Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,686)

Search Parameters:
Keywords = tissue vitality

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1302 KB  
Article
Construction and Characterization of Immortalized Skin Fibroblasts from Milu Deer
by Pan Zhang, Riujia Liu, Zhenyu Zhong, Yunfang Shan, Zhibin Cheng, Qingyun Guo, Hao Zhang, Frank Hailer and Jiade Bai
Animals 2025, 15(19), 2889; https://doi.org/10.3390/ani15192889 - 2 Oct 2025
Abstract
Somatic cell preservation is an effective strategy for conserving the genetic potential of endangered species. To contribute to the conservation of the Milu deer (Elaphurus davidianus), this study aimed to establish and characterize an immortalized skin fibroblast cell line (ML-iSFC). The [...] Read more.
Somatic cell preservation is an effective strategy for conserving the genetic potential of endangered species. To contribute to the conservation of the Milu deer (Elaphurus davidianus), this study aimed to establish and characterize an immortalized skin fibroblast cell line (ML-iSFC). The cell line is based on fibroblasts from the skin tissue of a male fawn of Milu deer. Optimal culture conditions were determined by supplementing the culture medium with different growth factors, and immortalization was achieved through simian virus 40 large T antigen (SV40T) transduction. Optimal culturing conditions for the cells were determined by adding a range of growth factors. The cellular morphology, growth characteristics, and marker expression of the cells were further evaluated. Cell cycle and proliferation were assessed by flow cytometry and CCK-8 assays, respectively. Chromosomes were determined by karyotype analysis. The highest cell growth rate was observed when the culture medium was supplemented with 3 ng/mL of FGF2. The fibroblast-specific marker vimentin (VIM) was expressed in both ML-SFC and ML-iSFC, while the epithelial marker keratin 18 (KRT18) was weakly expressed in ML-SFC cells. Cell proliferation and cell-cycle analysis revealed that ML-iSFC exhibited a higher growth rate and greater vitality compared to ML-SFC. Karyotype analysis showed that ML-iSFC maintained the same chromosome number and morphology as ML-SFC. In summary, this study reports the successful construction of an immortalized fibroblast cell line from Milu deer, which will serve as a valuable tool for Milu deer conservation. Full article
(This article belongs to the Section Animal Genetics and Genomics)
25 pages, 1035 KB  
Review
Immune Activation Following Spinal Cord Injury: A Review Focused on Inflammatory Changes in the Spinal Cord
by Diogo Nascimento, Ana Ferreira and Célia Duarte Cruz
Int. J. Mol. Sci. 2025, 26(19), 9624; https://doi.org/10.3390/ijms26199624 - 2 Oct 2025
Abstract
Spinal cord injury (SCI) poses a substantial physical, psychological and social burden. Although many therapies are currently available, it is still impossible to fully restore the lost organic functions of SCI patients. An important event in SCI physiopathology is the development of a [...] Read more.
Spinal cord injury (SCI) poses a substantial physical, psychological and social burden. Although many therapies are currently available, it is still impossible to fully restore the lost organic functions of SCI patients. An important event in SCI physiopathology is the development of a neuron-repulsive fibrotic scar at the lesion site, a barrier that hampers neuronal growth and contributes to long-term functional impairment. This neuron-repulsive scar is present in severe spinal cord injuries in humans but is absent in some animals capable of natural regeneration. In humans and other mammals, various immune cells take part in the development and maturation of the glial scar, and cytokines and other molecular factors regulate the associated histologic changes. Pro-inflammatory cytokines and complement system proteins tend to be overexpressed early after SCI, but anti-inflammatory cytokines also participate in the remodelling of the injured tissue by regulating the excessively pro-inflammatory environment. This inflammatory regulation is not entirely successful in humans, and inflammation inhibitor drugs offer promising avenues for SCI treatment. Some non-specific immunosuppressor drugs have already been studied, but targeted modulation therapies may be more efficient and less prone to secondary effects. Continued experimental research and clinical trials are vital to advance findings and develop effective treatments, aiming to overcome the barriers to spinal cord regeneration and improve recovery for SCI patients. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

