Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (361)

Search Parameters:
Keywords = thermal phase shifting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1656 KB  
Article
Investigation into the Multiphase Product Distribution and Evolution During Biomass Pyrolysis Using Wheat Straw and Pine Sawdust
by Jishuo Li, Kaili Xu, Xiwen Yao and Xingyu Luo
Energies 2025, 18(20), 5397; https://doi.org/10.3390/en18205397 (registering DOI) - 13 Oct 2025
Abstract
Understanding the formation mechanisms of three-phase products during biomass pyrolysis is essential for optimizing thermochemical conversion and enhancing the efficient utilization of renewable resources. In this study, wheat straw (WS) and pine sawdust (PS) were selected as representative feedstocks to investigate the thermal [...] Read more.
Understanding the formation mechanisms of three-phase products during biomass pyrolysis is essential for optimizing thermochemical conversion and enhancing the efficient utilization of renewable resources. In this study, wheat straw (WS) and pine sawdust (PS) were selected as representative feedstocks to investigate the thermal decomposition behavior and evolution characteristics of gas, liquid (tar), and solid (char) products during pyrolysis. Thermogravimetric analysis and kinetic modeling revealed that PS exhibited higher activation energy (75.44 kJ/mol) than WS (65.63 kJ/mol), indicating greater thermal resistance. Tar yield increased initially and then declined with temperature, peaking at 700 °C (37.79% for PS and 32.82% for WS), while the composition shifted from oxygenated compounds to polycyclic aromatic hydrocarbons as temperature rose. FTIR analysis demonstrated that most functional group transformations in char occurred below 400 °C, with aromatic structures forming above 300 °C and stabilizing beyond 700 °C. Gas product evolution showed that WS produced higher CO and H2 yields due to its composition, with CH4 generated in relatively lower amounts. These findings provide insights into biomass pyrolysis mechanisms and offer a theoretical basis for targeted regulation of product distributions in bioenergy applications. Full article
12 pages, 3068 KB  
Article
Research on the Synthesis and Conductivity of Titanium Oxycarbide
by Shaolong Li, Fan Yang, Peizhu Mao, Tianzhu Mu, Fuxing Zhu and Shengwei Li
Materials 2025, 18(19), 4621; https://doi.org/10.3390/ma18194621 (registering DOI) - 6 Oct 2025
Viewed by 265
Abstract
In this study, TiCxOy was produced by sintering in an argon atmosphere using carbon–thermal reduction with TiO2 and graphite powder as the initial materials. The sintered TiCxOy was analyzed using X-ray diffraction, scanning electron microscopy, and [...] Read more.
In this study, TiCxOy was produced by sintering in an argon atmosphere using carbon–thermal reduction with TiO2 and graphite powder as the initial materials. The sintered TiCxOy was analyzed using X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. As the oxygen content increased, the grain color of the sintered TiCxOy gradually shifted from gray to reddish-brown. The structure of TiCxOy resembles that of a coral, with a uniform distribution of Ti, C, and O throughout the sample. Analysis using X-ray photoelectron spectroscopy reveals the presence of bivalent, trivalent, and tetravalent titanium. Utilizing General Structure Analysis System software (GSAS-II), the X-ray Diffraction data obtained were refined, revealing a gradual decrease in lattice parameters as the oxygen atom content increased. Furthermore, the conductivity and density of the single phase, determined through the four-probe method and the Archimedes method, respectively, exhibited an increase in tandem with the rise in C content. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

