Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (292)

Search Parameters:
Keywords = tension sensor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5288 KB  
Article
Development of a Load Monitoring Sensor for the Wire Tightener
by Yuxiong Zhang, Qikun Yuan, Tao Shui, Gang Hu, Xuanlin Chen and Yan Shi
Electronics 2025, 14(18), 3716; https://doi.org/10.3390/electronics14183716 - 19 Sep 2025
Viewed by 291
Abstract
The wire tightener is a critical tool in the construction and maintenance of power lines. Failure to detect tension overload in a timely manner may lead to plastic deformation or even breakage of the tool, potentially causing serious safety accidents. To address this [...] Read more.
The wire tightener is a critical tool in the construction and maintenance of power lines. Failure to detect tension overload in a timely manner may lead to plastic deformation or even breakage of the tool, potentially causing serious safety accidents. To address this issue, a force monitoring sensor was developed to track the real-time load on wire tighteners. In terms of hardware design, a foil strain gauge was integrated with an ultra-low-power mixed-signal microcontroller based on the mechanical characteristics of the wire tightener, enabling accurate acquisition and processing of load data. Low-power LoRa technology was employed for wireless data transmission, and an adaptive sleep–wake strategy was implemented to optimize power efficiency during data collection. The sensor’s material, geometry, and structure were tailored to the tool’s composition and working environment. Experimental results showed that the average relative error between the sensor readings and the reference values was less than 0.5%. The sensor has been successfully deployed in practical engineering applications, consuming approximately 4500 mWh over an 8 h continuous monitoring period. Full article
Show Figures

Figure 1

17 pages, 4339 KB  
Article
Research on Cantilever Beam Roller Tension Sensor Based on Surface Acoustic Wave
by Yang Feng, Bingkun Zhang, Yang Chen, Ben Wang, Hua Xia, Haoda Yu, Xulehan Yu and Pengfei Yang
Micromachines 2025, 16(9), 1044; https://doi.org/10.3390/mi16091044 - 11 Sep 2025
Viewed by 381
Abstract
This paper presents a design method for a continuous tension detection sensor based on a cantilever beam structure and compensates for the temperature drift of a SAW sensor based on a neural network algorithm. Firstly, a novel cantilever beam roller structure is proposed [...] Read more.
This paper presents a design method for a continuous tension detection sensor based on a cantilever beam structure and compensates for the temperature drift of a SAW sensor based on a neural network algorithm. Firstly, a novel cantilever beam roller structure is proposed to significantly enhance the sensitivity of the transmission of silk thread tension to a SAW tension sensor. Secondly, to improve the sensitivity of the SAW tension sensor, the COMSOL finite element method (FEM) is employed for simulation to determine the optimal IDT placement. An unbalanced split IDT design is utilized to suppress potential parasitic responses. Finally, the designed sensor is tested, and a GA-PSO-BP algorithm is employed to fit the test data for temperature compensation. The experimental results demonstrate that the temperature sensitivity coefficient of the data optimized by the GA-PSO-BP algorithm is reduced by an order of magnitude compared to the raw data, with reductions of 6.0409×103 °C1 and 3.0312×103 °C1 compared to the BP neural network and the PSO-BP algorithm, respectively. The average output error of the optimized data is reduced by 5.748% compared to the sensor measurement data, and it is also lower than both the BP neural network and the PSO-BP algorithm. It provides new design ideas for the development of tension sensors. Full article
(This article belongs to the Special Issue Surface and Bulk Acoustic Wave Devices, 2nd Edition)
Show Figures

