Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (407)

Search Parameters:
Keywords = time-resolved fluorescence

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2910 KB  
Case Report
Perforator-Sparing Microsurgical Clipping of Tandem Dominant-Hemisphere Middle Cerebral Artery Aneurysms: Geometry-Guided Reconstruction of a Wide-Neck Bifurcation and Dorsal M1 Fusiform Lesion
by Matei Șerban, Corneliu Toader and Răzvan-Adrian Covache-Busuioc
Diagnostics 2025, 15(21), 2678; https://doi.org/10.3390/diagnostics15212678 - 23 Oct 2025
Viewed by 200
Abstract
Background and Clinical Significance: Tandem pathology at the dominant-hemisphere middle cerebral artery (MCA)—combining a wide-neck bifurcation aneurysm that shares the neck with both M2 origins and a short dorsal M1 fusiform dilation embedded in the lenticulostriate belt—compresses the therapeutic margin and complicates device-first [...] Read more.
Background and Clinical Significance: Tandem pathology at the dominant-hemisphere middle cerebral artery (MCA)—combining a wide-neck bifurcation aneurysm that shares the neck with both M2 origins and a short dorsal M1 fusiform dilation embedded in the lenticulostriate belt—compresses the therapeutic margin and complicates device-first pathways. We aimed to describe an anatomy-led, microscope-only sequence designed to secure an immediate branch-definitive result at the fork and to remodel dorsal M1 without perforator compromise, and to place these decisions within a pragmatic perioperative framework. Case Presentation: A 37-year-old right-handed man with reproducible, load-sensitive cortical association and capsulostriate signs underwent high-fidelity digital subtraction angiography (DSA) with 3D rotational reconstructions. Through a left pterional approach, vein-respecting Sylvian dissection achieved gravity relaxation. Reconstruction proceeded in sequence: a fenestrated straight clip across the bifurcation neck with the superior M2 encircled to preserve both M2 ostia, followed by a short longitudinal clip parallel to M1 to reshape the fusiform segment while keeping each lenticulostriate mouth visible and free. Temporary occlusion windows were brief (bifurcation 2 min 30 s; M1 < 2 min). No neuronavigation, intraoperative fluorescence, micro-Doppler, or intraoperative angiography was used. No perioperative antiplatelets or systemic anticoagulation were administered and venous thromboembolism prophylaxis followed institutional practice. The bifurcation dome collapsed immediately with round, mobile M2 orifices, and dorsal M1 regained near-cylindrical geometry with patent perforator ostia under direct inspection. Emergence was neurologically intact, headaches abated, and preoperative micro-asymmetries resolved without new deficits. The early course was uncomplicated. Non-contrast CT at three months showed structurally preserved dominant-hemisphere parenchyma without infarction or hemorrhage. Lumen confirmation was scheduled at 12 months. Conclusions: In dominant-hemisphere tandem MCA disease, staged, perforator-sparing clip reconstruction can restore physiologic branch and perforator behavior while avoiding prolonged antiplatelet exposure and device-related branch uncertainty. A future-facing pathway pairs subtle clinical latency metrics with high-fidelity angiography, reports outcomes in branch- and perforator-centric terms, and, where available, incorporates patient-specific hemodynamic simulation and noninvasive lumen surveillance to guide timing, technique, and follow-up. Full article
(This article belongs to the Special Issue Cerebrovascular Lesions: Diagnosis and Management, 2nd Edition)
Show Figures

Figure 1

20 pages, 4685 KB  
Article
Non-Invasive Rayleigh, Raman, and Chromium-Fluorescence Study of Phase Transitions: β-Alumina into γ-Alumina ‘Single’ Crystal and Then to α-Alumina
by Juliette Redonnet, Gulsu Simsek-Franci and Philippe Colomban
Materials 2025, 18(20), 4682; https://doi.org/10.3390/ma18204682 - 12 Oct 2025
Viewed by 612
Abstract
In many advanced materials production processes, the analysis must be non-invasive, rapid, and, if possible, operando. The Raman signal of the various forms of alumina, especially transition alumina, is very weak due to the highly ionic nature of the Al-O bond, which [...] Read more.
In many advanced materials production processes, the analysis must be non-invasive, rapid, and, if possible, operando. The Raman signal of the various forms of alumina, especially transition alumina, is very weak due to the highly ionic nature of the Al-O bond, which requires long exposure times that are incompatible with monitoring transitions. Here, we explore the use of the fluorescence signal of chromium, a natural impurity in alumina, and the Rayleigh wing to follow the crystallization process up to alpha alumina. To clarify the assignment of the fluorescence components, we compare the transformation of beta alumina single crystals into transition (gamma and theta) alumina and then into alpha alumina with the transformation of optically transparent alumina xerogel and glass, obtained by very slow hydrolysis-polycondensation of aluminum sec-butoxide, into alpha alumina. Vibrational modes are better resolved in thermally treated single crystals than in thermally treated xerogels. Measurements of the Rayleigh wing, the Boson peak, and the fluorescence signal are easier than those of vibrational modes for studying the evolution from amorphous to alpha alumina phases. The fluorescence spectra allow almost instantaneous (<1 s) quantitative control of the phases present. Full article
Show Figures