27 pages, 8112 KB  
Article
Detection of Abiotic Stress in Potato and Sweet Potato Plants Using Hyperspectral Imaging and Machine Learning
by Min-Seok Park, Mohammad Akbar Faqeerzada, Sung Hyuk Jang, Hangi Kim, Hoonsoo Lee, Geonwoo Kim, Young-Son Cho, Woon-Ha Hwang, Moon S. Kim, Insuck Baek and Byoung-Kwan Cho
Plants 2025, 14(19), 3049; https://doi.org/10.3390/plants14193049 - 2 Oct 2025
Abstract
As climate extremes increasingly threaten global food security, precision tools for early detection of crop stress have become vital, particularly for root crops such as potato (Solanum tuberosum L.) and sweet potato (Ipomoea batatas L. Lam.), which are especially susceptible to [...] Read more.
As climate extremes increasingly threaten global food security, precision tools for early detection of crop stress have become vital, particularly for root crops such as potato (Solanum tuberosum L.) and sweet potato (Ipomoea batatas L. Lam.), which are especially susceptible to environmental stressors throughout their life cycles. In this study, plants were monitored from the initial onset of seasonal stressors, including spring drought, heat, and episodes of excessive rainfall, through to harvest, capturing the full range of physiological and biochemical responses under seasonal, simulated conditions in greenhouses. The spectral data were obtained from regions of interest (ROIs) of each cultivar’s leaves, with over 3000 data points extracted per cultivar; these data were subsequently used for model development. A comprehensive classification framework was established by employing machine learning models, Support Vector Machine (SVM), Linear Discriminant Analysis (LDA), and Partial Least Squares-Discriminant Analysis (PLS-DA), to detect stress across various growth stages. Furthermore, severity levels were objectively defined using photoreflectance indices and principal component analysis (PCA) data visualizations, which enabled consistent and reliable classification of stress responses in both individual cultivars and combined datasets. All models achieved high classification accuracy (90–98%) on independent test sets. The application of the Successive Projections Algorithm (SPA) for variable selection significantly reduced the number of wavelengths required for robust stress classification, with SPA-PLS-DA models maintaining high accuracy (90–96%) using only a subset of informative bands. Furthermore, SPA-PLS-DA-based chemical imaging enabled spatial mapping of stress severity within plant tissues, providing early, non-invasive insights into physiological and biochemical status. These findings highlight the potential of integrating hyperspectral imaging and machine learning for precise, real-time crop monitoring, thereby contributing to sustainable agricultural management and reduced yield losses. Full article
(This article belongs to the Section Plant Modeling)
Show Figures

Figure 1

20 pages, 10152 KB  
Article
In Vivo Comparison of Resin-Modified and Pure Calcium-Silicate Cements for Direct Pulp Capping
by Fatma Fenesha, Aonjittra Phanrungsuwan, Brian L. Foster, Anibal Diogenes and Sarah B. Peters
Appl. Sci. 2025, 15(19), 10639; https://doi.org/10.3390/app151910639 - 1 Oct 2025
Abstract
Introduction: Direct pulp capping (DPC) aims to preserve the vitality of the dental pulp by placing a protective biocompatible material over the exposed pulp tissue to facilitate healing. There are several calcium-silicate materials that have been designed to promote mineralization and the regulation [...] Read more.
Introduction: Direct pulp capping (DPC) aims to preserve the vitality of the dental pulp by placing a protective biocompatible material over the exposed pulp tissue to facilitate healing. There are several calcium-silicate materials that have been designed to promote mineralization and the regulation of inflammation. These have strong potential for the repair and regeneration of dental pulp. Among them, Biodentine (BD) and EndoSequence RRM Putty (ES) have been found to promote in vitro and in vivo mineralization while minimizing some of the limitations of the first-generation calcium-silicate-based materials. Theracal-LC (TLC), a light-cured, resin-modified calcium-silicate material, is a newer product with potential to improve the clinical outcomes of DPC, but existing studies have reported conflicting findings regarding its biocompatibility and ability to support pulpal healing in direct contact with the pulp. A comprehensive assessment of the biocompatibility and pulpal protection provided by these three capping materials has not yet been performed. Aim: We aimed to quantify the inflammatory response, dentin bridge formation, and material adaptation following DPC using three calcium-silicate materials: ES, BD, and TLC. Materials and Methods: DPC was performed on the maxillary first molar of C57BL/6 female mice. Maxilla were collected and processed at 1 and 21 days post-DPC. The early inflammatory response was measured 24 h post-procedure using confocal imaging of anti-Lys6G6C, which indicates the extent of neutrophil and monocyte infiltration. Reparative mineralized bridge formation was assessed at 21 days post-procedure using high-resolution micro-computed tomography (micro-CT) and histology. Lastly, the homogeneity of the capping materials was evaluated by quantifying voids in calcium-silicate restorations using micro-CT. Results: DPC using TLC induced less infiltration of Lys6G6C+ cells at 24 h than BD or ES. BD promoted higher volumes of tertiary dentin than TLC, but TLC and ES showed no significant differences in volume. No differences were observed in material adaptation and void spaces among the three capping materials. Conclusions: All three materials under investigation supported pulp healing and maintained marginal integrity. However, TLC induced a lower inflammatory response on day 1 and induced similar levels of tertiary dentin to ES. These observations challenge the common perception that resin-based capping materials are not suitable for direct pulp capping. Our findings underscore the need to balance biological responses with physical properties when selecting pulp capping materials to improve long-term clinical success. Full article
Show Figures

