beams had a low reinforcing bars index, which met the Eurocode 2 requirements. The aim of this research was to check if such a level of ordinary reinforcement ratio will enable the achievement of a satisfactory crack pattern and also a high stress increase in unbonded tendons. The members were tested to investigate their behavior and the stress increment in tendons in terms of their load-carrying capacity. Full article
(This article belongs to the Special Issue Mechanical Behavior of Advanced Composite Materials and Structures)
Show Figures

Figure 1

16 pages, 2911 KB  
Article
Experimental Study on a UHPC Precast Pier with External Energy Dissipation Device for Seismic Resilience
by Chao Li, Yaowei Peng, Pengyu Yang and Kang Xiao
Buildings 2025, 15(18), 3272; https://doi.org/10.3390/buildings15183272 - 10 Sep 2025
Viewed by 305
Abstract
This study proposes a precast concrete bridge pier system designed to enhance seismic resilience and post-earthquake reparability. The structural configuration integrates ultra-high-performance concrete (UHPC), externally replaceable steel-angle energy-dissipating components, and unbonded post-tensioned tendons. The seismic performance of the system was evaluated through quasi-static [...] Read more.
This study proposes a precast concrete bridge pier system designed to enhance seismic resilience and post-earthquake reparability. The structural configuration integrates ultra-high-performance concrete (UHPC), externally replaceable steel-angle energy-dissipating components, and unbonded post-tensioned tendons. The seismic performance of the system was evaluated through quasi-static tests under cyclic loading. Experimental results demonstrated that the proposed pier exhibited stable hysteretic behavior and minimal residual displacement, effectively concentrating damage within the intended plastic hinge region. The superior strength of UHPC further contributed to improved load-bearing capacity and less localized concrete compressive damage at the rocking interface. The external steel angles improved the energy dissipation capacity of the precast column significantly, and its external arrangement made the post-earthquake replacement much easier as compared to internal energy dissipation bars. The feasibility of the proposed seismic-resilient pier system was successfully validated, offering a promising solution for bridge design in high-seismic-intensity regions. Full article
(This article belongs to the Special Issue Seismic Performance of Seismic-Resilient Structures)
Show Figures

Figure 1

19 pages, 4414 KB  
Article
Investigating Ageing Effects on Bored Pile Shaft Resistance in Cohesionless Soil Through Field Testing
by Omar Hamza and Abdulhakim Mawas
Geotechnics 2025, 5(3), 59; https://doi.org/10.3390/geotechnics5030059 - 1 Sep 2025
Viewed by 415
Abstract
This study investigates the influence of time (ageing) on the uplift capacity of bored piles in cohesionless silty sand through a full-scale field testing programme. Four reinforced concrete piles, two shorter (16 m) and two longer (21 m), were installed and tested under [...] Read more.
This study investigates the influence of time (ageing) on the uplift capacity of bored piles in cohesionless silty sand through a full-scale field testing programme. Four reinforced concrete piles, two shorter (16 m) and two longer (21 m), were installed and tested under axial tension at two different ageing intervals: 35 days and 165 days post-construction. The load-displacement behaviour, load transfer characteristics, and shaft friction mobilisation were monitored using load cells and embedded strain gauges. Results showed that while all piles exhibited similar ultimate capacities, the aged piles consistently demonstrated stiffer responses and earlier mobilisation of shaft resistance. Extrapolated estimates showed modest increases in estimated ultimate uplift capacity, ranging from 2% to 7%, with ageing. Strain gauge data also indicated more uniform load transfer in the aged piles, suggesting time-dependent improvements in pile-soil interface behaviour. The findings confirm that even in cohesionless silty sand, moderate ageing effects can enhance uplift performance, but the extent of improvement is small and variable. These findings provide a valuable reference for evaluating uplift design assumptions and interpreting field test behaviour in similar soil environments. Full article
(This article belongs to the Special Issue Recent Advances in Soil–Structure Interaction)
Show Figures