Figure 1

8 pages, 852 KB  
Proceeding Paper
Method for Measuring Soil Density by Assessing the Surface Tension in the Plough Stem
by Asparuh Atanasov and Aleksandrina Bankova
Eng. Proc. 2025, 104(1), 67; https://doi.org/10.3390/engproc2025104067 - 1 Sep 2025
Viewed by 740
Abstract
Introduced in the present study is a novel method for measuring soil density during standard tillage operations. The methodology involves the use of a strain gauge to measure the surface tensions of the plough body stem, reflecting the resistance force in the soil, [...] Read more.
Introduced in the present study is a novel method for measuring soil density during standard tillage operations. The methodology involves the use of a strain gauge to measure the surface tensions of the plough body stem, reflecting the resistance force in the soil, through which the calculation of the density becomes feasible. The sensor is conveniently mounted above the contact area with the soil, allowing for easy replacement as required. Due to the small forces of surface deformation in the metal, a weight sensor with a capacity of 300 grams is used. The measurement process is continuous, and all plough bodies can be equipped with sensors. The results obtained demonstrate a high level of accuracy, with a Multiple R = 0.95 and R Square = 0.90 compared to tests conducted with a standard penetrometer, confirming the effectiveness and appropriateness of the proposed method. Full article
Show Figures

Figure 1

23 pages, 17970 KB  
Article
Strain Monitoring and Numerical Simulation Analysis of Nuclear Containment Structure During Containment Tests
by Xunqiang Yin, Weilong Yang, Junkai Zhang, Min Zhao and Jianbo Li
Sensors 2025, 25(16), 5197; https://doi.org/10.3390/s25165197 - 21 Aug 2025
Viewed by 606
Abstract
Strain monitoring during the service life of a nuclear containment structure is an effective means to evaluate whether the structure is operating safely. Due to the failure of embedded strain sensors, surface-mounted strain sensors should be installed on the outer wall of the [...] Read more.
Strain monitoring during the service life of a nuclear containment structure is an effective means to evaluate whether the structure is operating safely. Due to the failure of embedded strain sensors, surface-mounted strain sensors should be installed on the outer wall of the structure. However, whether the data from these substitute sensors can reasonably reflect the internal deformation behavior requires further investigation. To ensure the feasibility of the added strain sensors, a refined 3D model of a Chinese Pressurized Reactor (CPR1000) nuclear containment structure was developed in ANSYS 19.1 to study the internal and external deformation laws during a containment test (CTT). Solid reinforcement and cooling methods were employed to simulate prestressed cables and pre-tension application. The influence of ordinary steel bars in concrete was modeled using the smeared model, while interactions between the steel liner and concrete were simulated through coupled nodes. The model’s validity was verified against embedded strain sensor data recorded during a CTT. Furthermore, concrete and prestressed material parameters were refined through a sensitivity analysis. Finally, the variation law between the internal and external deformation of the containment structure was investigated under typical CTT loading conditions. Strain values in the wall thickness direction exhibited an essentially linear relationship. Near the equipment hatch, however, the strain distribution pattern was significantly influenced by the spatial arrangement of prestressed cables. Refined FEM and sensor systems are vital containment monitoring tools. Critically, surface-mounted strain sensors offer a feasible approach for inferring internal stress states and deformation behavior. This study provides theoretical support and a technical foundation for the safe assessment and maintenance of nuclear containment structures during operational service. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

12 pages, 1638 KB  
Article
Validity and Reliability of an Inertial Measurement Sensor for Measuring Elastic Force and Time Under Tension in Shoulder Abduction and Knee Extension
by Jesus Aguiló-Furio, Borja Tronchoni-Crespo, Noemí Moreno-Segura, Francisco José Martín-San Agustín and Rodrigo Martín-San Agustín
Appl. Sci. 2025, 15(16), 8846; https://doi.org/10.3390/app15168846 - 11 Aug 2025
Viewed by 405
Abstract
(1) Background: Several tools have been proposed to measure elastic band tension and time under tension (TUT) during elastic band exercise performance. However, current methods are often indirect, non-objective, or expensive. The Elastic Force Evaluation Bracelet (EFEB) is a simple, wearable system designed [...] Read more.
(1) Background: Several tools have been proposed to measure elastic band tension and time under tension (TUT) during elastic band exercise performance. However, current methods are often indirect, non-objective, or expensive. The Elastic Force Evaluation Bracelet (EFEB) is a simple, wearable system designed to estimate both variables. Therefore, the aim of this study was to evaluate the concurrent validity and test–retest reliability of the EFEB as a portable measurement device for application in a therapeutic exercise context. (2) Methods: Thirty-five healthy volunteers were recruited. Exercises with elastic bands were performed on the dominant upper and lower limbs in two sessions with a one-week interval between them, and peak elastic force values were obtained. Validity was assessed in the first session by comparing the force values obtained simultaneously using a force gauge, and the TUT compared to a linear encoder. Test–retest reliability was examined by comparing the measurements obtained between the two sessions. (3) Results: EFEB showed excellent correlation with the force gauge for elastic force (r = 0.883 for shoulder abduction and r = 0.981 for knee extension) and with the linear encoder for TUTs (r = 0.873 and r = 0.883, respectively). EFEB showed good levels of reliability for all four of the following parameters measured: elastic force for shoulder abduction and knee extension (ICC = 0.880 and 0.855, respectively), and TUT in both movements (ICC = 0.768 and 0.765, respectively). (4) Conclusions: In conclusion, EFEB is a valid and reliable device for the measurement of TUT during shoulder abduction and knee extension exercises performed with elastic bands. Full article
(This article belongs to the Special Issue Advances in Sports Science and Biomechanics)
Show Figures