Figure 1

23 pages, 2559 KB  
Review
Mechanisms of Interleukin-10-Mediated Immunosuppression in Viral Infections
by Zijing Guo, Qifu He, Yan Zhang, Yuling Li and Zhidong Zhang
Pathogens 2025, 14(10), 989; https://doi.org/10.3390/pathogens14100989 - 1 Oct 2025
Abstract
Interleukin-10 (IL-10), a potent anti-inflammatory cytokine, plays a vital role in regulating immune responses across various infectious and inflammatory conditions. While IL-10 is essential for preventing excessive tissue damage and maintaining immune homeostasis (e.g., respiratory syncytial virus), its elevated levels could result in [...] Read more.
Interleukin-10 (IL-10), a potent anti-inflammatory cytokine, plays a vital role in regulating immune responses across various infectious and inflammatory conditions. While IL-10 is essential for preventing excessive tissue damage and maintaining immune homeostasis (e.g., respiratory syncytial virus), its elevated levels could result in immunosuppression during viral infections, enabling viruses to evade host defenses (e.g., foot-and-mouth disease virus). This review aims to elucidate the mechanisms through which IL-10 mediates immunosuppression in viral infections and to explore the implications of these mechanisms for therapeutic intervention. The key scientific concepts outlined in this review include the mechanisms of IL-10 production and its varied impacts on the immune response during viral infections. Specifically, we discuss the multifaceted inhibitory effects of IL-10 on innate and adaptive immunity, including its implications for antigen presentation, T cells activation, pro-inflammatory cytokine production, immune cell differentiation, trafficking, apoptosis, and co-inhibitory expression related to T cells exhaustion. Finally, we discuss the therapeutic potential of targeting IL-10, such as monoclonal antibodies and small molecule inhibitors, and their potential to restore effective immune responses. By summarizing current knowledge on IL-10’s role in viral infections, this review offers a thorough insight into its immunosuppressive mechanisms and their therapeutic potential, paving the way for innovative treatment strategies in viral diseases. Full article
Show Figures