20 pages, 7171 KB  
Article
Research on a Phase-Shift-Based Discontinuous PWM Method for 24V Onboard Thermally Limited Micro Voltage Source Inverters
by Shuo Wang and Chenyang Xia
Micromachines 2025, 16(10), 1128; https://doi.org/10.3390/mi16101128 - 30 Sep 2025
Viewed by 277
Abstract
This research explores a phase-shift-based discontinuous PWM method used for 24 V battery-powered onboard micro inverters, which are critical for thermally limited applications like micromachines, where efficient heat dissipation and compact size are paramount. Discontinuous pulse width modulation (DPWM) reduces switching losses by [...] Read more.
This research explores a phase-shift-based discontinuous PWM method used for 24 V battery-powered onboard micro inverters, which are critical for thermally limited applications like micromachines, where efficient heat dissipation and compact size are paramount. Discontinuous pulse width modulation (DPWM) reduces switching losses by clamping the phase voltage to the DC bus in order to improve inverter efficiency. Due to the change in power factor at different operating points from motors or the inductor load, the use of only one DPWM method cannot achieve the optimal efficiency of a three-phase voltage source inverter (3ph-VSI). This paper proposes a generalized DPWM method with a continuously adjustable phase shift angle, which extends the six traditional DPWM methods to any type. According to different power factors, the proposed DPWM method is divided into five power factor angle intervals, namely [−90°, −60°], [−60°, −30°], [−30°, 30°], [30°, 60°], and [60°, 90°], and automatically adjusts the phase shift angle to the optimal-efficiency DPWM mode. The power factor is calculated by means of the Synchronous Reference Frame Phase-Locked Loop (SRF-PLL) method. The switching losses and harmonic characteristics of the proposed DPWM are analyzed, and finally, a 24 V onboard 3ph-VSI experimental platform is built. The experimental results show that the efficiency of DPWM methods can be improved by 3–6% and the switching loss can be reduced by 40–50% under different power factors. At the same time, the dynamic performance of the proposed algorithm with a transition state is verified. This method is particularly suitable for miniaturized inverters where efficiency and thermal management are critical. Full article
Show Figures

Figure 1

19 pages, 1850 KB  
Article
Investigating the Frost Cracking Mechanisms of Water-Saturated Fissured Rock Slopes Based on a Meshless Model
by Chunhui Guo, Feixiang Zeng, Han Shao, Wenbing Zhang, Bufan Zhang, Wei Li and Shuyang Yu
Water 2025, 17(19), 2858; https://doi.org/10.3390/w17192858 - 30 Sep 2025
Viewed by 194
Abstract
In global cold regions and seasonal frozen soil areas, frost heave failure of rock slopes severely endangers infrastructure safety, particularly along China’s Sichuan–Tibet and Qinghai–Tibet Railways. To address this, a meshless numerical model based on the smoothed particle hydrodynamics (SPH) method was developed [...] Read more.
In global cold regions and seasonal frozen soil areas, frost heave failure of rock slopes severely endangers infrastructure safety, particularly along China’s Sichuan–Tibet and Qinghai–Tibet Railways. To address this, a meshless numerical model based on the smoothed particle hydrodynamics (SPH) method was developed to simulate progressive frost heave and fracture of water-saturated fissured rock masses—its novelty lies in avoiding grid distortion and artificial crack path assumptions of FEM as well as complex parameter calibration of DEM by integrating the maximum tensile stress criterion (with a binary fracture marker for particle failure), thermodynamic phase change theory (classifying fissure water into water, ice-water mixed, and ice particles), and the equivalent thermal expansion coefficient method to quantify frost heave force. Systematic simulations of fissure parameters (inclination angle, length, number, and row number) revealed that these factors significantly shape failure modes: longer fissures and more rows shift failure from strip-like to tree-like/network-like, more fissures accelerate crack coalescence, and larger inclination angles converge stress to fissure tips. This study clarifies key mechanisms and provides a theoretical/numerical reference for cold region rock slope stability control. Full article
Show Figures