Figure 1

20 pages, 3922 KB  
Article
Both Benzannulation and Heteroatom-Controlled Photophysical Properties in Donor–π–Acceptor Ionic Dyes: A Combined Experimental and Theoretical Study
by Przemysław Krawczyk and Beata Jędrzejewska
Materials 2025, 18(20), 4676; https://doi.org/10.3390/ma18204676 - 12 Oct 2025
Viewed by 415
Abstract
Donor–π–acceptor (D–π–A) dyes have garnered significant attention due to their unique optical properties and potential applications in various fields, including optoelectronics, chemical sensing and bioimaging. This study presents the design, synthesis, and comprehensive photophysical investigation of a series of ionic dyes incorporating five- [...] Read more.
Donor–π–acceptor (D–π–A) dyes have garnered significant attention due to their unique optical properties and potential applications in various fields, including optoelectronics, chemical sensing and bioimaging. This study presents the design, synthesis, and comprehensive photophysical investigation of a series of ionic dyes incorporating five- and six-membered heterocyclic rings as electron-donating and electron-withdrawing units, respectively. The influence of the dye structure, i.e., (a) the systematically varied heteroatom (NMe, S and O) in donor moiety, (b) benzannulation of the acceptor part and (c) position of the donor vs. acceptor, on the photophysical properties was evaluated by steady-state and time-resolved spectroscopy across solvents of varying polarity. To probe solvatochromic behavior, the Reichardt parameters and the Catalán four-parameter scale, including polarizability (SP), dipolarity (SdP), acidity (SA) and basicity (SB) parameters, were applied. Emission dynamics were further analyzed through time-resolved fluorescence spectroscopy employing multi-exponential decay models to accurately describe fluorescence lifetimes. Time-dependent density functional theory (TDDFT) calculations supported the experimental findings by elucidating electronic structures, charge-transfer character, and dipole moments in the ground and excited states. The experimental results show the introduction of O or S instead of NMe causes substantial hypsochromic shifts in the absorption and emission bands. Benzannulation enhances the photoinduced charge transfer and causes red-shifted absorption spectra to be obtained without deteriorating the emission properties. Hence, by introducing an appropriate modification, it is possible to design materials with tunable photophysical properties for practical applications, e.g., in opto-electronics or sensing. Full article
Show Figures

Figure 1

14 pages, 1955 KB  
Article
Investigation of Photorecoordination Kinetics for Complexes of Bis(aza-18-crown-6)-Containing Dienones with Alkali and Alkaline-Earth Metal Cations via Time-Resolved Absorption Spectroscopy: Structure vs. Properties
by Oleg A. Alatortsev, Valeriy V. Volchkov, Mikhail N. Khimich, Ivan D. Sorokin, Mikhail Ya. Melnikov, Fedor E. Gostev, Ivan V. Shelaev, Victor A. Nadtochenko, Marina V. Fomina and Sergey P. Gromov
Molecules 2025, 30(19), 4005; https://doi.org/10.3390/molecules30194005 - 7 Oct 2025
Viewed by 356
Abstract
The analysis of time-resolved S1–Sn absorption spectra in the 0–500 ps range, together with quantum-chemical calculations, uncovered a photorecoordination reaction for the following complexes of CD6 (a bis(aza-18-crown-6)-containing dienone (ketocyanine dye) with a central cyclohexanone fragment): CD6·(Mn+)2 [...] Read more.
The analysis of time-resolved S1–Sn absorption spectra in the 0–500 ps range, together with quantum-chemical calculations, uncovered a photorecoordination reaction for the following complexes of CD6 (a bis(aza-18-crown-6)-containing dienone (ketocyanine dye) with a central cyclohexanone fragment): CD6·(Mn+)2 (M = Ba2+, Sr2+, Ca2+, K+). This process takes place over hundreds of fs and involves an “axial-to-equatorial” conformational change, with the solvation shell undergoing rearrangement as well. The characteristic photorecoordination times were found to correlate with the stability constants of the complexes. The lifetimes for the fluorescent states of CD6 and its complexes, namely CD6·(Mn+)2 (M = Ba2+, Sr2+, Ca2+, K+), are different; ergo, there is no photoejection of crowned cations into the solution. The calculated conformational profiles in the ground and excited states indicate the presence of an energy barrier in this process. A general photorelaxation pathway is suggested for CD6·(Mn+)2 metal complexes (M = Ba2+, Sr2+, Ca2+, K+). The coordination of cations via the carbonyl moiety in the dye molecule promotes photorecoordination of metal cations in the cavities of the azacrown ether fragment. Photorecoordination times were found to correlate with the degree of conjugation between the lone pairs in the N atoms of the aza-18-crown-6 ether and the π subsystem in the dye molecules (established for the CD4–CD6 metal–dye complex series, where CD4 and CD5 are related dyes with central cyclobutanone and cyclopentanone fragments, respectively). Full article
(This article belongs to the Section Macromolecular Chemistry)
Show Figures

