Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (603)

Search Parameters:
Keywords = thermo-mechanical loading

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 5220 KB  
Article
Post-Fire Performance of Bolted Steel T-Joints with Varying Coating Thicknesses: Experimental and Finite Element Analysis
by Zeynep Yaman, Mahyar Maali, Elif Ağcakoca, Mohammad Saber Sadid, Abdulkadir Cüneyt Aydin and Hüsna Ekşi
Buildings 2025, 15(18), 3257; https://doi.org/10.3390/buildings15183257 - 9 Sep 2025
Abstract
This study investigates the structural performance of bolted T-joints in steel elements exposed to elevated temperatures, with a focus on the influence of fire-resistant coatings. A total of 36 T-joint specimens were tested under four different temperature levels (300 °C, 450 °C, 600 [...] Read more.
This study investigates the structural performance of bolted T-joints in steel elements exposed to elevated temperatures, with a focus on the influence of fire-resistant coatings. A total of 36 T-joint specimens were tested under four different temperature levels (300 °C, 450 °C, 600 °C, and 900 °C), incorporating three IPE section sizes and three fire-resistant paint thicknesses (200 µm, 400 µm, and 600 µm). The experimental program aimed to evaluate the combined effects of temperature, cross-sectional geometry, and coating thickness on the axial load-bearing capacity and deformation characteristics of T-joints. To examine the influence of web geometry, T-sections were designed in accordance with Eurocode 3, and the flange-to-web thickness ratios (tf/tw) were varied between 1.52 and 1.58. Results showed that applying 200 µm and 400 µm coatings at 300 °C and 450 °C improved the axial load capacity by approximately 10% and 20%, respectively, compared to uncoated specimens. However, effective fire protection at higher temperatures (600 °C and 900 °C) required a minimum coating thickness exceeding 400 µm. Finite Element Models developed using ABAQUS (2017) were designed to predict post-fire load–displacement behavior, stiffness degradation, and failure modes. Predictions were validated against experimental results, with deviations ranging from 0.97% to 9.73% for maximum load and 1.18% to 42.13% for energy dissipation, confirming the model’s reliability in simulating the thermo-mechanical response of steel joints under fire exposure. Full article
Show Figures

Figure 1

21 pages, 3250 KB  
Article
Modification of Rigid Polyurethane Foams with Straw Additive: Influence of Chemical Treatment and Content on Performance Properties
by Anna Strąkowska, Justyna Miedzianowska-Masłowska and Sylwia Makowska
Polymers 2025, 17(18), 2440; https://doi.org/10.3390/polym17182440 - 9 Sep 2025
Abstract
This work aimed to synthesize rigid polyurethane foams with improved functional properties through modification with the addition of cellulose in the form of straw: unmodified, silanized, and silanized with the addition of fumed silica. The prepared rigid polyurethane foams contained 0.5; 1; and [...] Read more.
This work aimed to synthesize rigid polyurethane foams with improved functional properties through modification with the addition of cellulose in the form of straw: unmodified, silanized, and silanized with the addition of fumed silica. The prepared rigid polyurethane foams contained 0.5; 1; and 3 parts by weight of the modifier about the weight of the polyol used. As part of the work, a number of tests were carried out to determine the impact of the modifiers used on the reaction kinetics and on the functional properties of rigid polyurethane foams. Silanization improved thermal stability and interfacial compatibility, while silica further enhanced porosity and surface activity. The optimal properties were obtained at low loadings: 0.5 wt.% provided the best mechanical strength, and 1 wt.% yielded the most uniform cell morphology and density. Higher contents increased porosity, reduced strength, and lowered water resistance. Dynamic mechanical analysis confirmed predominantly elastic behavior, with silica-modified fillers offering the most stable thermomechanical response. Overall, even small amounts of modified straw enhanced mechanical, structural, and water-resistant properties, demonstrating its potential as a sustainable and cost-effective biofiller for eco-friendly polyurethane foams. Full article
(This article belongs to the Special Issue Thermoplastic Foams: Processing, Manufacturing, and Characterization)
Show Figures