Figure 1

12 pages, 4294 KB  
Article
Overexpression of GhCAD6 in Upland Cotton (Gossypium hirsutum L.) Enhances Fiber Quality and Increases Lignin Content in Fibers
by Zumuremu Tuerxun, Chenyu Li, Xiaorong Li, Yuanxin Li, Xinxin Qin, Hui Zhang, Yang Yang, Guo Chen, Juan Li, Zhigang Liu, Xunji Chen, Darun Cai and Bo Li
Int. J. Mol. Sci. 2025, 26(19), 9518; https://doi.org/10.3390/ijms26199518 - 29 Sep 2025
Abstract
Cotton is a vital economic crop, and cotton fiber serves as the primary raw material for the textile industry. Lignin in cotton fiber is closely associated with fiber quality. Lignin is synthesized through the phenylpropanoid metabolic pathway, where the cinnamyl alcohol dehydrogenase gene [...] Read more.
Cotton is a vital economic crop, and cotton fiber serves as the primary raw material for the textile industry. Lignin in cotton fiber is closely associated with fiber quality. Lignin is synthesized through the phenylpropanoid metabolic pathway, where the cinnamyl alcohol dehydrogenase gene CAD6 plays a significant role. In this study, we obtained successfully transformed overexpression plants by constructing an overexpression vector and performing genetic transformation and tissue culture. To verify the function of the GhCAD6 gene in upland cotton, we analyzed the agronomic traits, fiber quality, cell wall structure, and lignin content of GhCAD6-overexpressing plants. Our results indicate that the GhCAD6 gene is predominantly expressed during the stages of fiber elongation and secondary wall synthesis. Overexpression of the GhCAD6 gene resulted in increased plant lignin content and fiber upper half mean length, boll number per plant, fiber uniformity index, strength, and lint were improved. The fiber surface was smoother, and the fiber cell wall was more compact. These findings demonstrate that the GhCAD6 gene positively regulates lignin synthesis and fiber quality formation, contributing to the enhancement of cotton fiber quality. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

16 pages, 8060 KB  
Article
Endophytic Fungal Diversity in Carpesium lipskyi from the Gaoligong Mountains, Yunnan, China
by Hancaiyuan Zheng, Qun Liu, Yining Di, Tao Liu, Yu Su, Yuqin He, Juntong Chen, Jingyi Peng, Shiou Yih Lee, Inh Thkim Hoa, Xianhan Huang and Lufeng Liu
J. Fungi 2025, 11(10), 704; https://doi.org/10.3390/jof11100704 - 28 Sep 2025
Abstract
Endophytic fungi represent key microbial symbionts that colonize internal plant tissues without causing apparent disease, playing vital roles in host growth, stress resistance, and biosynthesis of bioactive compounds. Carpesium lipskyi C. Winkl., a medicinal plant endemic to the Gaoligong Mountains in Yunnan, remains [...] Read more.
Endophytic fungi represent key microbial symbionts that colonize internal plant tissues without causing apparent disease, playing vital roles in host growth, stress resistance, and biosynthesis of bioactive compounds. Carpesium lipskyi C. Winkl., a medicinal plant endemic to the Gaoligong Mountains in Yunnan, remains largely unexplored regarding its endophytic fungal composition. In this study, a total of 737 amplicon sequence variants (ASVs) were identified through high-throughput sequencing, spanning 9 phyla, 36 classes, 67 orders, 137 families, 206 genera, and 277 species. The dominant phyla were Ascomycota, Basidiomycota, and Glomeromycota. Alpha diversity in stems and leaves followed a unimodal distribution along the elevational gradient, in contrast to root endophytic communities, which showed no significant correlation with altitude. Peak diversity occurred at 2734 m, indicating a non-linear altitude-diversity relationship. Altitude, along with stable precipitation and temperature (2600–3210 m), significantly influenced fungal diversity. Medicinal fungi such as Cladosporium sp., Meyerozyma guilliermondii, Phialocephala fortinii, and Rhodotorula mucilaginosa were found in either roots or stems. This is the first comprehensive assessment of endophytic fungi in C. lipskyi from this region, providing a foundation for future ecological and pharmacological studies. Full article
(This article belongs to the Section Fungal Evolution, Biodiversity and Systematics)
Show Figures