Graphical abstract

25 pages, 9362 KB  
Review
In Situ Raman Spectroscopy Reveals Structural Evolution and Key Intermediates on Cu-Based Catalysts for Electrochemical CO2 Reduction
by Jinchao Zhang, Honglin Gao, Zhen Wang, Haiyang Gao, Li Che, Kunqi Xiao and Aiyi Dong
Nanomaterials 2025, 15(19), 1517; https://doi.org/10.3390/nano15191517 - 3 Oct 2025
Viewed by 1091
Abstract
Electrochemical CO2 reduction reaction (CO2RR) is a key technology for achieving carbon neutrality and efficient utilization of renewable energy, capable of converting CO2 into high-value-added carbon-based fuels and chemicals. Copper (Cu)-based catalysts have attracted significant attention due to their [...] Read more.
Electrochemical CO2 reduction reaction (CO2RR) is a key technology for achieving carbon neutrality and efficient utilization of renewable energy, capable of converting CO2 into high-value-added carbon-based fuels and chemicals. Copper (Cu)-based catalysts have attracted significant attention due to their unique performance in generating multi-carbon (C2+) products such as ethylene and ethanol; however, there are still many controversies regarding their complex reaction mechanisms, active sites, and the dynamic evolution of intermediates. In situ Raman spectroscopy, with its high surface sensitivity, applicability in aqueous environments, and precise detection of molecular vibration modes, has become a powerful tool for studying the structural evolution of Cu catalysts and key reaction intermediates during CO2RR. This article reviews the principles of electrochemical in situ Raman spectroscopy and its latest developments in the study of CO2RR on Cu-based catalysts, focusing on its applications in monitoring the dynamic structural changes of the catalyst surface (such as Cu+, Cu0, and Cu2+ oxide species) and identifying key reaction intermediates (such as *CO, *OCCO(*O=C-C=O), *COOH, etc.). Numerous studies have shown that Cu-based oxide precursors undergo rapid reduction and surface reconstruction under CO2RR conditions, resulting in metallic Cu nanoclusters with unique crystal facets and particle size distributions. These oxide-derived active sites are considered crucial for achieving high selectivity toward C2+ products. Time-resolved Raman spectroscopy and surface-enhanced Raman scattering (SERS) techniques have further revealed the dynamic characteristics of local pH changes at the electrode/electrolyte interface and the adsorption behavior of intermediates, providing molecular-level insights into the mechanisms of selectivity control in CO2RR. However, technical challenges such as weak signal intensity, laser-induced damage, and background fluorescence interference, and opportunities such as coupling high-precision confocal Raman technology with in situ X-ray absorption spectroscopy or synchrotron radiation Fourier transform infrared spectroscopy in researching the mechanisms of CO2RR are also put forward. Full article
Show Figures