Figure 1

19 pages, 2545 KB  
Article
Synthesis and Biological Evaluation of Marine-Inspired Benzothiazole Derivatives as Retinoid X Receptor-α Antagonists with Anti-Cancer Activities
by Yingting Lin, Ming Peng, Renjing Yang, Guanghui Wang, Junjie Chen, Rong Ding, Cuiling Sun, Wenjing Tian and Haifeng Chen
Mar. Drugs 2025, 23(9), 368; https://doi.org/10.3390/md23090368 - 21 Sep 2025
Viewed by 483
Abstract
Retinoid X receptor α (RXRα) plays a vital role in multiple biological and pathological processes and represents a promising therapeutic target for anti-tumor drug design. Inspired by the marine-derived RXRα antagonist meroterpenthiazole A, 21 undescribed benzothiazole derivatives were designed and synthesized. The inhibitory [...] Read more.
Retinoid X receptor α (RXRα) plays a vital role in multiple biological and pathological processes and represents a promising therapeutic target for anti-tumor drug design. Inspired by the marine-derived RXRα antagonist meroterpenthiazole A, 21 undescribed benzothiazole derivatives were designed and synthesized. The inhibitory effects of 21 derivatives on RXRα transactivation and their anti-tumor activities against MDA-MB-231 cells were evaluated. Compounds 4a4h, 6a6b, 7c7f, and 7h7i inhibited 9-cis-retinoic acid-induced RXRα transactivation, while compounds 3b, 4f4h, 7a, 7c, 7f, and 7h7i exhibited inhibitory effects on the proliferation of MDA-MB-231 cells. Meanwhile, the structure–activity relationships governing both the RXRα antagonist effects and the anti-proliferative activities against MDA-MB-231 cells were discussed. Compound 7i exhibited the most potent inhibitory effects on the proliferation of MDA-MB-231 cells with an IC50 value of 16.5 μM. Further mechanism studies revealed that compound 7i induced G2/M phase arrest in MDA-MB-231 cells, accompanied by dose-dependent downregulation of Cyclin B1 and CDK1 protein expression. However, these effects were abolished in RXRα-knockout MDA-MB-231 cells, indicating that the anti-proliferative and cell cycle arrest activities of 7i were RXRα-dependent. Cellular Thermal Shift Assay (CETSA) and molecular docking studies further confirmed that 7i directly bound to RXRα, thereby mediating its anti-cancer efficacy. Full article
(This article belongs to the Section Synthesis and Medicinal Chemistry of Marine Natural Products)
Show Figures

Figure 1

11 pages, 10408 KB  
Communication
Leaving Glauber’s Salt Island: The Road to Stabilisation
by Poppy O’Neill, Anastasia Stamatiou and Ludger Fischer
Colloids Interfaces 2025, 9(5), 60; https://doi.org/10.3390/colloids9050060 - 9 Sep 2025
Viewed by 501
Abstract
Glauber’s salt is a promising phase change material for thermal energy storage due to its high latent heat capacity of 234 J/g and melting point of 34 °C, making it well-suited for low-temperature heating applications. However, its practical use has been limited by [...] Read more.
Glauber’s salt is a promising phase change material for thermal energy storage due to its high latent heat capacity of 234 J/g and melting point of 34 °C, making it well-suited for low-temperature heating applications. However, its practical use has been limited by phase separation and associated loss of performance during repeated thermal cycling. This study aimed to address this limitation through a novel stabilisation approach. The material was encapsulated within an emulsion matrix designed to physically constrain the salt and inhibit separation during melting and to form a phase change dispersion. The phase change dispersion was subjected to 100 controlled heating–cooling cycles whilst monitoring the latent heat capacity and phase transition plateaus. The phase change dispersion retained its thermal properties throughout testing, showing no measurable degradation in storage capacity nor shift in phase transition temperature. These results demonstrate that this encapsulation mechanism can effectively maintain the functional performance of Glauber’s salt under repeated thermal cycling. This approach may form the basis for more durable salt hydrate-based storage media and has potential relevance for applications in building heating, waste heat recovery and renewable energy integration. By improving stability, this method helps unlock the long-term operational viability of phase change materials. Full article
(This article belongs to the Special Issue Recent Advances on Emulsions and Applications: 3rd Edition)
Show Figures