Graphical abstract

32 pages, 5016 KB  
Review
A Review on the Crashworthiness of Bio-Inspired Cellular Structures for Electric Vehicle Battery Pack Protection
by Tamana Dabasa, Hirpa G. Lemu and Yohannes Regassa
Computation 2025, 13(9), 217; https://doi.org/10.3390/computation13090217 - 5 Sep 2025
Viewed by 383
Abstract
The rapid shift toward electric vehicles (EVs) has underscored the critical importance of battery pack crashworthiness, creating a demand for lightweight, energy-absorbing protective systems. This review systematically explores bio-inspired cellular structures as promising solutions for improving the impact resistance of EV battery packs. [...] Read more.
The rapid shift toward electric vehicles (EVs) has underscored the critical importance of battery pack crashworthiness, creating a demand for lightweight, energy-absorbing protective systems. This review systematically explores bio-inspired cellular structures as promising solutions for improving the impact resistance of EV battery packs. Inspired by natural geometries, these designs exhibit superior energy absorption, controlled deformation behavior, and high structural efficiency compared to conventional configurations. A comprehensive analysis of experimental, numerical, and theoretical studies published up to mid-2025 was conducted, with emphasis on design strategies, optimization techniques, and performance under diverse loading conditions. Findings show that auxetic, honeycomb, and hierarchical multi-cell architectures can markedly enhance specific energy absorption and deformation control, with improvements often exceeding 100% over traditional structures. Finite element analyses highlight their ability to achieve controlled deformation and efficient energy dissipation, while optimization strategies, including machine learning, genetic algorithms, and multi-objective approaches, enable effective trade-offs between energy absorption, weight reduction, and manufacturability. Persistent challenges remain in structural optimization, overreliance on numerical simulations with limited experimental validation, and narrow focus on a few bio-inspired geometries and thermo-electro-mechanical coupling, for which engineering solutions are proposed. The review concludes with future research directions focused on geometric optimization, multi-physics modeling, and industrial integration strategies. Collectively, this work provides a comprehensive framework for advancing next-generation crashworthy battery pack designs that integrate safety, performance, and sustainability in electric mobility. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Graphical abstract

20 pages, 4891 KB  
Article
Analysis of Rutting Formation Mechanisms and Influencing Factors in Asphalt Pavements Under Slow-Moving Heavy Loads
by Pu Li, Jiahao Fu, Linhao Sun, Jinchao Yue and Quansheng Zang
Materials 2025, 18(17), 4153; https://doi.org/10.3390/ma18174153 - 4 Sep 2025
Viewed by 415
Abstract
Increasing the frequency and duration of extreme heat events significantly compromises asphalt pavement performance, particularly in critical urban infrastructure such as heavily trafficked pavements, BRT lanes, and intersections subjected to slow-moving heavy traffic under extreme temperatures. This study systematically investigates rutting formation mechanisms [...] Read more.
Increasing the frequency and duration of extreme heat events significantly compromises asphalt pavement performance, particularly in critical urban infrastructure such as heavily trafficked pavements, BRT lanes, and intersections subjected to slow-moving heavy traffic under extreme temperatures. This study systematically investigates rutting formation mechanisms through integrated theoretical and numerical approaches, addressing significant knowledge gaps regarding rutting evolution under coupled extreme-temperature (70 °C), heavy-load (100 kN–225 kN), and braking conditions (1 m/s2–7 m/s2). A three-dimensional thermo-mechanical finite element model integrating solar radiation heat transfer with the Bailey–Norton creep law was developed to quantify synergistic effects of axle loads, travel speeds, and braking accelerations. Results demonstrate that when the pavement surface temperature rises from 34 °C to 70 °C, the rutting depth is increased by 4.83 times. When the axle load is increased from 100 kN to 225 kN, the rutting of conventional asphalt pavements under 70 °C is increased by 56.4%. Rutting is exacerbated by braking acceleration; due to prolonged loading duration under low acceleration, the rutting depth is increased by 30–40% compared with that under emergency braking. These findings establish theoretical foundations for optimizing pavement design and material selection in slow-moving heavy-load environments, delivering significant engineering value for transportation infrastructure. Full article
Show Figures