Graphical abstract

21 pages, 2160 KB  
Article
Highly Stable Supramolecular Donor–Acceptor Complexes Involving (Z)-, (E)-di(3-pyridyl)ethylene Derivatives as Weak Acceptors: Structure—Property Relationships
by Artem I. Vedernikov, Valeriy V. Volchkov, Mikhail N. Khimich, Mikhail Y. Mel’nikov, Fedor E. Gostev, Ivan V. Shelaev, Victor A. Nadtochenko, Lyudmila G. Kuz’mina, Judith A. K. Howard, Asya A. Efremova, Mikhail V. Rusalov and Sergey P. Gromov
Molecules 2025, 30(19), 3920; https://doi.org/10.3390/molecules30193920 - 29 Sep 2025
Viewed by 373
Abstract
The Z-isomer of N,N’-diammoniopropyl derivative of di(3-pyridyl)ethylene was synthesized. The structure and stability of complexes between this non-planar weak acceptor (A, (Z)-2) and a planar strong donor, the E-isomer of bis(18-crown-6)stilbene (D, (E [...] Read more.
The Z-isomer of N,N’-diammoniopropyl derivative of di(3-pyridyl)ethylene was synthesized. The structure and stability of complexes between this non-planar weak acceptor (A, (Z)-2) and a planar strong donor, the E-isomer of bis(18-crown-6)stilbene (D, (E)-1), were studied using X-ray diffraction, 1H NMR spectroscopy, and optical spectroscopy, including 1H NMR and spectrofluorimetric titrations. In MeCN, the components form a very stable pseudocyclic bimolecular complex (logKD·A = 8.48) due to homoditopic coordination of the ammonium groups of the acceptor to the crown moieties of the donor through numerous hydrogen bonds. Intrasupramolecular photo-driven electron transfer (ET) in the isomeric complexes of (E)-1 with (E)- and (Z)-2 was studied using steady-state absorption and fluorescence spectroscopy with time-resolved pulse absorption spectroscopy. It was found that back ET is approximately two times faster in complex (E)-(Z)-2 than in closely related (E)-(E)-2. Meanwhile, it is ~67 times slower in complex (E)-(E)-2 than in the isomeric complex based on N,N’-diammoniopropyl derivative of (E)-di(4-pyridyl)ethylene. Quantum chemical (DFT, TD-DFT) calculations suggest the actual photorelaxation pathway for the complexes under study. Full article
(This article belongs to the Section Photochemistry)
Show Figures

Graphical abstract

25 pages, 13991 KB  
Review
Progress and Prospects in FRET for the Investigation of Protein–Protein Interactions
by Yue Zhang, Xinyue Ma, Meihua Zhu, Vivien Ya-Fan Wang and Jiajia Guo
Biosensors 2025, 15(9), 624; https://doi.org/10.3390/bios15090624 - 19 Sep 2025
Viewed by 1075
Abstract
Protein–protein interactions (PPIs) play a crucial role in various biological processes, including signal transduction, transcriptional regulation, and metabolic pathways. Over the years, many methods have been developed to study PPIs, such as yeast two-hybrid (Y2H), co-immunoprecipitation (Co-IP), pull-down assays, and surface plasmon resonance [...] Read more.
Protein–protein interactions (PPIs) play a crucial role in various biological processes, including signal transduction, transcriptional regulation, and metabolic pathways. Over the years, many methods have been developed to study PPIs, such as yeast two-hybrid (Y2H), co-immunoprecipitation (Co-IP), pull-down assays, and surface plasmon resonance (SPR). However, each of these techniques has its own limitations, including false positives, a lack of specific binding partners, and restricted interaction zones. Fluorescence resonance energy transfer (FRET) has emerged as a powerful technique for investigating PPIs, offering several advantages over traditional methods. Recent advancements in fluorescence microscopy have further enhanced its application in PPI studies. In this review, we summarize recent developments in FRET-based approaches and their applications in PPIs research over the past five years, including conventional FRET, time-resolved FRET (TR-FRET), fluorescence lifetime imaging microscopy-FRET (FLIM-FRET), single-molecule FRET (smFRET), fluorescence cross-correlation spectroscopy FRET (FCCS-FRET), and provide guidance on selecting the most appropriate method for PPIs studies. Full article
Show Figures