Figure 1

17 pages, 6077 KB  
Article
Identification of Chalcone Synthase Genes and Their Responses to Salt and Cold Stress in Poncirus trifoliata
by Lijuan Jiang, Yu Sheng, Chengyang Song, Teng Liu, Shuangyu Sheng and Xiaoyong Xu
Plants 2025, 14(19), 3003; https://doi.org/10.3390/plants14193003 - 28 Sep 2025
Abstract
Chalcone Synthase (CHS) plays a vital role in flavonoid synthesis, influencing plant growth, development, and responses to both biotic and abiotic stress. In this study, 11 CHS genes were identified in Poncirus trifoliata using bioinformatics methods, with their distribution across five chromosomes and [...] Read more.
Chalcone Synthase (CHS) plays a vital role in flavonoid synthesis, influencing plant growth, development, and responses to both biotic and abiotic stress. In this study, 11 CHS genes were identified in Poncirus trifoliata using bioinformatics methods, with their distribution across five chromosomes and unassigned contigs. Each gene contains 2–3 exons and 3–8 conserved motifs. In silico prediction suggested that the PtrCHS proteins are localized in the cytoplasm. PtrCHS9 and PtrCHS11 share identical protein tertiary structures. Phylogenetic analysis classified the CHS family members into four subgroups. Synteny analysis revealed one set of collinear gene pairs within Poncirus trifoliata. Between Poncirus trifoliata and Arabidopsis thaliana, two sets of collinear gene pairs were identified, while one such set was found between Poncirus trifoliata and Oryza sativa. Promoter element analysis showed the presence of various hormone response and stress response elements within PtrCHS promoters. RNA-Seq data demonstrated tissue-specific expression patterns of PtrCHSs. RT-qPCR results indicated that all CHS genes, except PtrCHS11, respond to salt stress with dynamic, member-specific patterns. Additionally, four PtrCHSs (PtrCHS3, PtrCHS5, PtrCHS7, and PtrCHS10) were significantly upregulated in response to cold treatment. Notably, PtrCHS7 and PtrCHS10 maintained high expression levels at both 6 and 12 h, implying they may be key players in cold stress response in Poncirus trifoliata. Clones of PtrCHS7 and PtrCHS10 were obtained, and overexpression vectors were constructed in preparation for gene transformation. Overall, this study provides a solid foundation for future research into the functions of the PtrCHSs. Full article
Show Figures

Figure 1

16 pages, 6045 KB  
Article
Using 0.1 THz Radiation Regulates Collagen Synthesis Through TGF-β/Smad Signaling Pathway in Human Fetal Scleral Fibroblasts
by Wenxia Wang, Liu Sun, Lei Wang, Jinwu Zhao, Shuocheng She, Pandeng Hou and Mingxia He
Cells 2025, 14(19), 1512; https://doi.org/10.3390/cells14191512 - 28 Sep 2025
Abstract
Scleral tissue is a connective tissue made up of dense, intertwined collagen fibers that plays a vital part in preserving both the integrity of vision and the shape of the eyeball. Numerous studies have been conducted on the impact of terahertz radiation on [...] Read more.
Scleral tissue is a connective tissue made up of dense, intertwined collagen fibers that plays a vital part in preserving both the integrity of vision and the shape of the eyeball. Numerous studies have been conducted on the impact of terahertz radiation on biological systems. Terahertz radiation can affect cell morphology and function by mediating modifications in protein conformation and gene expression, according to recent research. Though terahertz waves found in the environment directly expose scleral tissue, little is known about how terahertz radiation affects scleral fibroblasts biologically. In this work, we investigated how 0.1 THz radiation affected the global expression levels of proteins and the viability of human fetal scleral fibroblasts (HFSFs). A total of 79.44% of the differentially expressed proteins (DEPs) showed significant downregulation in expression levels after 60 min of exposure to terahertz radiation. Enrichment analysis of DEPs revealed that terahertz radiation enhanced the expression of cytoskeletal keratins, disrupted supercoplexes’ assembly, and impaired mitochondrial respiration. Moreover, terahertz radiation influences the remodeling process of the scleral extracellular matrix by triggering the TGF-β/Smad signaling pathway. Changes in transcriptional activity of several extracellular matrix (ECM)-related genes persisted for 12 h in the absence of terahertz radiation. Research findings indicate that 0.1 THz radiation is capable of disrupting the dynamic balance between collagen synthesis and degradation in scleral fibroblasts. Such an imbalance may induce alterations in the structural integrity and biomechanical properties of the sclera, thereby elevating the potential risk of myopia onset or progression. Full article
Show Figures