Figure 1

24 pages, 9167 KB  
Article
Numerical Study: Substrate Thickness and Type of Roof Structure and Their Impact on the Thermal Behavior of Green Roofs
by Marek Chabada and Peter Juras
Buildings 2025, 15(17), 3240; https://doi.org/10.3390/buildings15173240 - 8 Sep 2025
Viewed by 375
Abstract
The aim of this article is to provide a parametric analysis of the thermal behavior of green roofs, focusing on the influence of the thickness of the vegetation substrate and the type of supporting structure. The simulation model is implemented on the roof [...] Read more.
The aim of this article is to provide a parametric analysis of the thermal behavior of green roofs, focusing on the influence of the thickness of the vegetation substrate and the type of supporting structure. The simulation model is implemented on the roof structure of an industrial hall in Dubnica nad Váhom, Slovakia, which was created and successfully validated based on real measurements of temperatures and climatic conditions during eight days in September 2023. After validating the model, a series of simulations of three structural variants was performed over three days in the summer. The results demonstrated that the greatest impact on reducing temperature fluctuations was achieved by increasing the thickness of the vegetation substrate (variant V2), which contributed to a reduction in heat flows fluctuations of up to 82% and caused a favorable phase shift in maximum temperatures. The introduction of a reinforced concrete supporting structure (variant V1) brought a partial improvement in the lower layers, while the combined variant (V3) demonstrated the best results—stabilization of temperatures and heat flows throughout the structure, eliminating overheating and cooling of the interior, and overall improvement in the thermal balance of the roof system. The results point to the high potential of green roofs in improving the thermal properties of buildings in summer conditions. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

24 pages, 5175 KB  
Review
Photoluminescence Enhancement in Perovskite Nanocrystals via Compositional, Ligand, and Surface Engineering
by Chae-Mi Lee, Eun-Hoo Jeong, Ho-Seong Kim, Seo-Yeon Choi and Min-Ho Park
Materials 2025, 18(17), 4195; https://doi.org/10.3390/ma18174195 - 7 Sep 2025
Cited by 1 | Viewed by 965
Abstract
Perovskite nanocrystals (PeNCs) have attracted considerable interest as promising materials for next-generation optoelectronic devices owing to their high photoluminescence quantum yield, narrow emission linewidths, simple composition tunability, and solution processability. However, the practical applicability of these NCs is limited by their compositional, thermal, [...] Read more.
Perovskite nanocrystals (PeNCs) have attracted considerable interest as promising materials for next-generation optoelectronic devices owing to their high photoluminescence quantum yield, narrow emission linewidths, simple composition tunability, and solution processability. However, the practical applicability of these NCs is limited by their compositional, thermal, and environmental instabilities, which compromise their long-term operational performance and reliability. Compositional instability arises from ion migration and phase segregation, leading to spectral shifts and unstable emission. Thermal degradation is driven by volatile organic cations and weak surface bonding, while environmental factors such as moisture, oxygen, and ultraviolet irradiation promote defect formation and material degradation. This review describes the recent advances in improving the photoluminescent stability of PeNCs through compositional engineering (A-/B-site substitution), ligand engineering (X-/L-type modulation), and surface passivation strategies. These approaches effectively suppress degradation pathways while maintaining or improving the optical properties of PeNCs. By performing a comparative analysis of these strategies, this review provides guidelines for the rational design of stable and efficient PeNCs for light-emitting applications. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

21 pages, 7053 KB  
Article
Seasonal Regime Shifts and Warming Trends in the Universal Thermal Climate Index over the Italian and Iberian Peninsulas (1940–2024)
by Gabriel I. Cotlier and Juan Carlos Jimenez
Climate 2025, 13(9), 184; https://doi.org/10.3390/cli13090184 - 6 Sep 2025
Viewed by 884
Abstract
This study investigates long-term changes in thermal comfort across the Italian and Iberian Peninsulas from 1940 to 2024, using the Universal Thermal Climate Index (UTCI) derived from ERA5-HEAT reanalysis. We apply a dual analytical framework combining structural break detection to identify regime shifts [...] Read more.
This study investigates long-term changes in thermal comfort across the Italian and Iberian Peninsulas from 1940 to 2024, using the Universal Thermal Climate Index (UTCI) derived from ERA5-HEAT reanalysis. We apply a dual analytical framework combining structural break detection to identify regime shifts and Sen’s slope estimation with confidence intervals to quantify monotonic trends. Results reveal pronounced seasonal asymmetries. Summer exhibits abrupt regime shifts in both regions: in 1980 for Italy (slope shifting from −0.039 °C/year before 1980 to +0.06 °C/year after) and 1978 for Iberia (from −0.054 °C/year to +0.050 °C/year). Winter, by contrast, shows no structural breaks but a persistent, spatially uniform warming trend of ~0.030–0.033 °C/year across the 1940–2024 period, consistent with a gradual erosion of cold stress. Transitional seasons display more nuanced responses. Spring reveals detectable breakpoints in 1987 for Italy (shifting from −0.028 °C/year to +0.027 °C/year) and 1986 for Iberia (from −0.047 °C/year to +0.024 °C/year), indicating the early acceleration of warming. Autumn shows a breakpoint in 1970 for Italy, with trends intensifying from +0.011 °C/year before to +0.052 °C/year after, while Iberia exhibits no clear breakpoint but a consistent positive slope. These findings highlight spring as an early-warning season, where warming acceleration first emerges, and autumn as a consolidating phase that extends summer-like heat into later months. Overall, the results demonstrate that Mediterranean thermal regimes evolve through both abrupt and gradual processes, with summer defined by non-linear regime shifts, winter by steady accumulation of warming, and spring and autumn by transitional dynamics that bridge these extremes. The methodological integration of breakpoint detection with Sen’s slope estimation provides a transferable framework for detecting climate regime transitions in other vulnerable regions under accelerated global warming. Full article
(This article belongs to the Special Issue The Importance of Long Climate Records (Second Edition))
Show Figures