Figure 1

24 pages, 14429 KB  
Article
Full-Field Dynamic Parameters and Tension Identification of Stayed Cables Using a Novel Holographic Vision-Based Method
by Shuai Shao, Gang Liu, Zhongru Yu, Dongzhe Ren, Guojun Deng and Zhixiang Zhou
Sensors 2025, 25(16), 4891; https://doi.org/10.3390/s25164891 - 8 Aug 2025
Viewed by 367
Abstract
Due to the slender geometry and low-amplitude vibrations of stayed cables, existing vision-based methods often fail to accurately identify their full-field dynamic parameters, especially the higher-order modes. This paper proposes a novel holographic vision-based method to accurately identify the high-order full-field dynamic parameters [...] Read more.
Due to the slender geometry and low-amplitude vibrations of stayed cables, existing vision-based methods often fail to accurately identify their full-field dynamic parameters, especially the higher-order modes. This paper proposes a novel holographic vision-based method to accurately identify the high-order full-field dynamic parameters and estimate the tension of the stayed cables. Particularly, a full-field optical flow tracking algorithm is proposed to obtain the full-field dynamic displacement information of the stayed cable by tracking the changes in the optical flow field of the continuous motion signal spectral components of holographic feature points. Frequency-domain analysis is applied to extract the natural frequencies and damping ratios, and the vibration frequency method is used to estimate the tension. Additionally, an Eulerian-based amplification algorithm—holographic feature point video magnification (HFPVM)—is proposed for enhancing weak visual motion signals of the stayed cables, so that the morphological motion information of the stayed cables can be visualized. The effectiveness of the proposed method has been validated through experiments on the stayed cable models. Compared with the results obtained using contact sensors, the proposed holographic vision-based method can accurately identify the first five natural frequencies with overall errors below 5% and a maximum deviation of 6.86% in cable tension estimation. The first three normalized holographic mode shapes and dynamic displacement vectors are successfully identified, with the MAC value reaching up to 99.51%. This entirely non-contact vision-based method offers a convenient and low-cost approach for cable tension estimation, and this is also the first study to propose a comprehensive, visual, and quantifiable strategy for periodic or long-term monitoring of cable-supported structures, highlighting its strong potential in practical applications. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

17 pages, 2744 KB  
Article
Experimental Crack Width Quantification in Reinforced Concrete Using Ultrasound and Coda Wave Interferometry
by Noah Sträter, Felix Clauß, Mark Alexander Ahrens and Peter Mark
Materials 2025, 18(15), 3684; https://doi.org/10.3390/ma18153684 - 6 Aug 2025
Viewed by 542
Abstract
For the first time, comprehensive investigations into the tensile load-bearing behavior and crack formation of reinforced concrete based on ultrasound are presented. Uniaxial tensile tests are performed on reinforced concrete tension members equipped with embedded ultrasonic transducers. Key mechanical parameters across all ranges [...] Read more.
For the first time, comprehensive investigations into the tensile load-bearing behavior and crack formation of reinforced concrete based on ultrasound are presented. Uniaxial tensile tests are performed on reinforced concrete tension members equipped with embedded ultrasonic transducers. Key mechanical parameters across all ranges of tensile behavior are continuously quantified by recording ultrasonic signals and evaluated with coda wave interferometry. The investigations include member configurations of different lengths to cover different numbers of cracks. For reference, crack patterns and crack widths are analyzed using digital image correlation, while the strain in the reinforcement is monitored with distributed fiber optic sensors. For the first time, a direct proportional relationship between the relative velocity change in ultrasonic signals and crack widths is established in the ranges of crack formation and stabilized cracking. In the non-cracked state, linear correlations are found between the velocity change and the average strain, as well as the length of the specimens. The experimental results significantly enhance the general understanding of the phenomena related to ultrasonic signals in flexural reinforced concrete members, particularly concerning cracking in the tensile zone. Consequently, this study contributes to the broader objective of employing coda wave interferometry to evaluate the condition of infrastructure. Full article
Show Figures