Figure 1

17 pages, 3753 KB  
Article
Biophysical and Computational Analysis of a Potent Antimalarial Compound Binding to Human Serum Albumin: Insights for Drug–Protein Interaction
by Kashish Azeem, Babita Aneja, Amad Uddin, Asghar Ali, Haider Thaer Abdulhameed Almuqdadi, Shailja Singh, Rajan Patel and Mohammad Abid
Sci. Pharm. 2025, 93(3), 46; https://doi.org/10.3390/scipharm93030046 - 11 Sep 2025
Viewed by 712
Abstract
We aimed to investigate the interaction mechanism of transport protein Human serum albumin (HSA) with a synthesized compound, QP-11, with tested antimalarial properties to monitor the changes in the protein because of QP-11 binding. The interaction between the antimalarial compound QP-11 and HSA [...] Read more.
We aimed to investigate the interaction mechanism of transport protein Human serum albumin (HSA) with a synthesized compound, QP-11, with tested antimalarial properties to monitor the changes in the protein because of QP-11 binding. The interaction between the antimalarial compound QP-11 and HSA was thoroughly investigated through a multidimensional approach, utilizing UV-VIS spectroscopy, fluorescence, time-resolved fluorescence, and CD (Circular dichroism), alongside molecular docking techniques. Our findings unveiled a robust 1:1 binding pattern, signifying a strong affinity between QP-11 and HSA. Employing static quenching, evidenced by time-resolved fluorescence spectroscopy, QP-11 was observed to induce fluorescence quenching of HSA, particularly binding to subdomain IIA. Thermodynamic parameters indicated that van der Waals forces and hydrogen bonding predominantly facilitated the binding, with increased temperature compromising complex stability. The 3D fluorescence and CD results demonstrated QP-11-induced conformational changes in HSA. Both experimental and in silico analyses suggested a spontaneous, exothermic binding reaction. The profound impact of the QP-11–HSA interaction underscores the potential for QP-11 in antimalarial drug development, encouraging further exploration for dose design and enhanced pharmacodynamic and pharmacokinetic properties. Full article
Show Figures

Graphical abstract

17 pages, 5272 KB  
Article
Enhanced Clustering of DC Partial Discharge Pulses Using Multi-Level Wavelet Decomposition and Principal Component Analysis
by Sung-Ho Yoon, Ik-Su Kwon, Jin-Seok Lim, Byung-Bae Park, Seung-Won Lee and Hae-Jong Kim
Energies 2025, 18(18), 4835; https://doi.org/10.3390/en18184835 - 11 Sep 2025
Viewed by 400
Abstract
Partial discharge (PD) is a critical indicator of insulation degradation in high-voltage DC systems, necessitating accurate diagnosis to ensure long-term reliability. Conventional AC-based diagnostic methods, such as phase-resolved partial discharge analysis (PRPDA), are ineffective under DC conditions, emphasizing the need for waveform-based analysis. [...] Read more.
Partial discharge (PD) is a critical indicator of insulation degradation in high-voltage DC systems, necessitating accurate diagnosis to ensure long-term reliability. Conventional AC-based diagnostic methods, such as phase-resolved partial discharge analysis (PRPDA), are ineffective under DC conditions, emphasizing the need for waveform-based analysis. This study presents a novel clustering framework for DC PD pulses, leveraging multi-level wavelet decomposition and statistical feature extraction. Each signal is decomposed into multiple frequency bands, and 70 distinctive waveform features are extracted from each pulse. To mitigate feature redundancy and enhance clustering performance, principal component analysis (PCA) is employed for dimensionality reduction. Experimental data were obtained from multiple defect types and measurement distances using a 22.9 kV cross-linked polyethylene (XLPE) cable system. The proposed method significantly outperformed conventional time-frequency (T-F) mapping techniques, particularly in scenarios involving signal attenuation and mixed noise. Propagation-induced distortion was effectively addressed through multi-resolution analysis. In addition, field noise sources such as HVDC converter switching transients and fluorescent lamp emissions were included to assess robustness. The results confirmed the framework’s capability to distinguish between multiple PD types and noise sources, even in challenging environments. Furthermore, optimal mother wavelet selection and correlation-based feature analysis contributed to improved clustering resolution. This framework supports robust PD classification in practical HVDC diagnostics. The framework can contribute to the development of real-time autonomous monitoring systems for HVDC infrastructure. Future research will explore incorporating temporal deep learning architectures for automated PD-type recognition based on clustered data. Full article
Show Figures