Graphical abstract

24 pages, 5245 KB  
Article
Analysis of Mechanical Properties and Energy Evolution of Through-Double-Joint Sandy Slate Under Three-Axis Loading and Unloading Conditions
by Yang Wang, Chuanxin Rong, Hao Shi, Zhensen Wang, Yanzhe Li and Runze Zhang
Appl. Sci. 2025, 15(17), 9570; https://doi.org/10.3390/app15179570 - 30 Aug 2025
Viewed by 397
Abstract
In the mining of deep mineral resources and tunnel engineering, the degradation of mechanical properties and the evolution of energy of through-double-joint sandy slate under triaxial loading and unloading conditions are key scientific issues affecting the stability design of the project. The existing [...] Read more.
In the mining of deep mineral resources and tunnel engineering, the degradation of mechanical properties and the evolution of energy of through-double-joint sandy slate under triaxial loading and unloading conditions are key scientific issues affecting the stability design of the project. The existing research has insufficiently explored the joint inclination angle effect, damage evolution mechanism, and energy distribution characteristics of this type of rock mass under the path of increasing axial pressure and removing confining pressure. Based on this, in this study, uniaxial compression, conventional triaxial compression and increasing axial pressure, and removing confining pressure tests were conducted on four types of rock-like materials with prefabricated 0°, 30°, 60°, and 90° through-double-joint inclinations under different confining pressures. The axial stress/strain curve, failure characteristics, and energy evolution law were comprehensively analyzed, and damage variables based on dissipated energy were proposed. The test results show that the joint inclination angle significantly affects the bearing capacity of the specimen, and the peak strength shows a trend of first increasing and then decreasing with the increase in the inclination angle. In terms of failure modes, the specimens under conventional triaxial compression exhibit progressive compression/shear failure (accompanied by rock bridge fracture zones), while under increased axial compression and relief of confining pressure, a combined tensioning and shear failure is induced. Moreover, brittleness is more pronounced under high confining pressure, and the joint inclination angle also has a significant control effect on the failure path. In terms of energy, under the same confining pressure, as the joint inclination angle increases, the dissipated energy and total energy of the cemented filling body at the end of triaxial compression first decrease and then increase. The triaxial compression damage constitutive model of jointed rock mass established based on dissipated energy can divide the damage evolution into three stages: initial damage, damage development, and accelerated damage growth. Verified by experimental data, this model can well describe the damage evolution characteristics of rock masses with different joint inclination angles. Moreover, an increase in the joint inclination angle will lead to varying degrees of damage during the loading process of the rock mass. The research results can provide key theoretical support and design basis for the stability assessment of surrounding rock in deep and high-stress plateau tunnels, the optimization of support parameters for jointed rock masses, and early warning of rockburst disasters. Full article
Show Figures

Figure 1

18 pages, 5248 KB  
Project Report
Laboratory Testing to Assess the Feasibility of Polyurethane Flat Belts for Marine Energy Applications
by Justin Panzarella, Scott Jenne and Andrew Simms
J. Mar. Sci. Eng. 2025, 13(9), 1652; https://doi.org/10.3390/jmse13091652 - 28 Aug 2025
Viewed by 536
Abstract
Polyurethane flat belts have received limited scientific attention as load-bearing elements in marine energy systems, particularly in applications involving dynamic tensile and bending loads. This study evaluates their potential as a replacement for traditional wire ropes in marine energy applications, with a focus [...] Read more.
Polyurethane flat belts have received limited scientific attention as load-bearing elements in marine energy systems, particularly in applications involving dynamic tensile and bending loads. This study evaluates their potential as a replacement for traditional wire ropes in marine energy applications, with a focus on their ability to be integrated into winch-driven wave energy converters where bending and tensile stresses can make long-term operation difficult. Polyurethane belts are hypothesized to offer enhanced fatigue resistance due to their reduced thickness in the bending plane and therefore lower bending stresses. This research involves a series of tests utilizing the National Renewable Energy Laboratory’s (NREL) Large-Amplitude Motion Platform to replicate the dynamic conditions experienced by mooring lines of winch-based point-absorber-type marine energy converters. The conditions tested include unequal coiling and uncoiling tensions and load cases resulting from the device’s unconstrained movement relative to its anchor, such as twisting and off-axis loading. Results from this study show that polyurethane flat belts can achieve more than 198 percent of the fatigue life of a conventional wire rope under similar load profiles. The stress concentrations resulting from off-axis loading and cumulative twist beyond the system’s allowable limits have been identified as potential failure modes for flat belt mooring lines used in winch-driven wave energy converters deployed in ocean environments. To mitigate these risks, the use of anti-spin systems and fairleads designed to accommodate off-axis loading while limiting twist accumulation is recommended. Full article
Show Figures