Figure 1

18 pages, 1941 KB  
Article
Design of Virtual Sensors for a Pyramidal Weathervaning Floating Wind Turbine
by Hector del Pozo Gonzalez, Magnus Daniel Kallinger, Tolga Yalcin, José Ignacio Rapha and Jose Luis Domínguez-García
J. Mar. Sci. Eng. 2025, 13(8), 1411; https://doi.org/10.3390/jmse13081411 - 24 Jul 2025
Viewed by 463
Abstract
This study explores virtual sensing techniques for the Eolink floating offshore wind turbine (FOWT), which features a pyramidal platform and a single-point mooring system that enables weathervaning to maximize power production and reduce structural loads. To address the challenges and costs associated with [...] Read more.
This study explores virtual sensing techniques for the Eolink floating offshore wind turbine (FOWT), which features a pyramidal platform and a single-point mooring system that enables weathervaning to maximize power production and reduce structural loads. To address the challenges and costs associated with monitoring submerged components, virtual sensors are investigated as an alternative to physical instrumentation. The main objective is to design a virtual sensor of mooring hawser loads using a reduced set of input features from GPS, anemometer, and inertial measurement unit (IMU) data. A virtual sensor is also proposed to estimate the bending moment at the joint of the pyramid masts. The FOWT is modeled in OrcaFlex, and a range of load cases is simulated for training and testing. Under defined sensor sampling conditions, both supervised and physics-informed machine learning algorithms are evaluated. The models are tested under aligned and misaligned environmental conditions, as well as across operating regimes below- and above-rated conditions. Results show that mooring tensions can be estimated with high accuracy, while bending moment predictions also perform well, though with lower precision. These findings support the use of virtual sensing to reduce instrumentation requirements in critical areas of the floating wind platform. Full article
Show Figures

Figure 1

18 pages, 4910 KB  
Article
Experiment and Numerical Study on the Flexural Behavior of a 30 m Pre-Tensioned Concrete T-Beam with Polygonal Tendons
by Bo Yang, Chunlei Zhang, Hai Yan, Ding-Hao Yu, Yaohui Xue, Gang Li, Mingguang Wei, Jinglin Tao and Huiteng Pei
Buildings 2025, 15(15), 2595; https://doi.org/10.3390/buildings15152595 - 22 Jul 2025
Viewed by 586
Abstract
As a novel prefabricated structural element, the pre-tensioned, prestressed concrete T-beam with polygonal tendons layout demonstrates advantages including reduced prestress loss, streamlined construction procedures, and stable manufacturing quality, showing promising applications in medium-span bridge engineering. This paper conducted a full-scale experiment and numerical [...] Read more.
As a novel prefabricated structural element, the pre-tensioned, prestressed concrete T-beam with polygonal tendons layout demonstrates advantages including reduced prestress loss, streamlined construction procedures, and stable manufacturing quality, showing promising applications in medium-span bridge engineering. This paper conducted a full-scale experiment and numerical simulation research on a 30 m pre-tensioned, prestressed concrete T-beam with polygonal tendons practically used in engineering. The full-scale experiment applied symmetrical four-point bending to create a pure bending region and used embedded strain gauges, surface sensors, and optical 3D motion capture systems to monitor the beam’s internal strain, surface strain distribution, and three-dimensional displacement patterns during loading. The experiment observed that the test beam underwent elastic, crack development, and failure phases. The design’s service-load bending moment induced a deflection of 18.67 mm (below the 47.13 mm limit). Visible cracking initiated under a bending moment of 7916.85 kN·m, which exceeded the theoretical cracking moment of 5928.81 kN·m calculated from the design parameters. Upon yielding of the bottom steel reinforcement, the maximum of the crack width reached 1.00 mm, the deflection in mid-span measured 148.61 mm, and the residual deflection after unloading was 10.68 mm. These results confirmed that the beam satisfied design code requirements for serviceability stiffness and crack control, exhibiting favorable elastic recovery characteristics. Numerical simulations using ABAQUS further verified the structural performance of the T-beam. The finite element model accurately captured the beam’s mechanical response and verified its satisfactory ductility, highlighting the applicability of this beam type in bridge engineering. Full article
(This article belongs to the Special Issue Structural Vibration Analysis and Control in Civil Engineering)
Show Figures