Figure 1

13 pages, 2024 KB  
Article
Qualitative Enhancement of the Tooth–Filling Interface Using Cold Atmospheric Plasma
by Madline Priska Gund, Jusef Naim, Muhammad al Muhammad, Antje Lehmann, Axel Schindler, Matthias Hannig and Stefan Rupf
Dent. J. 2025, 13(9), 406; https://doi.org/10.3390/dj13090406 - 4 Sep 2025
Viewed by 239
Abstract
Objective: To evaluate the effects of cold atmospheric plasma (CAP) on adhesive bonding in Class II composite restorations in vitro. Methods: Forty-eight standardized Class II cavities were assigned to six groups (n = 8), varying in phosphoric acid conditioning, CAP [...] Read more.
Objective: To evaluate the effects of cold atmospheric plasma (CAP) on adhesive bonding in Class II composite restorations in vitro. Methods: Forty-eight standardized Class II cavities were assigned to six groups (n = 8), varying in phosphoric acid conditioning, CAP treatment (1.5 W or 3 W), composite filling, and thermo-mechanical loading (TML). Evaluations included dye penetration, adhesive layer morphology, resin tag length, and hybrid layer thickness. Results: CAP combined with phosphoric acid (H3PO4) significantly increased hybrid layer thickness and resin tag length (p < 0.006). The lowest dye penetration was observed in Groups 1 and 4. Conclusions: CAP in combination with phosphoric acid improved the adhesive interface in Class II cavities. CAP alone showed limited benefits, and higher power levels may negatively affect bonding. Full article
(This article belongs to the Section Dental Materials)
Show Figures

Figure 1

23 pages, 6823 KB  
Article
A Thermo-Mechanical Coupled Gradient Damage Model for Heterogeneous Rocks Based on the Weibull Distribution
by Juan Jin, Ying Zhou, Hua Long, Shijun Chen, Hanwei Huang, Jiandong Liu and Wei Cheng
Energies 2025, 18(17), 4699; https://doi.org/10.3390/en18174699 - 4 Sep 2025
Viewed by 443
Abstract
This study develops a thermo-mechanical damage (TMD) model for predicting damage evolution in heterogeneous rock materials after heat treatment. The TMD model employs a Weibull distribution to characterize the spatial heterogeneity of the mechanical properties of rock materials and develops a framework that [...] Read more.
This study develops a thermo-mechanical damage (TMD) model for predicting damage evolution in heterogeneous rock materials after heat treatment. The TMD model employs a Weibull distribution to characterize the spatial heterogeneity of the mechanical properties of rock materials and develops a framework that incorporates thermal effects into a nonlocal gradient damage model, thereby overcoming the mesh dependency issue inherent in homogeneous local damage models. The model is validated by numerical simulations of a notched cruciform specimen subjected to combined mechanical and thermal loading, confirming its capability in thermo-mechanical coupled scenarios. Sensitivity analysis shows increased material heterogeneity promotes localized, X-shaped shear-dominated failure patterns, while lower heterogeneity produces more diffuse, network-like damage distributions. Furthermore, the results demonstrate that thermal loading induces micro-damage that progressively spreads throughout the specimen, resulting in a significant reduction in both overall stiffness and critical strength; this effect becomes increasingly pronounced at higher heating temperatures. These findings demonstrate the model’s ability to predict the mechanical behavior of heterogeneous rock materials under thermal loading, offering valuable insights for safety assessments in high-temperature geotechnical engineering applications. Full article
Show Figures

Figure 1

16 pages, 6283 KB  
Article
In Situ Investigation of the Frictional Behaviour in Friction-Spinning
by Eugen Wiens, Dina Hijazi, Maik Jüttner, Werner Homberg, Mark Dennis Kensy and Wolfgang Tillmann
J. Manuf. Mater. Process. 2025, 9(9), 302; https://doi.org/10.3390/jmmp9090302 - 1 Sep 2025
Viewed by 405
Abstract
Friction-spinning is an incremental thermomechanical forming process that has huge potential due to its simple yet effective mechanism of utilising friction between a rotating workpiece and a forming tool to increase the workpiece’s temperature, which reduces the required forces and increases formability during [...] Read more.
Friction-spinning is an incremental thermomechanical forming process that has huge potential due to its simple yet effective mechanism of utilising friction between a rotating workpiece and a forming tool to increase the workpiece’s temperature, which reduces the required forces and increases formability during the forming process. Despite the simplicity of the process’s setup, the thermomechanical loads and high relative velocities involved, especially in the contact zone, make the application of classical methods for characterising friction inaccurate. It is therefore essential to find a way to describe the frictional behaviour under real process conditions to be able to gain a holistic understanding of the process and the effect of the adjustable parameters on the outcome, especially the temperature. To achieve this goal, an experimental setup that considers the actual process boundary conditions in forming tubes made of EN AW-6060 was used to measure in situ normal and frictional forces, in addition to process temperatures, under varying rotational speed and feed rate values. Full article
Show Figures