Figure 1

21 pages, 22656 KB  
Article
Development of a Laser Cladding Technology for Repairing First-Stage High-Pressure Turbine Blades in Gas Turbine Engines
by Stepan Tukov, Rudolf Korsmik, Grigoriy Zadykyan, Dmitrii Mukin, Ruslan Mendagaliev and Nikita Roschin
Metals 2025, 15(9), 957; https://doi.org/10.3390/met15090957 - 28 Aug 2025
Viewed by 680
Abstract
A gas turbine engine is a technological system consisting of a compressor, a combustion chamber, and other modules. All these components are subjected to dynamic and cyclic loads, which lead to fatigue cracks and mechanical damage. The aim of this work is to [...] Read more.
A gas turbine engine is a technological system consisting of a compressor, a combustion chamber, and other modules. All these components are subjected to dynamic and cyclic loads, which lead to fatigue cracks and mechanical damage. The aim of this work is to repair the worn surfaces of a series of DR-59L high-pressure turbine blades by laser powder cladding. A number of technological parameters of laser cladding were tested to obtain a defect-free structure on the witness sample. The metal powder of the cobalt alloy Stellite 21 was used as a filler material. By modeling the process of restoring rotor blades, the operating mode of laser powder cladding was determined. No defects were detected during capillary control of the restored surfaces of the rotor blades. The results of the uniaxial tension test of the restored rotor blades showed increased tensile strength and elongation. With the use of laser powder cladding technology, it was possible to restore the worn surfaces of a series of rotor blades of the DR-59L high-pressure turbine, thereby increasing the life cycle of power plant products. Full article
(This article belongs to the Section Additive Manufacturing)
Show Figures

Figure 1

15 pages, 2098 KB  
Article
Calculation Method and Experimental Study of Stress Loss in T-Beam External Prestressed Tendon Based on the Variation Principle
by Binpeng Tang, Xiedong Zhang, Guobin Tang, Jianhua Yu and Xigang Diao
Buildings 2025, 15(17), 3056; https://doi.org/10.3390/buildings15173056 - 27 Aug 2025
Viewed by 453
Abstract
The problem of quantifying prestress loss in the external tendons of in-service bridges is of immense practical importance, and the development of reliable, cost-effective methods is a commendable goal. Based on the principle of static equilibrium, this paper proposes a direct method for [...] Read more.
The problem of quantifying prestress loss in the external tendons of in-service bridges is of immense practical importance, and the development of reliable, cost-effective methods is a commendable goal. Based on the principle of static equilibrium, this paper proposes a direct method for determining the effective stress in external prestressed tendons using the variation principle, whose calculation accuracy was validated by conducting experimental and theoretical analysis considering the prestressed tendon arrangement form. A transverse tensioning experiment of the prestressed tendons was carried out under four tension conditions of 50 kN, 80 kN, 110 kN and 170 kN at the anchorage end, and the theoretically calculated internal force of the prestressed tendons gradually approached the measured value as the transverse tension increased. Once the appropriate level of transverse tension was reached, stable and reliable results could be obtained. Ultimately, the error between them will stabilize below 5%. This method was used to detect stress loss in the external prestressed tendons of 20 m, 40 m and 50 m T-beams affected by both internal and external uncertain factors simultaneously, and the probability distribution hypothesis test of the stress loss rate was carried out, the results of which reveal that they all follow normal distribution. The ratio of stress at the bottom edge of the T-beam under self-weight and prestressed load to that under vehicle load is defined as the compressive stress reserve coefficient, which is a verified and reliable index for evaluating the external prestressed stress loss on the reinforcement effect of the bridge. Full article
Show Figures