Figure 1

30 pages, 4237 KB  
Article
On the “Bi-Phase” of Fluorescence to Scattering with Single-Fiber Illumination and Detection: A Quasi-Analytical Photon-Transport Approach Operated with Center-Illuminated Area Detection
by Daqing Piao
Photonics 2025, 12(9), 904; https://doi.org/10.3390/photonics12090904 - 9 Sep 2025
Viewed by 425
Abstract
Bi-phasic (with a local minimum) response of fluorescence to scattering when probed by a single fiber (SF) was first observed in 2003. Subsequent experiments and Monte Carlo studies have shown the bi-phasic turning of SF fluorescence to occur at a dimensionless reduced scattering [...] Read more.
Bi-phasic (with a local minimum) response of fluorescence to scattering when probed by a single fiber (SF) was first observed in 2003. Subsequent experiments and Monte Carlo studies have shown the bi-phasic turning of SF fluorescence to occur at a dimensionless reduced scattering of ~1 and vary with absorption. The bi-phase of SF fluorescence received semi-empirical explanations; however, better understandings of the bi-phase and its dependence on absorption are necessary. This work demonstrates a quasi-analytical projection of a bi-phasic pattern comparable to that of SF fluorescence via photon-transport analyses of fluorescence in a center-illuminated-area-detection (CIAD) geometry. This model-approach is principled upon scaling of the diffuse fluorescence between CIAD and a SF of the same size of collection, which expands the scaling of diffuse reflectance between CIAD and a SF discovered for steady-state and time-domain cases. Analytical fluorescence for CIAD is then developed via radial-integration of radially resolved fluorescence. The radiance of excitation is decomposed to surface, collimated, and diffusive portions to account for the surface, near the point-of-entry, and diffuse portion of fluorescence associated with a centered illumination. Radiative or diffuse transport methods are then used to quasi-analytically deduce fluorescence excited by the three portions of radiance. The resulting model of fluorescence for CIAD, while limiting to iso-transport properties at the excitation and emission wavelengths, is compared against the semi-empirical model for SF, revealing bi-phasic turning [0.5~2.6] at various geometric sizes [0.2, 0.4, 0.6, 0.8, 1.0 mm] and a change of three orders of magnitude in the absorption of the background medium. This model projects a strong reduction in fluorescence versus strong absorption at high scattering, which differs from the semi-empirical SF model’s projection of a saturating pattern unresponsive to further increases in the absorption. This framework of modeling fluorescence may be useful to project frequency-domain and lifetime pattens of fluorescence in an SF and CIAD. Full article
(This article belongs to the Section Biophotonics and Biomedical Optics)
Show Figures

Figure 1

12 pages, 2469 KB  
Article
Fluorescence Lifetime as a Ruler: Quantifying Sm3+ Doping Levels in Na4La2 (CO3)5 Crystals via Time-Resolved Luminescence Decay
by Shijian Sun, Mengquan Liu, Zheng Li, Junqiang Cheng and Dechuan Li
Coatings 2025, 15(9), 1012; https://doi.org/10.3390/coatings15091012 - 1 Sep 2025
Viewed by 560
Abstract
Hollow dendritic Na4La2(CO3)5 crystals doped with Sm3+ ions were synthesized with sodium carbonate using a hydrothermal method. The unique lifetime of Sm3+ enables the optical measurement of luminescent ion content. The X-ray diffraction spectrum [...] Read more.
Hollow dendritic Na4La2(CO3)5 crystals doped with Sm3+ ions were synthesized with sodium carbonate using a hydrothermal method. The unique lifetime of Sm3+ enables the optical measurement of luminescent ion content. The X-ray diffraction spectrum indicates that the nanocrystals maintain structural stability with a hexagonal arrangement, even when the concentration of Sm3+ reaches 50 at.%. As the concentration of Sm3+ increases, the emission intensity of Na4(La1−xSmx)2(CO3)5 first rises and then falls. The maximum emission intensity of the fluorescent powder occurs at a Sm3+ concentration of 0.04. Beyond this concentration, concentration quenching takes place, primarily due to electric dipole–dipole interactions. Using an excitation wavelength of 404 nm and monitoring at 596 nm, the fluorescence lifetime of Na4(La1−xSmx)2(CO3)5 shows a strong dependence on Sm3+ concentration, which can be described by a precise equation. Over the range of Sm3+ concentrations from 0.005 to 1, the lifetime decreases from 3.126 ms to 0.023 ms. Therefore, optical monitoring of fluorescent powders is crucial for confirming the composition of coatings used in applications such as solid-state lighting and anti-counterfeiting, by utilizing the relationship between lifetime and doping concentration. Full article
Show Figures