Figure 1

25 pages, 5687 KB  
Article
Using an Equine Cadaver Head to Investigate Associations Between Sub-Noseband Space, Noseband Tension, and Sub-Noseband Pressure at Three Locations
by Orla Doherty, Richard Conway and Paul McGreevy
Animals 2025, 15(14), 2141; https://doi.org/10.3390/ani15142141 - 19 Jul 2025
Viewed by 622
Abstract
Pressures applied to horses via nosebands are of growing concern. The current study applied noseband pressure to the head of a dead horse. Pressure sensors were placed on the left nasal bone to record pressures as the noseband was progressively tightened. Tightness increased [...] Read more.
Pressures applied to horses via nosebands are of growing concern. The current study applied noseband pressure to the head of a dead horse. Pressure sensors were placed on the left nasal bone to record pressures as the noseband was progressively tightened. Tightness increased as predicated by holes in the strap of the noseband (as supplied) through eight steps from two fingers’ space, assessed using the standard International Society for Equitation Science Taper Gauge through to zero space. Sensors were also placed at the midline frontal plane and intra-orally at the level of the second premolar tooth. A strain gauge integrated into the noseband recorded tensions within the noseband at each tightness level, and a digital taper gauge under the noseband recorded forces on the face. Pressures at the left nasal bone rose to 403 kPa, while those at the frontal nasal plane reached 185 kPa. Pressures rose rapidly once the noseband was tightened at the equivalent of 1.4 fingers’ space under the noseband. These findings may help to explain cases of bone and skin damage at the noseband location and indicate the need to ensure that nosebands can accommodate more than the equivalent of 1.4 fingers beneath them in the nasal midline. Given that pressures are expected to rise from those reported here when horses wear bits, locomote, and when the reins are under tension, we conclude that the traditional provision of two fingers’ space should be retained. Full article
(This article belongs to the Section Animal Welfare)
Show Figures

Figure 1

19 pages, 40657 KB  
Article
Development and Analysis of a Sustainable Interlayer Hybrid Unidirectional Laminate Reinforced with Glass and Flax Fibres
by York Schwieger, Usama Qayyum and Giovanni Pietro Terrasi
Polymers 2025, 17(14), 1953; https://doi.org/10.3390/polym17141953 - 16 Jul 2025
Viewed by 400
Abstract
In this study, a new fibre combination for an interlayer hybrid fibre-reinforced polymer laminate was investigated to achieve pseudo-ductile behaviour in tensile tests. The chosen high-strain fibre for this purpose was S-Glass, and the low-strain fibre was flax. These materials were chosen because [...] Read more.
In this study, a new fibre combination for an interlayer hybrid fibre-reinforced polymer laminate was investigated to achieve pseudo-ductile behaviour in tensile tests. The chosen high-strain fibre for this purpose was S-Glass, and the low-strain fibre was flax. These materials were chosen because of their relatively low environmental impact compared to carbon/carbon and carbon/glass hybrids. An analytical model was used to find an ideal combination of the two materials. With that model, the expected stress–strain relation could also be predicted analytically. The modelling was based on preliminary tensile tests of the two basic components investigated in this research: unidirectional laminates reinforced with either flax fibres or S-Glass fibres. Hybrid specimens were then designed, produced in a heat-assisted pressing process, and subjected to tensile tests. The strain measurement was performed using distributed fibre optic sensing. Ultimately, it was possible to obtain repeatable pseudo-ductile stress–strain behaviour with the chosen hybrid when the specimens were subjected to quasi-static uniaxial tension in the direction of the fibres. The intended damage-mode, consisting of a controlled delamination at the flax-fibre/glass-fibre interface after the flax fibres failed, followed by a load transfer to the glass fibre layers, was successfully achieved. The pseudo-ductile strain averaged 0.52% with a standard deviation of 0.09%, and the average load reserve after delamination was 145.5 MPa with a standard deviation of 48.5 MPa. The integrated fibre optic sensors allowed us to monitor and verify the damage process with increasing strain and load. Finally, the analytical model was compared to the measurements and was partially modified by neglecting the Weibull strength distribution of the high-strain material. Full article
Show Figures