Figure 1

10 pages, 2442 KB  
Article
Design and Measurements of an Electrothermal Filter Using CMOS Technology
by Mariusz Jankowski, Michał Szermer and Marcin Janicki
Electronics 2025, 14(17), 3355; https://doi.org/10.3390/electronics14173355 - 23 Aug 2025
Viewed by 421
Abstract
Electronic circuits and systems often require continuous monitoring of their temperature. For most sensors, voltage is the temperature-sensitive parameter; however, electrothermal filters are one of a few exceptions, for which signal frequency or phase is the measure of temperature. Such filters are an [...] Read more.
Electronic circuits and systems often require continuous monitoring of their temperature. For most sensors, voltage is the temperature-sensitive parameter; however, electrothermal filters are one of a few exceptions, for which signal frequency or phase is the measure of temperature. Such filters are an essential part of temperature sensors, based on the measurement of material thermal diffusivity, in which the input signal of the filter is a square wave. However, the phase shift introduced by the filter depends on the signal frequency. Thus, the authors decided to explore this dependence in more detail by measuring filter response to sinusoidal input signals. The investigations presented in this paper were carried out for an electrothermal filter designed and manufactured in an ASIC using 3 µm CMOS technology. The obtained measurement results confirmed the hypothesis that both the gain and the phase shift in the filter strongly depend on the input signal frequency. Accurate data on the thermal impedance of filters is crucial for the optimization of their performance. Full article
(This article belongs to the Special Issue Mixed Design of Integrated Circuits and Systems)
Show Figures

Figure 1

17 pages, 2728 KB  
Article
High-Pass Noise Suppression in the Mosquito Auditory System
by Dmitry N. Lapshin and Dmitry D. Vorontsov
Insects 2025, 16(8), 840; https://doi.org/10.3390/insects16080840 - 14 Aug 2025
Viewed by 520
Abstract
Mosquitoes detect sound with their antennae, which transmit vibrations to mechanosensory neurons in Johnston’s organ. However, their auditory system is exposed to low-frequency noise such as convective and thermal noise, as well as noise induced by flight, which could impair sensitivity. High-pass filters [...] Read more.
Mosquitoes detect sound with their antennae, which transmit vibrations to mechanosensory neurons in Johnston’s organ. However, their auditory system is exposed to low-frequency noise such as convective and thermal noise, as well as noise induced by flight, which could impair sensitivity. High-pass filters (HPFs) may mitigate this issue by suppressing low-frequency interference before it is transformed into neuronal signals. We investigated HPF mechanisms in Culex pipiens mosquitoes by analyzing the phase–frequency characteristics of the primary sensory neurons in the Johnston’s organ. Electrophysiological recordings from male and female mosquitoes revealed phase shifts consistent with high-pass filtering. Initial modeling suggested a single HPF; however, experimentally obtained phase shifts exceeding –90° required revising the model to include two serially connected HPFs. The results showed that male mosquitoes exhibit stronger low-frequency suppression (~32 dB at 10 Hz) compared to females (~21 dB), with some female neurons showing negligible filtering. The estimated delay in signal transmission was ~7 ms for both sexes. These findings suggest that HPFs enhance noise immunity, particularly in males, whose auditory sensitivity is critical for mating. The diversity in female neuronal tuning may reflect broader auditory functions in addition to mating, such as host detection. This study provides indirect evidence for HPFs in mosquito hearing and highlights sex-specific adaptations in auditory processing. The proposed dual-HPF model improves our understanding of how mosquitoes maintain high auditory sensitivity in noisy environments. Full article
(This article belongs to the Collection Insect Sensory Biology)
Show Figures