Figure 1

25 pages, 1253 KB  
Article
In Vitro Bioaccessibility and Speciation of Toxic and Nutritional Trace Elements in Brazil Nuts
by Astrid Barkleit, Jiyoung Eum, Diana Walther, Daniel Butscher, Sebastian Friedrich, Katharina Müller and Jerome Kretzschmar
Int. J. Mol. Sci. 2025, 26(17), 8312; https://doi.org/10.3390/ijms26178312 - 27 Aug 2025
Viewed by 1050
Abstract
Brazil nuts (Bertholletia excelsa), mainly from the Amazon, are notable for their exceptionally high selenium (Se) content and are widely consumed as a natural dietary supplement. They also contain potentially harmful elements, including barium (Ba), and exhibit an unusual capacity to [...] Read more.
Brazil nuts (Bertholletia excelsa), mainly from the Amazon, are notable for their exceptionally high selenium (Se) content and are widely consumed as a natural dietary supplement. They also contain potentially harmful elements, including barium (Ba), and exhibit an unusual capacity to accumulate radioactive radium (Ra). In this study, we quantified the concentrations of Se, Ba, strontium (Sr), lanthanum (La), europium (Eu), and the radionuclides 226Ra and 228Ra, and assessed their in vitro bioaccessibility—data largely unavailable for these elements to date. Se was highly bioaccessible (≈85%), whereas Ba and Ra, both chemo- and/or radiotoxic, exhibited low bioaccessibility (≈2% each). Nuclear magnetic resonance (NMR) spectroscopy revealed Se to occur predominantly as selenomethionine (SeMet), alongside phytate, amino acids, peptides, and other polar low-molecular-weight compounds. The influence of Brazil nut flour (BNF) on Eu(III) speciation in simulated gastrointestinal fluids, and the effect of chelating agents such as ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), and the hydroxypyridinone 3,4,3-LI(1,2-HOPO) were investigated using time-resolved laser-induced fluorescence spectroscopy (TRLFS). Results indicate that the food matrix has only a minor impact on the decorporation efficacy of these chelators. These findings provide novel insights into the bioaccessibility and chemical speciation of nutritionally and toxicologically relevant elements in Brazil nuts. Full article
(This article belongs to the Special Issue Macro- and Micronutrients in Health and Diseases)
Show Figures

Graphical abstract

17 pages, 4347 KB  
Article
Carbon Quantum Dot-Embedded SiO2: PMMA Hybrid as a Blue-Emitting Plastic Scintillator for Cosmic Ray Detection
by Lorena Cruz León, Martin Rodolfo Palomino Merino, José Eduardo Espinosa Rosales, Samuel Tehuacanero Cuapa, Benito de Celis Alonso, Oscar Mario Martínez Bravo, Oliver Isac Ruiz-Hernandez, José Gerardo Suárez García, Miller Toledo-Solano and Jesús Eduardo Lugo Arce
Photonics 2025, 12(9), 854; https://doi.org/10.3390/photonics12090854 - 26 Aug 2025
Cited by 1 | Viewed by 1033
Abstract
This work reports the synthesis and characterization of Carbon Quantum Dots (CQDs) embedded in an organic–inorganic hybrid SiO2: PMMA matrix, designed as a novel plastic scintillator material. The CQDs were synthesized through a solvo-hydrothermal method and incorporated using a sol–gel polymerization [...] Read more.
This work reports the synthesis and characterization of Carbon Quantum Dots (CQDs) embedded in an organic–inorganic hybrid SiO2: PMMA matrix, designed as a novel plastic scintillator material. The CQDs were synthesized through a solvo-hydrothermal method and incorporated using a sol–gel polymerization process, resulting in a mechanically durable and optically active hybrid. Structural analysis with X-ray diffraction and TEM confirmed crystalline quantum dots approximately 10 nm in size. Extensive optical characterization, including band gap measurement, photoluminescence under 325 nm UV excitation, lifetime evaluations, and quantum yield measurement, revealed a blue emission centered at 426 nm with a decay time of 3–3.6 ns. The hybrid scintillator was integrated into a compact cosmic ray detector using a photomultiplier tube optimized for 420 nm detection. The system effectively detected secondary atmospheric muons produced by low-energy cosmic rays, validated through the vertical equivalent muon (VEM) technique. These findings highlight the potential of CQD-based hybrid materials for advanced optical sensing and scintillation applications in complex environments, supporting the development of compact and sensitive detection systems. Full article
Show Figures