Figure 1

24 pages, 9267 KB  
Article
Tendon Profile Layout Impact on the Shear Capacity of Unbonded Post-Tensioned Prestressed Concrete Bridge I-Girders
by Swar I. Hasib, Assim M. Lateef and Omar Q. Aziz
Infrastructures 2025, 10(9), 222; https://doi.org/10.3390/infrastructures10090222 - 22 Aug 2025
Viewed by 695
Abstract
The main objective of this research is to investigate the impact of the tendon profile layout on the shear strength of unbonded post-tensioned prestressed concrete bridge I-girders. This study involves an experimental investigation where ten unbonded post-tensioned bridge girders are cast and subjected [...] Read more.
The main objective of this research is to investigate the impact of the tendon profile layout on the shear strength of unbonded post-tensioned prestressed concrete bridge I-girders. This study involves an experimental investigation where ten unbonded post-tensioned bridge girders are cast and subjected to four-point loads. The focus of the investigation is on the effect of different tendon profile layouts, including trapezoidal, parabolic, and harped shapes. The experimental results reveal that the shear behavior of the specimens progresses through three distinct stages: the elastic stage, the elastic–plastic stage, and the plastic stage, with all specimens ultimately failing due to shear. The results show that tendon profiles with higher eccentricity at the end of the beams (80 mm above the neutral axis) had the highest ultimate load capacity for each tendon profile shape, coupled with the largest deflection. Conversely, profiles with lower eccentricity (80 mm below the neutral axis) demonstrated the lower ultimate load capacity for each tendon profile shape and minimal deflection. Among the various tendon profile layouts that were tested, the specimen with the harped tendon profile (GF-1 HA) showed the highest ultimate load capacity, with an increasing rate of 17.52% in ultimate load and a 45.55% increase in ultimate deflection compared to the control beam (GF-1 ST) with a straight tendon profile. On the other hand, the harped tendon profile specimen (GF-1 HA) exhibited the lowest deflection among the various tendon profile shapes with an increasing rate of 5.7% in ultimate load deflection in comparison with the control beam (GF-1 ST) with a straight tendon profile. These improvements in stiffness, load capacity, and deflection are attributed to enhanced resistance, particularly at the supports. Consequently, the optimized tendon layouts offer an increase in the overall structural efficiency, leading to potential cost savings in bridge girder production. Full article
(This article belongs to the Section Infrastructures and Structural Engineering)
Show Figures

Figure 1

23 pages, 1642 KB  
Article
Neuromuscular and Psychological Performance Monitoring During One Season in Spanish Marine Corps
by Beltrán Cáceres-Diego, Pedro E. Alcaraz and Cristian Marín-Pagán
J. Funct. Morphol. Kinesiol. 2025, 10(3), 324; https://doi.org/10.3390/jfmk10030324 - 21 Aug 2025
Viewed by 459
Abstract
Background: Training planning in military environments is complex due to diverse operational demands and constant exposure to stressors. When combined with high training volumes and insufficient recovery, this can result in physical and mental overload. Regular assessments are crucial to monitor the condition [...] Read more.
Background: Training planning in military environments is complex due to diverse operational demands and constant exposure to stressors. When combined with high training volumes and insufficient recovery, this can result in physical and mental overload. Regular assessments are crucial to monitor the condition of personnel and adjust training accordingly, though more research is needed to effectively track performance in real operational settings. Objectives: This study aims to monitor neuromuscular and psychological performance in relation to training load in a military school, addressing the research gap in tracking performance in operational settings. Methods: Overall, 27 marines (age: 27.9 ± 4.8 years; height: 178.1 ± 6.3 cm; weight: 79.1 ± 7.8 kg) were monitored over a 13-week academic-military training period to assess neuromuscular performance and psychological fatigue. Results: Laboratory tests included the countermovement jump (p = 0.002), isometric mid-thigh pull (p = 0.001), and handgrip strength for both dominant (p = 0.947) and non-dominant hands (p = 0.665). Field tests involved maximum pull-ups (p = 0.015), push-ups (p = 0.001), and the medicine ball throw (p = 0.334). Psychological evaluation via the POMS questionnaire showed the highest negative mood scores in Tension–Anxiety, Depression–Melancholia, and Fatigue–Inertia, while Vigor–Activity was the highest positive state. RESTQ-Sport results indicated total recovery was 68.9% greater than total stress. Conclusions: Despite improvements in some field tests, no significant neuromuscular gains were observed, likely due to excessive training loads, limited recovery, and sustained stress. Full article
(This article belongs to the Section Athletic Training and Human Performance)
Show Figures