Figure 1

27 pages, 3818 KB  
Article
A Novel Master Curve Formulation with Explicitly Incorporated Temperature Dependence for Asphalt Mixtures: A Model Proposal with a Case Study
by Gilberto Martinez-Arguelles, Diego Casas, Rita Peñabaena-Niebles, Oswaldo Guerrero-Bustamante and Rodrigo Polo-Mendoza
Infrastructures 2025, 10(9), 227; https://doi.org/10.3390/infrastructures10090227 - 28 Aug 2025
Viewed by 332
Abstract
Accurately modelling and simulating the stiffness modulus of asphalt mixtures is essential for reliable pavement design and performance prediction under varying environmental and loading conditions. The preceding is commonly achieved through master curves, which relate stiffness to loading frequency at a reference temperature. [...] Read more.
Accurately modelling and simulating the stiffness modulus of asphalt mixtures is essential for reliable pavement design and performance prediction under varying environmental and loading conditions. The preceding is commonly achieved through master curves, which relate stiffness to loading frequency at a reference temperature. However, conventional master curves face two primary limitations. Firstly, temperature is not treated as a state variable; instead, its effect is indirectly considered through shift factors, which can introduce inaccuracies due to their lack of thermodynamic consistency across the entire range of possible temperatures. Secondly, conventional master curves often encounter convergence difficulties when calibrated with experimental data constrained to a narrow frequency spectrum. In order to address these shortcomings, this investigation proposes a novel formulation known as the Thermo-Stiffness Integration (TSI) model, which explicitly incorporates both temperature and frequency as state variables to predict the stiffness modulus directly, without relying on supplementary expressions such as shift factors. The TSI model is built on thermodynamics-based principles (such as Eyring’s rate theory and activation free energy) and leverages the time–temperature superposition principle to create a physically consistent representation of the mechanical behaviour of asphalt mixtures. This manuscript presents the development of the TSI model along with its application in a case study involving eight asphalt mixtures, including four hot-mix asphalts and four warm-mix asphalts. Each type of mixture contains recycled concrete aggregates at replacement levels of 0%, 15%, 30%, and 45% as partial substitutes for coarse natural aggregates. This diverse set of materials enables a robust evaluation of the model’s performance, even under non-traditional mixture designs. For this case study, the TSI model enhances computational stability by approximately 4 to 45 times compared to conventional master curves. Thus, the main contribution of this research lies in establishing a valuable mathematical tool for both scientists and practitioners aiming to improve the design and performance assessment of asphalt mixtures in a more physically realistic and computationally stable approach. Full article
Show Figures

Figure 1

22 pages, 4316 KB  
Article
Surface Property and Braking Reliability Analyses of YSZ Thermal Barrier-Coated Brake Disc of Kilometer-Deep Well Hoist
by Wanzi Yan, Hao Lu, Yu Tang, Zhencai Zhu and Fengbin Ren
Lubricants 2025, 13(9), 382; https://doi.org/10.3390/lubricants13090382 - 26 Aug 2025
Viewed by 405
Abstract
A significant amount of heat is generated during the braking process of a kilometer-deep well hoist, which causes a large temperature rise and then thermal deformation and cracks in the brake disc. Thus, improving the surface performance of the brake disc is necessary [...] Read more.
A significant amount of heat is generated during the braking process of a kilometer-deep well hoist, which causes a large temperature rise and then thermal deformation and cracks in the brake disc. Thus, improving the surface performance of the brake disc is necessary to ensure reliable braking under high-speed and heavy-load conditions. In this paper, thermal barrier coating technology is applied to a brake disc, and the friction and wear characteristics of a yttria-stabilized zirconia (YSZ) thermal barrier-coated brake disc is studied. A coupled thermomechanical model of the hoist disc brake is established, and a temperature field simulation analysis of uncoated and coated brake discs under emergency braking conditions is carried out. Then, a surrogate model of the maximum temperature of the brake disc surface with respect to the random parameters of the brake disc is constructed based on a Latin hypercube experimental design and the Kriging method. The reliability of the brake disc under emergency braking conditions is estimated based on saddlepoint approximation (SPA), and the feasibility of applying a YSZ thermal barrier coating to a hoist disc brake is verified. Full article
(This article belongs to the Special Issue Tribological Behavior of Wire Rope)
Show Figures