Figure 1

16 pages, 13277 KB  
Article
Effect of Geometry on Local Microstructure in Ti-6Al-4V Fabricated by Laser Powder Bed Fusion
by Chengshang Zhou, Noah Garcia, Runlin Pu, Pei Sun and Zhigang Zak Fang
Materials 2025, 18(16), 3756; https://doi.org/10.3390/ma18163756 - 11 Aug 2025
Viewed by 569
Abstract
Laser powder bed fusion (L-PBF) is a unique technology that enables manufacturing geometrically complex metal alloys, including Ti-6Al-4V parts. The microstructure of Ti-6Al-4V is determined by its localized thermal history, which is affected by not only the L-PBF process but also the geometry [...] Read more.
Laser powder bed fusion (L-PBF) is a unique technology that enables manufacturing geometrically complex metal alloys, including Ti-6Al-4V parts. The microstructure of Ti-6Al-4V is determined by its localized thermal history, which is affected by not only the L-PBF process but also the geometry of the part. Understanding the microstructure at specific locations in complex geometries is of great importance in predicting the mechanical performance of Ti-6Al-4V parts. This work investigates the effects of geometric features on the local microstructure. Three geometries, namely, holes, overhangs, and penholders, were designed and used for this study. Three different laser powers, namely 150 W, 250 W, and 350 W, were set to print those geometries. The use of a lower laser power results in improved print quality. While the martensite phase dominates the bulk of the L-PBF Ti-6Al-4V parts, a fine α+β lamellar structure can form at down-skin regions of printed horizontal holes and overhangs. Moreover, the direction of the columnar prime β grain can shift due to directional heat dissipation. The local microstructural evolution after heat treatment is investigated as well. Full article
Show Figures

Figure 1

16 pages, 2890 KB  
Article
Thermal Behavior Improvement in Induction Motors Using a Pulse-Width Phase Shift Triangle Modulation Technique in Multilevel H-Bridge Inverters
by Francisco M. Perez-Hidalgo, Juan-Ramón Heredia-Larrubia, Antonio Ruiz-Gonzalez and Mario Meco-Gutierrez
Machines 2025, 13(8), 703; https://doi.org/10.3390/machines13080703 - 8 Aug 2025
Viewed by 364
Abstract
This study investigates the thermal performance of induction motors powered by multilevel H-bridge inverters using a novel pulse-width phase shift triangle modulation (PSTM-PWM) technique. Conventional PWM methods introduce significant harmonic distortion, increasing copper and iron losses and causing overheating and reduced motor lifespan. [...] Read more.
This study investigates the thermal performance of induction motors powered by multilevel H-bridge inverters using a novel pulse-width phase shift triangle modulation (PSTM-PWM) technique. Conventional PWM methods introduce significant harmonic distortion, increasing copper and iron losses and causing overheating and reduced motor lifespan. Through experimental testing and comparison with standard PWM techniques (LS-PWM and PS-PWM), the proposed PSTM-PWM reduces harmonic distortion by up to 64% compared to the worst one and internal motor losses by up to 5.5%. A first-order thermal model is used to predict motor temperature, validated with direct thermocouple measurements and infrared thermography. The results also indicate that the PSTM-PWM technique improves thermal performance, particularly at a triangular waveform peak value of 3.5 V, reducing temperature by around 6% and offering a practical and simple solution for industrial motor drive applications. The modulation order was set to M = 7 to reduce both the losses in the power inverter and to prevent the generation of very high voltage pulses (high dV/dt), which can deteriorate the insulation of the induction motor windings over time. Full article
Show Figures