Graphical abstract

19 pages, 10886 KB  
Article
Characterization of a Hydrogel Composite Containing Bioactive Moringa as a Novel Pulp-Capping Material
by Mustafa Tariq Mutar and Anas F. Mahdee
Polymers 2025, 17(19), 2626; https://doi.org/10.3390/polym17192626 - 28 Sep 2025
Abstract
Hydrogels are hydrophilic biocompatible polymers that can be used as a drug delivery material in different medical branches, including vital pulp therapy. The aim of this study is to characterize the physical and biological properties of the newly developed formula as a candidate [...] Read more.
Hydrogels are hydrophilic biocompatible polymers that can be used as a drug delivery material in different medical branches, including vital pulp therapy. The aim of this study is to characterize the physical and biological properties of the newly developed formula as a candidate direct pulp-capping material. The hydrogel composite was prepared from natural and synthetic origins (polyvinyl alcohol (PVA), hyaluronic acid (HA), and sodium alginate (SA)) with the incorporation of bioactive Moringa. Different formulas of hydrogel containing different concentrations were evaluated for physicochemical (FTIR, XRD, SEM, degradation, and swelling), mechanical (viscosity, folding endurance, film thickness), and biological (antioxidant, antibacterial, and cytotoxicity) properties. FTIR and XRD confirmed successful incorporation and partial cross-linking between moringa and hydrogel compounds. At low concentrations of moringa, the hydrogel formula showed integrity, scavenging activity, and homogeneity. The moringa-loaded films showed concentration-dependent antioxidant and antibacterial properties, especially at higher concentrations, with acceptable cytocompatibility. The low concentration of moringa (0.5%) may be considered a promising candidate as a novel pulp-capping agent supporting tissue healing and regeneration. Full article
(This article belongs to the Special Issue Drug-Loaded Polymer Colloidal Systems in Nanomedicine III)
Show Figures

Figure 1

23 pages, 850 KB  
Article
Dietary Rumen-Protected Taurine Enhances Growth Performance and Meat Quality in Heat-Stressed Crossbred Gan-Xi Goats via Modulating GLUT4/PYGM-Mediated Muscle Energy Metabolism
by Guwei Lu, Yijie Wang, Yuting Wei, Xin Liu, Siyu Lu, Xianghui Zhao, Qinghua Qiu, Mingren Qu, Lizhi Li, Yanjiao Li and Kehui Ouyang
Foods 2025, 14(19), 3323; https://doi.org/10.3390/foods14193323 - 25 Sep 2025
Abstract
Heat stress induced by high temperature and humidity in southern China during summer reduce goat production efficiency and meat quality. Taurine (TAU), one of the most abundant amino acids in animal tissues, plays a vital role in alleviating heat stress and regulating energy [...] Read more.
Heat stress induced by high temperature and humidity in southern China during summer reduce goat production efficiency and meat quality. Taurine (TAU), one of the most abundant amino acids in animal tissues, plays a vital role in alleviating heat stress and regulating energy metabolism through its involvement in glucose uptake and glycogen turnover. This study aimed to investigate the effects of rumen-protected (RP)-TAU on the meat quality, hepatic gluconeogenesis, and muscle energy metabolism of heat-stressed goats. During summer, twenty-four male crossbred Gan-xi goats (20.45 ± 2.95 kg) aged 5 months were randomly allocated to two groups treated with or without 0.4% RP-TAU (on a diet weight basis). After feeding for 60 days, six goats per treatment were slaughtered. Compared with the control group, RP-TAU supplementation significantly improved the growth performance of goats, as evidenced by increased final body weight, average daily gain, and average daily feed intake (p < 0.05). The goats in the RP-TAU group showed a reduced splenic index (p < 0.05), lower serum cortisol levels (0.05 < p < 0.1), and decreased muscle crude fat content (p < 0.01). Crucially, meat quality was improved with reduced hardness, gumminess, and chewiness (p < 0.05), indicating better textural properties. Nutritionally, RP-TAU supplementation modulated the muscle fatty acid profile, significantly reducing the concentrations of palmitic (a saturated fatty acid), palmitoleic (a monounsaturated fatty acid), and nervonic acids (p < 0.05), while cystine content was reduced (p < 0.05). RP-TAU supplementation significantly enhanced the muscle contents of glucose and glycogen, glycolytic potential, phosphofructokinase activity, and ATP level, while decreasing the pyruvate level and AMP/ATP ratio (p < 0.05). Gene expression analysis revealed the upregulation of GLUT4 and PYGM and the downregulation of GSK3β in muscle (p < 0.05). These results indicated that dietary supplementation of RP-TAU might be beneficial to improve stress resistance and meat quality by increasing muscle energy supply and glucose uptake in Gan-xi goats. Full article
(This article belongs to the Section Meat)
Show Figures