Figure 1

25 pages, 15459 KB  
Article
Effect of Fiber Type on the Thermomechanical Performance of High-Density Polyethylene (HDPE) Composites with Continuous Reinforcement
by José Luis Colón Quintana, Scott Tomlinson and Roberto A. Lopez-Anido
J. Compos. Sci. 2025, 9(8), 450; https://doi.org/10.3390/jcs9080450 - 20 Aug 2025
Viewed by 701
Abstract
The thermal, thermomechanical, and viscoelastic properties of continuous unidirectional (UD) glass fiber/high-density polyethylene (GF/HDPE) and ultra-high-molecular-weight polyethylene/high-density polyethylene (UHMWPE/HDPE) tapes are characterized in this paper in order to support their use in extreme environments. Unlike prior studies that focus on short-fiber composites or [...] Read more.
The thermal, thermomechanical, and viscoelastic properties of continuous unidirectional (UD) glass fiber/high-density polyethylene (GF/HDPE) and ultra-high-molecular-weight polyethylene/high-density polyethylene (UHMWPE/HDPE) tapes are characterized in this paper in order to support their use in extreme environments. Unlike prior studies that focus on short-fiber composites or limited thermal conditions, this work examines continuous fiber architectures under five operational environments derived from Army Regulation 70-38, reflecting realistic defense-relevant extremes. Differential scanning calorimetry (DSC) was used to identify melting transitions for GF/HDPE and UHMWPE/HDPE, which guided the selection of test conditions for thermomechanical analysis (TMA) and dynamic mechanical analysis (DMA). TMA revealed anisotropic thermal expansion consistent with fiber orientation, while DMA, via strain sweep, temperature ramp, frequency sweep, and stress relaxation, quantified their temperature- and time-dependent viscoelastic behavior. The frequency-dependent storage modulus highlighted multiple resonant modes, and stress relaxation data were fitted with high accuracy (R2 > 0.99) to viscoelastic models, yielding model parameters that can be used for predictive simulations of time-dependent material behavior. A comparative analysis between the two material systems showed that UHMWPE/HDPE offers enhanced unidirectional stiffness and better low-temperature performance. At the same time, GF/HDPE exhibits lower thermal expansion, better transverse stiffness, and greater stability at elevated temperatures. These differences highlight the impact of fiber type on thermal and mechanical responses, informing material selection for applications that require directional load-bearing or dimensional control under thermal cycling. By integrating thermal and viscoelastic characterization across realistic operational profiles, this study provides a foundational dataset for the application of continuous fiber thermoplastic tapes in structural components exposed to harsh thermal and mechanical conditions. Full article
Show Figures

Figure 1

16 pages, 2789 KB  
Article
A Numerical Study on Lightning Damages and Residual Strength of CFRP Laminates Considering Delamination Induced by Thermal Stress
by Qian-Zhi Yin, Jiapeng Bian and Yin Fan
Polymers 2025, 17(16), 2245; https://doi.org/10.3390/polym17162245 - 19 Aug 2025
Viewed by 549
Abstract
Most numerical studies on carbon fiber-reinforced polymer (CFRP) lightning damages fail to account for delamination, a factor that plays a significant role in the subsequent analysis of residual strength. This study establishes an electro-thermo-mechanical coupled numerical model incorporating delamination effects to predict lightning-induced [...] Read more.
Most numerical studies on carbon fiber-reinforced polymer (CFRP) lightning damages fail to account for delamination, a factor that plays a significant role in the subsequent analysis of residual strength. This study establishes an electro-thermo-mechanical coupled numerical model incorporating delamination effects to predict lightning-induced damage in carbon fiber-reinforced plastic (CFRP) composites. Subsequently, parametric investigations evaluate the influence of varying input loads and stacking sequences on interlaminar pyrolysis and delamination damage, with damage assessment quantitatively conducted based on simulated post-strike uniaxial ultimate compressive loads. Post-strike uniaxial compressive strength reduction with cohesive elements is 28.91%, demonstrating closer alignment with experimental reduction (36.72%) than the 21.12% reduction predicted by the interlaminar-effect-neglecting model. Under combined thermal expansion and shockwave overpressure, the 28.91% compressive strength reduction demonstrates closer alignment with the experimental 36.72% reduction than the 25.13% reduction observed under isolated shockwave overpressure. The results highlight the critical role of thermal delamination in compressive strength reduction, with distinct waveform-dependent mechanisms: under C-waveform lightning currents, arc thermal effects cannot be neglected; D-waveform strikes exhibit predominant contributions from impact loading to delamination damage, with thermally driven delamination likewise pronounced. Increased current amplitude correlates with amplified mechanical damage severity, while premature symmetry in ply stacking sequences exacerbates compressive performance degradation. This work enhances multi-physics modeling fidelity by bridging thermal delamination and mechanical degradation pathways, offering foundational insights for optimizing lightning strike resistance in advanced aerospace composite systems. Full article
(This article belongs to the Special Issue Fibre-Reinforced Polymer Laminates: Structure and Properties)
Show Figures