Figure 1

26 pages, 1794 KB  
Review
Activating and Enhancing the Energy Flexibility Provided by a Pipe-Embedded Building Envelope: A Review
by Xiaochen Yang, Yanqing Li, Xiaoqiong Li, Khaled A. Metwally and Yan Ding
Buildings 2025, 15(15), 2793; https://doi.org/10.3390/buildings15152793 - 7 Aug 2025
Viewed by 631
Abstract
Building thermal mass offers a cost-effective solution to enhance the integration of energy supply and demand in dynamic energy systems. Thermally activated building systems (TABS), incorporating embedded heat tubes, shows strong potential for energy flexibility. However, the significant thermal inertia of TABS also [...] Read more.
Building thermal mass offers a cost-effective solution to enhance the integration of energy supply and demand in dynamic energy systems. Thermally activated building systems (TABS), incorporating embedded heat tubes, shows strong potential for energy flexibility. However, the significant thermal inertia of TABS also imposes challenges to precise load shift and indoor climate control. This review synthesizes key research on the effective demand-side management of TABS from multiple perspectives. It examines and compares various TABS configurations, including floor, ceiling, and wall systems. Differences in heat transfer performance between heating and cooling result in distinct application preferences for each type. The integration of advanced materials, such as phase change materials (PCM), can further enhance energy flexibility. TABS flexibility is primarily activated through adjustments to indoor operative temperature, with relevant influencing factors and regulatory constraints analyzed and discussed. Key aspects of optimizing building energy flexibility, including simulation methods and control strategies for TABS, are reviewed from both theoretical and practical perspectives. The energy and economic performance of TABS under various control strategies is analyzed in detail. This review provides insights to support the optimal design and operation of TABS within dynamic energy systems and to enhance the energy flexibility of building envelopes. Full article
Show Figures

Figure 1

21 pages, 1113 KB  
Article
Research on High-Frequency Modification Method of Industrial-Frequency Smelting Transformer Based on Parallel Connection of Multiple Windings
by Huiqin Zhou, Xiaobin Yu, Wei Xu and Weibo Li
Energies 2025, 18(15), 4196; https://doi.org/10.3390/en18154196 - 7 Aug 2025
Viewed by 486
Abstract
Under the background of “dual-carbon” strategy and global energy transition, the metallurgical industry, which accounts for 15–20% of industrial energy consumption, urgently needs to reduce the energy consumption and emission of DC power supply of electric furnaces. Aiming at the existing 400–800 V/≥3000 [...] Read more.
Under the background of “dual-carbon” strategy and global energy transition, the metallurgical industry, which accounts for 15–20% of industrial energy consumption, urgently needs to reduce the energy consumption and emission of DC power supply of electric furnaces. Aiming at the existing 400–800 V/≥3000 A industrial-frequency transformer-rectifier system with low efficiency, large volume, heat dissipation difficulties and other bottlenecks, this thesis proposes and realizes a high-frequency integrated DC power supply scheme for high-power electric furnaces: high-frequency transformer core and rectifier circuit are deeply integrated, which breaks through and reduces the volume of the system by more than 40%, and significantly reduces the iron consumption; multiple cores and three windings in parallel are used for the system. The topology of multiple cores and three windings in parallel enables several independent secondary stages to share the large current of 3000 A level uniformly, eliminating the local overheating and current imbalance; the combination of high-frequency rectification and phase-shift control strategy enhances the input power factor to more than 0.95 and cuts down the grid-side harmonics remarkably. The authors have completed the design of 100 kW prototype, magneto-electric joint simulation, thermal structure coupling analysis, control algorithm development and field comparison test, and the results show that the program compared with the traditional industrial-frequency system efficiency increased by 12–15%, the system temperature rise reduced by 20 K, electrode voltage increased by 10–15%, the input power of furnace increased by 12%, and the harmonic index meets the requirements of the traditional industrial-frequency system. The results show that the efficiency of this scheme is 12–15% higher than the traditional IF system, the temperature rise in the system is 20 K lower, the voltage at the electrode end is 10–15% higher, the input power of the furnace is increased by 12%, and the harmonic indexes meet the requirements of GB/T 14549, which verifies the value of the scheme for realizing high efficiency, miniaturization, and reliable DC power supply in metallurgy. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

Back to TopTop