Figure A1

23 pages, 17970 KB  
Article
Strain Monitoring and Numerical Simulation Analysis of Nuclear Containment Structure During Containment Tests
by Xunqiang Yin, Weilong Yang, Junkai Zhang, Min Zhao and Jianbo Li
Sensors 2025, 25(16), 5197; https://doi.org/10.3390/s25165197 - 21 Aug 2025
Viewed by 568
Abstract
Strain monitoring during the service life of a nuclear containment structure is an effective means to evaluate whether the structure is operating safely. Due to the failure of embedded strain sensors, surface-mounted strain sensors should be installed on the outer wall of the [...] Read more.
Strain monitoring during the service life of a nuclear containment structure is an effective means to evaluate whether the structure is operating safely. Due to the failure of embedded strain sensors, surface-mounted strain sensors should be installed on the outer wall of the structure. However, whether the data from these substitute sensors can reasonably reflect the internal deformation behavior requires further investigation. To ensure the feasibility of the added strain sensors, a refined 3D model of a Chinese Pressurized Reactor (CPR1000) nuclear containment structure was developed in ANSYS 19.1 to study the internal and external deformation laws during a containment test (CTT). Solid reinforcement and cooling methods were employed to simulate prestressed cables and pre-tension application. The influence of ordinary steel bars in concrete was modeled using the smeared model, while interactions between the steel liner and concrete were simulated through coupled nodes. The model’s validity was verified against embedded strain sensor data recorded during a CTT. Furthermore, concrete and prestressed material parameters were refined through a sensitivity analysis. Finally, the variation law between the internal and external deformation of the containment structure was investigated under typical CTT loading conditions. Strain values in the wall thickness direction exhibited an essentially linear relationship. Near the equipment hatch, however, the strain distribution pattern was significantly influenced by the spatial arrangement of prestressed cables. Refined FEM and sensor systems are vital containment monitoring tools. Critically, surface-mounted strain sensors offer a feasible approach for inferring internal stress states and deformation behavior. This study provides theoretical support and a technical foundation for the safe assessment and maintenance of nuclear containment structures during operational service. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

23 pages, 2990 KB  
Article
Self-Healing Asphalt Mixtures Meso-Modelling: Impact of Capsule Content on Stiffness and Tensile Strength
by Gustavo Câmara, Nuno Monteiro Azevedo and Rui Micaelo
Sustainability 2025, 17(16), 7502; https://doi.org/10.3390/su17167502 - 19 Aug 2025
Cited by 1 | Viewed by 522
Abstract
Capsule-based self-healing technologies offer a promising solution to extend pavement service life without requiring external activation. The effect of the capsule content on the mechanical behaviour of self-healing asphalt mixtures still needs to be understood. This study presents a numerical evaluation of the [...] Read more.
Capsule-based self-healing technologies offer a promising solution to extend pavement service life without requiring external activation. The effect of the capsule content on the mechanical behaviour of self-healing asphalt mixtures still needs to be understood. This study presents a numerical evaluation of the isolated effect of incorporating capsules containing encapsulated rejuvenators, at different volume contents, on the stiffness and strength of asphalt mixtures through a three-dimensional discrete-based programme (VirtualPM3DLab), which has been shown to predict well the experimental behaviour of asphalt mixtures. Uniaxial tension–compression cyclic and monotonic tensile tests on notched specimens are carried out for three capsule contents commonly adopted in experimental investigations (0.30, 0.75, and 1.25 wt.%). The results show that the effect on the stiffness modulus progressively increases as the capsule content grows in the asphalt mixture, with a reduction ranging from 4.3% to 12.3%. At the same time, the phase angle is marginally affected. The capsule continuum equivalent Young’s modulus has minimum influence on the overall rheological response, suggesting that the most critical parameter affecting asphalt mixture stiffness is the capsule content. Finally, while the peak tensile strength shows a maximum reduction of 12.4% at the highest capsule content, the stress–strain behaviour and damage evolution of the specimens remain largely unaffected. Most damaged contacts, which mainly include aggregate–mastic and mastic–mastic contacts, are highly localised around the notch tips. Contacts involving capsules remained intact during early and intermediate loading stages and only fractured during the final damage stage, suggesting a delayed activation consistent with the design of healing systems. The findings suggest that capsules within the studied contents may have a moderate impact on the mechanical properties of asphalt mixtures, especially for high-volume contents. For this reason, contents higher than 0.75 wt.% should be applied with caution. Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Figure 1

Back to TopTop