Figure 1

22 pages, 4828 KB  
Article
High-Fidelity Interactive Motorcycle Driving Simulator with Motion Platform Equipped with Tension Sensors
by Josef Svoboda, Přemysl Toman, Petr Bouchner, Stanislav Novotný and Vojtěch Thums
Sensors 2025, 25(13), 4237; https://doi.org/10.3390/s25134237 - 7 Jul 2025
Viewed by 862
Abstract
The paper presents the innovative approach to a high-fidelity motorcycle riding simulator based on VR (Virtual Reality)-visualization, equipped with a Gough-Stewart 6-DOF (Degrees of Freedom) motion platform. Such a solution integrates a real-time tension sensor system as a source for highly realistic motion [...] Read more.
The paper presents the innovative approach to a high-fidelity motorcycle riding simulator based on VR (Virtual Reality)-visualization, equipped with a Gough-Stewart 6-DOF (Degrees of Freedom) motion platform. Such a solution integrates a real-time tension sensor system as a source for highly realistic motion cueing control as well as the servomotor integrated into the steering system. Tension forces are measured at four points on the mock-up chassis, allowing a comprehensive analysis of rider interaction during various maneuvers. The simulator is developed to simulate realistic riding scenarios with immersive motion and visual feedback, enhanced with the simulation of external influences—headwind. This paper presents results of a validation study—pilot experiments conducted to evaluate selected riding scenarios and validate the innovative simulator setup, focusing on force distribution and system responsiveness to support further research in motorcycle HMI (Human–Machine Interaction), rider behavior, and training. Full article
Show Figures

Figure 1

29 pages, 4333 KB  
Article
A Distributed Sensing- and Supervised Deep Learning-Based Novel Approach for Long-Term Structural Health Assessment of Reinforced Concrete Beams
by Minol Jayawickrema, Madhubhashitha Herath, Nandita Hettiarachchi, Harsha Sooriyaarachchi, Sourish Banerjee, Jayantha Epaarachchi and B. Gangadhara Prusty
Metrology 2025, 5(3), 40; https://doi.org/10.3390/metrology5030040 - 3 Jul 2025
Viewed by 523
Abstract
Access to significant amounts of data is typically required to develop structural health monitoring (SHM) systems. In this study, a novel SHM approach was evaluated, with all training data collected solely from a validated finite element analysis (FEA) of a reinforced concrete (RC) [...] Read more.
Access to significant amounts of data is typically required to develop structural health monitoring (SHM) systems. In this study, a novel SHM approach was evaluated, with all training data collected solely from a validated finite element analysis (FEA) of a reinforced concrete (RC) beam and the structural health based on the tension side of a rebar under flexural loading. The developed SHM system was verified by four-point bending experiments on three RC beams cast in the dimensions of 4000 mm × 200 mm × 400 mm. Distributed optical fibre sensors (DOFS) were mounted on the concrete surface and on the bottom rebar to maximise sample points and investigate the reliability of the strain data. The FEA model was validated using a single beam and subsequently used to generate labelled SHM strain data by altering the dilation angle and rebar sizes. The generated strain data were then used to train an artificial neural network (ANN) classifier using deep learning (DL). Training and validation accuracy greater than 98.75% were recorded, and the model was trained to predict the tension state up to 90% of the steel yield limit. The developed model predicts the health condition with the input of strain data acquired from the concrete surface of reinforced concrete beams under various loading regimes. The model predictions were accurate for the experimental DOFS data acquired from the tested beams. Full article
Show Figures