Graphical abstract

23 pages, 1869 KB  
Review
Inter-Organ Crosstalk in Neurodegenerative Disease
by Elisabetta Carata, Moris Destino, Bernardetta Anna Tenuzzo and Elisa Panzarini
Life 2025, 15(10), 1499; https://doi.org/10.3390/life15101499 - 24 Sep 2025
Viewed by 94
Abstract
Inter-organ communication plays a vital role in the pathogenesis of neurodegenerative diseases (ND), including Alzheimer’s disease (AD), Parkinson’s disease (PD), and Amyotrophic Lateral Sclerosis (ALS). Emerging research highlights the involvement of the gut–brain axis, immune system, and peripheral metabolic systems in modulating neuroinflammation, [...] Read more.
Inter-organ communication plays a vital role in the pathogenesis of neurodegenerative diseases (ND), including Alzheimer’s disease (AD), Parkinson’s disease (PD), and Amyotrophic Lateral Sclerosis (ALS). Emerging research highlights the involvement of the gut–brain axis, immune system, and peripheral metabolic systems in modulating neuroinflammation, protein misfolding, and neuronal dysfunction by releasing cytokines, adipokines, growth factors, and other soluble factors, which in turn affect neuronal health and systemic inflammation. This review explores the complex bidirectional interactions between the brain and peripheral organs, including the gut, adipose tissue, liver, muscle, bone and immune system. Notably, the gut microbiome’s role in neurodegenerative diseases through the gut–brain axis, the impact of adipose tissue in inflammation and metabolic regulation, and the muscle–brain axis with its neuroprotective myokines are also discussed. Additionally, we examine the neuro-immune axis, which mediates inflammatory responses and exacerbates neurodegeneration, and liver–brain axis that is implicated in regulating neuroinflammation and promoting disease progression. Dysregulation of inter-organ pathways contributes to the systemic manifestations of neurodegenerative diseases, offering insights into both potential biomarkers and therapeutic targets, and, in turn, promising strategies for preventing, diagnosing, and treating neurodegenerative diseases. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

47 pages, 903 KB  
Review
The Role of Natural Hydrogels in Enhancing Wound Healing: From Biomaterials to Bioactive Therapies
by Paula Stefana Pintilei, Roya Binaymotlagh, Laura Chronopoulou and Cleofe Palocci
Pharmaceutics 2025, 17(10), 1243; https://doi.org/10.3390/pharmaceutics17101243 - 23 Sep 2025
Viewed by 131
Abstract
Wound healing is a complex, multifaceted biological process that plays a vital role in recovery and overall quality of life. However, conventional wound care methods often prove insufficient, resulting in delayed healing, higher infection risk, and other complications. In response, biomaterials—especially hydrogels—have gained [...] Read more.
Wound healing is a complex, multifaceted biological process that plays a vital role in recovery and overall quality of life. However, conventional wound care methods often prove insufficient, resulting in delayed healing, higher infection risk, and other complications. In response, biomaterials—especially hydrogels—have gained attention for their advanced wound management capabilities, which support wound healing by maintaining moisture, mimicking the extracellular matrix (ECM), and enabling targeted drug delivery triggered by wound-specific signals. They frequently carry antimicrobial or anti-inflammatory agents, promote blood vessel and nerve regeneration, and are biocompatible with customizable properties suited to different healing stages. Natural hydrogels, derived from polysaccharides, proteins, and peptides, offer several advantages over synthetic options, including inherent bioactivity, enzymatic degradability, and cell-adhesive qualities that closely resemble the native ECM. These features facilitate cell interaction, modulate inflammation, and speed up tissue remodeling. Moreover, natural hydrogels can be engineered as delivery systems for therapeutic agents like antimicrobial compounds, nanoparticles, growth factors, and exosomes. This review discusses recent advances in the use of natural hydrogels as multifunctional wound dressings and delivery platforms, with a focus on their composition, mechanisms of action, and potential for treating chronic and infected wounds by incorporating antimicrobial and regenerative additives such as silver and zinc oxide nanoparticles. Full article
Show Figures