Figure 1

12 pages, 3316 KB  
Article
Nanoscale Insights into the Mechanical and Tribological Properties of a Nanocomposite Coating
by Chun-Wei Yao and Ian Lian
Nanomaterials 2025, 15(16), 1280; https://doi.org/10.3390/nano15161280 - 19 Aug 2025
Viewed by 609
Abstract
This study investigates the mechanical and tribological behavior of a polydimethylsiloxane (PDMS)–silica nanocomposite coating over the temperature range extending from 24 °C to 120 °C. Nanoindentation tests revealed depth- and temperature-dependent variations in hardness and complex modulus. A time-dependent deformation model accurately captured [...] Read more.
This study investigates the mechanical and tribological behavior of a polydimethylsiloxane (PDMS)–silica nanocomposite coating over the temperature range extending from 24 °C to 120 °C. Nanoindentation tests revealed depth- and temperature-dependent variations in hardness and complex modulus. A time-dependent deformation model accurately captured the viscoelastic and viscoplastic behavior observed during sustained loading, providing predictive insight into the coating’s thermomechanical performance. Tribological evaluation through friction and nanoscratch testing demonstrated a temperature-induced increase in the coefficient of friction. The integration of mechanical and surface metrology and characterization techniques offers a comprehensive understanding of the coating’s behavior under thermal and mechanical stress. These findings support the design of robust nanocomposite coatings with superior functional performance for practical applications requiring enhanced mechanical stability, wear resistance, and thermal tolerance in challenging service environments. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

18 pages, 13864 KB  
Article
Thermomechanical Analysis of the GTM 400 MOD Turbojet Engine Nozzle During Kerosene and Hydrogen Co-Combustion
by Łukasz Brodzik, Bartosz Ciupek, Andrzej Frąckowiak and Dominik Schroeder
Energies 2025, 18(16), 4382; https://doi.org/10.3390/en18164382 - 17 Aug 2025
Viewed by 469
Abstract
This study investigated the thermomechanical behaviour of the nozzle of a GTM 400MOD miniature turbojet engine during combustion of aviation kerosene and co-combustion of kerosene with hydrogen. Numerical analysis was based on experiments conducted on a dedicated test rig at engine speeds ranging [...] Read more.
This study investigated the thermomechanical behaviour of the nozzle of a GTM 400MOD miniature turbojet engine during combustion of aviation kerosene and co-combustion of kerosene with hydrogen. Numerical analysis was based on experiments conducted on a dedicated test rig at engine speeds ranging from 31,630 rpm to 65,830 rpm, providing data on the temperature and dynamic pressure at the nozzle outlet. These data served as input to numerical analyses using the ANSYS Fluent, Steady-State Thermal, and Static Structural modules to evaluate exhaust gas flow, temperature distribution, and stress and strain states. The paper performed a basic analysis with additional simplifications, and an extended analysis that took into account, among other things, thermal radiation in the flow. The results of the basic analysis show that, at comparable thrust levels, co-firing and pure kerosene combustion yield similar nozzle temperature distributions, with maximum wall temperatures ranging from 978 K to 1090 K, which remain below the allowable limit of 1193 K (920 °C). Maximum stresses reached approximately 261 MPa, close to but not exceeding the yield strength of 316 stainless steel. Maximum nozzle deformation did not exceed 0.8 mm. Small dynamic pressure fluctuations were observed; For example, at 31,630 rpm, co-firing increased the maximum dynamic pressure from 1.56 × 104 Pa to 1.63 × 104 Pa, while at 47,110 rpm, it decreased from 4.05 × 104 Pa to 3.89 × 104 Pa. The extended analysis yielded similar values for the nozzle temperature and pressure distributions. Stress and strain increased by more than 76% and 78%, respectively, compared to the baseline analysis. The results confirm that hydrogen co-firing does not significantly alter the nozzle thermomechanical loads, suggesting that this emission-free fuel can be used without negatively impacting the nozzle’s structural integrity under the tested conditions. The methodology, combining targeted experimental measurements with coupled CFD and FEM simulations, provides a reliable framework for assessing material safety margins in alternative fuel applications in small turbojet engines. Full article
(This article belongs to the Special Issue Heat Transfer Analysis: Recent Challenges and Applications)
Show Figures