Graphical abstract

24 pages, 11394 KB  
Article
A Comprehensive Experimental, Simulation, and Characterization Mechanical Analysis of Ecoflex and Its Formulation Under Uniaxial Testing
by Ranjith Janardhana, Fazli Akram, Zeynel Guler, Akanksha Adaval and Nathan Jackson
Materials 2025, 18(13), 3037; https://doi.org/10.3390/ma18133037 - 26 Jun 2025
Viewed by 1029
Abstract
The current study focuses on the manufacturing and characterization of various forms of Ecoflex and their composites to improve the mechanical properties and surface texture, specifically for use in wearable sensors and electronic skin applications. Various types of Ecoflex elastomers were mixed to [...] Read more.
The current study focuses on the manufacturing and characterization of various forms of Ecoflex and their composites to improve the mechanical properties and surface texture, specifically for use in wearable sensors and electronic skin applications. Various types of Ecoflex elastomers were mixed to form blended composite materials, which could be used to tune the mechanical properties. Experimental and simulation methods were conducted to understand the mechanical behavior and material properties of the manufactured samples under large deformation (1200% strain) by various dynamic loading conditions. Further, the surface conditions of specimens were analyzed and evaluated using scanning electron microscopy and contact angle goniometer. The Yeoh model reasonably predicts the viscoelastic and hysteresis behavior of Ecoflex and its composites in accordance with the experimental data for small and large strain. The surface smoothness and moisture-resistant properties of the material surface were enhanced up to a contact angle of 127° (maximum) by adding x = 15 wt% of surface tension diffusers, with a slight compromise in stretchability. This comprehensive investigation and database of Ecoflex–Ecoflex composite can guide and help researchers in selecting and applying the most appropriate Ecoflex/blended solutions for a specific application, while providing insight into the mechanics of materials of blended materials. Full article
Show Figures

Figure 1

23 pages, 4580 KB  
Article
Integrated Cascade Control and Gaussian Process Regression–Based Fault Detection for Roll-to-Roll Textile Systems
by Ahmed Neaz, Eun Ha Lee, Mitul Asif Noman, Kwanghyun Cho and Kanghyun Nam
Machines 2025, 13(7), 548; https://doi.org/10.3390/machines13070548 - 24 Jun 2025
Viewed by 508
Abstract
Roll-to-roll (R2R) manufacturing processes demand precise control of web or yarn velocity and tension, alongside robust mechanisms for handling system failures. This paper presents an integrated approach combining high-performance control with reliable fault detection for an experimental R2R system. A model-based cascade control [...] Read more.
Roll-to-roll (R2R) manufacturing processes demand precise control of web or yarn velocity and tension, alongside robust mechanisms for handling system failures. This paper presents an integrated approach combining high-performance control with reliable fault detection for an experimental R2R system. A model-based cascade control strategy is designed, incorporating system identification, radius compensation for varying roll diameters, and a Kalman filter to mitigate load sensor noise, ensuring accurate regulation of yarn velocity and tension under normal operating conditions. In parallel, a data-driven fault detection layer uses Gaussian Process Regression (GPR) models, trained offline on healthy operating data, to predict yarn tension and motor speeds. During operation, discrepancies between measured and GPR-predicted values that exceed predefined thresholds trigger an immediate shutdown of the system, preventing material loss and equipment damage. Experimental trials demonstrate tension regulation within ±0.02 N and velocity errors below ±5 rad/s across varying roll diameters, while yarn-break and motor-fault scenarios are detected within a single sampling interval (<100 milliseconds) with zero false alarms. This study validates the integrated system’s capability to enhance both the operational precision and resilience of R2R processes against critical failures. Full article
Show Figures

Figure 1

Back to TopTop