Figure 1

22 pages, 5884 KB  
Article
Clinical Integration of NIR-II Fluorescence Imaging for Cancer Surgery: A Translational Evaluation of Preclinical and Intraoperative Systems
by Ritesh K. Isuri, Justin Williams, David Rioux, Paul Dorval, Wendy Chung, Pierre-Alix Dancer and Edward J. Delikatny
Cancers 2025, 17(16), 2676; https://doi.org/10.3390/cancers17162676 - 17 Aug 2025
Viewed by 1193
Abstract
Background/Objectives: Back table fluorescence imaging performed on freshly excised tissue specimens represents a critical step in fluorescence-guided surgery, enabling rapid assessment of tumor margins before final pathology. While most preclinical NIR-II imaging platforms, such as the IR VIVO (Photon, etc.), offer high-resolution [...] Read more.
Background/Objectives: Back table fluorescence imaging performed on freshly excised tissue specimens represents a critical step in fluorescence-guided surgery, enabling rapid assessment of tumor margins before final pathology. While most preclinical NIR-II imaging platforms, such as the IR VIVO (Photon, etc.), offer high-resolution and depth-sensitive imaging under controlled, enclosed conditions, they are not designed for intraoperative or point-of-care use. This study compares the IR VIVO with the LightIR system, a more compact and clinically adaptable imaging platform using the same Alizé 1.7 InGaAs detector, to evaluate whether the LightIR can offer comparable performance for back table NIR-II imaging under ambient light. Methods: Standardized QUEL phantoms containing indocyanine green (ICG) and custom agar-based tissue-mimicking phantoms loaded with IR-1048 were imaged on both systems. Imaging sensitivity, spatial resolution, and depth penetration were quantitatively assessed. LightIR was operated in pulse-mode under ambient lighting, mimicking back table or intraoperative use, while IR VIVO was operated in a fully enclosed configuration. Results: The IR VIVO system achieved high spatial resolution (~125 µm) and detected ICG concentrations as low as 30 nM in NIR-I and 300 nM in NIR-II. The LightIR system, though requiring longer exposure times, successfully resolved features down to ~250 µm and detected ICG to depths ≥4 mm. Importantly, the LightIR maintained robust NIR-II contrast under ambient lighting, aided by real-time background subtraction, and enabled clear visualization of subsurface IR-1048 targets in unshielded phantom setups, conditions relevant to back table workflows. Conclusions: LightIR offers performance comparable to the IR VIVO in terms of depth penetration and spatial resolution, while also enabling open-field NIR-II imaging without the need for a blackout enclosure. These features position the LightIR as a practical alternative for rapid, high-contrast fluorescence assessment during back table imaging. The availability of such clinical-grade systems may catalyze the development of new NIR-II fluorophores tailored for real-time surgical applications. Full article
(This article belongs to the Special Issue Application of Fluorescence Imaging in Cancer)
Show Figures

Graphical abstract

15 pages, 2022 KB  
Article
Dual-Emission Au-Ag Nanoclusters with Enhanced Photoluminescence and Thermal Sensitivity for Intracellular Ratiometric Nanothermometry
by Helin Liu, Zhongliang Zhou, Zhiwei Wang, Jianhai Wang, Yu Wang, Lu Huang, Tianhuan Guo, Rongcheng Han and Yuqiang Jiang
Biosensors 2025, 15(8), 510; https://doi.org/10.3390/bios15080510 - 6 Aug 2025
Viewed by 721
Abstract
We report the development of highly luminescent, bovine serum albumin (BSA)-stabilized gold–silver bimetallic nanoclusters (Au-AgNCs@BSA) as a novel platform for high-sensitivity, ratiometric intracellular temperature sensing. Precise and non-invasive temperature sensing at the nanoscale is crucial for applications ranging from intracellular thermogenesis monitoring to [...] Read more.
We report the development of highly luminescent, bovine serum albumin (BSA)-stabilized gold–silver bimetallic nanoclusters (Au-AgNCs@BSA) as a novel platform for high-sensitivity, ratiometric intracellular temperature sensing. Precise and non-invasive temperature sensing at the nanoscale is crucial for applications ranging from intracellular thermogenesis monitoring to localized hyperthermia therapies. Traditional luminescent thermometric platforms often suffer from limitations such as high cytotoxicity and low photostability. Here, we synthesized Au-AgNCs@BSA via a one-pot aqueous reaction, achieving significantly enhanced photoluminescence quantum yields (PL QYs, up to 18%) and superior thermal responsiveness compared to monometallic counterparts. The dual-emissive Au-AgNCs@BSA exhibit a linear ratiometric fluorescence response to temperature fluctuations within the physiological range (20–50 °C), enabling accurate and concentration-independent thermometry in live cells. Time-resolved PL and Arrhenius analyses reveal two distinct emissive states and a high thermal activation energy (Ea = 199 meV), indicating strong temperature dependence. Silver doping increases radiative decay rates while maintaining low non-radiative losses, thus amplifying fluorescence intensity and thermal sensitivity. Owing to their small size, excellent photostability, and low cytotoxicity, these nanoclusters were applied to non-invasive intracellular temperature mapping, presenting a promising luminescent nanothermometer for real-time cellular thermogenesis monitoring and advanced bioimaging applications. Full article
(This article belongs to the Section Nano- and Micro-Technologies in Biosensors)
Show Figures

Figure 1

Back to TopTop