Figure 1

18 pages, 2058 KB  
Article
Effects of Milling Parameters on Residual Stress and Cutting Force
by Haili Jia, Wu Xiong, Aimin Wang and Long Wu
Materials 2025, 18(16), 3836; https://doi.org/10.3390/ma18163836 - 15 Aug 2025
Viewed by 382
Abstract
The 7075-T7451 aluminum alloy, widely used in aerospace, aviation, and automotive fields for critical load-bearing components due to its excellent mechanical properties, suffers from residual stresses induced by thermo-mechanical coupling during milling, which deteriorate workpiece performance. This study explores how key milling parameters—spindle [...] Read more.
The 7075-T7451 aluminum alloy, widely used in aerospace, aviation, and automotive fields for critical load-bearing components due to its excellent mechanical properties, suffers from residual stresses induced by thermo-mechanical coupling during milling, which deteriorate workpiece performance. This study explores how key milling parameters—spindle speed *nc*, feed per tooth *fz*, cutting depth *ap*, and cutting width *ae*—affect surface residual stress and cutting force via orthogonal experiments and finite element analysis (FEA). Results show *ae* is critical for X-direction residual stresses, while *fz* dominates Y-direction ones. Cutting force increases with *fz*, *ap*, and *ae* but decreases with higher *nc*. Multivariate regression-based prediction models for residual stress and cutting force were established, which effectively characterize parameter–response relationships with maximum prediction errors of 18.69% (residual stress) and 12.27% (cutting force), showing good engineering applicability. The findings provide theoretical and experimental foundations for multi-parameter optimization in aluminum alloy milling and residual stress/cutting force control, with satisfactory practical effectiveness. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

19 pages, 4936 KB  
Article
The Influence of Rolling Direction and Dynamic Strengthening on the Properties of Steel
by Jakub Pokropek, Janusz Kluczyński, Bartłomiej Sarzyński, Katarzyna Jasik, Ireneusz Szachogłuchowicz, Jakub Łuszczek, Zdeněk Joska, Marcin Małek and Janusz Torzewski
Materials 2025, 18(16), 3808; https://doi.org/10.3390/ma18163808 - 13 Aug 2025
Viewed by 369
Abstract
The article presents an analysis of the mechanical properties of S700MC steel, which represents advanced low-alloy high-strength steels. The influence of microstructure, shaped by a controlled thermo-mechanical rolling process, on the strength, ductility, and resistance to cracking and fatigue of the material is [...] Read more.
The article presents an analysis of the mechanical properties of S700MC steel, which represents advanced low-alloy high-strength steels. The influence of microstructure, shaped by a controlled thermo-mechanical rolling process, on the strength, ductility, and resistance to cracking and fatigue of the material is discussed. Particular attention is paid to the anisotropy of mechanical properties resulting from the orientation relative to the rolling direction, manifested by variations in yield strength, tensile strength, and total elongation of the specimens. The analysis also includes the material’s behavior under dynamic conditions, where the steel’s strength increases with the strain rate. Experimental investigations conducted using the digital image correlation (DIC) method enabled a detailed assessment of local strains and fracture characteristics of specimens subjected to both static and dynamic testing. The results showed that specimens cut along the rolling direction exhibited, on average, 6.4% higher tensile strength and 6.8% higher yield strength compared to those cut transversely. Moreover, dynamic loading led to an increase in load-bearing capacity of over 10% compared to static tests. The obtained data are highly relevant from the perspective of structural design, where the selection of material orientation and the consideration of strain rate effects are crucial for ensuring the reliability of components made from S700MC steel. Full article
Show Figures

Figure 1

Back to TopTop