Graphical abstract

16 pages, 2375 KB  
Article
Mass Spectrometry and 3D Modeling Indicate the SBK2 Kinase Phosphorylates Splicing Factor SRSF7 to Regulate Cardiac Development
by Mark Bouska, Eduardo Callegari, Daniela Paez and Xuejun Wang
Kinases Phosphatases 2025, 3(4), 20; https://doi.org/10.3390/kinasesphosphatases3040020 - 23 Sep 2025
Viewed by 107
Abstract
SH3 Domain Binding Kinase Family Member 2 (SBK2) is a critical kinase in atrial cardiomyocyte differentiation. However, its phospho-targets, its role in ventricle function, and its role in cardiac disease progression are unknown. Notably, SBK2 has been shown to be downregulated in the [...] Read more.
SH3 Domain Binding Kinase Family Member 2 (SBK2) is a critical kinase in atrial cardiomyocyte differentiation. However, its phospho-targets, its role in ventricle function, and its role in cardiac disease progression are unknown. Notably, SBK2 has been shown to be downregulated in the ventricular myocardium of several mouse models that recapitulate human desmin-related cardiomyopathies. To restore SBK2 expression, adenoviruses were constructed to promote cardiomyocyte-restricted SBK2 expression and injected at postnatal day 0. This significantly increased ejection fraction at 1 month of age relative to control hearts. However, in 3-month nontransgenic (NTG) and desmin-related cardiomyopathy hearts, the overexpression of SBK2 opposed increases in ejection fraction and left ventricular posterior wall thickness. These findings provide the first in vivo evidence that SBK2 plays a vital role in left ventricular function. To elucidate the molecular mechanism behind the physiological effects of SBK2 on the heart, we performed mass spectrometry combined with phospho-enrichment on ventricular tissue with and without SBK2 overexpression. We identified multiple phosphorylation sites on SBK2 and used AlphaFold3 to model how this phosphorylation likely affects SBK2’s role in phosphorylating the splicing factor SRSF7. We propose a novel mechanism by which SBK2 regulates splicing to promote cardiomyocyte development. Full article
Show Figures

Figure 1

26 pages, 5149 KB  
Article
The Impact of Climate Change on Anatomical Characteristics of Silver Fir and European Beech Wood from Three Sites in the Carpathians, Romania
by Pia Caroline Adamič, Peter Prislan, Tom Levanič, Jernej Jevšenak, Jakub Kašpar and Matjaž Čater
Forests 2025, 16(9), 1497; https://doi.org/10.3390/f16091497 - 21 Sep 2025
Viewed by 279
Abstract
Structural adaptations of wood to environmental conditions play a crucial role in shaping its mechanical and hydraulic properties, which are vital for the performance and survival of fir and beech. In this study, we investigated how site-specific climatic conditions influence tree-ring widths and [...] Read more.
Structural adaptations of wood to environmental conditions play a crucial role in shaping its mechanical and hydraulic properties, which are vital for the performance and survival of fir and beech. In this study, we investigated how site-specific climatic conditions influence tree-ring widths and wood-anatomical traits of fir and beech in the Carpathians. Increment cores were collected from three forest stands across the Carpathians, each characterized by distinct climate regimes. We developed chronologies for mean tree-ring width (MRW), mean lumen area of vessels/tracheids (MLA), cell density (CD), relative conductive tissue area (RCTA), and, for fir, mean tangential cell wall thickness (CWTTAN), covering the period from 1980 to 2016. By comparing MRW and wood-anatomical traits with climatic variables—daily minimum and maximum temperatures and daily precipitation sums from E-OBS climate data—we identified clear differences among the three sites. The relationships between tree-ring widths and wood-anatomical traits varied between fir and beech, reflecting species-specific responses to local climate conditions. Notably, beech appeared more sensitive to warm summer temperatures, while fir was comparatively less affected. Evaluating the variability in radial growth and wood anatomy is essential for understanding the plasticity of fir and beech under diverse environmental conditions, and represents a first step toward predicting their responses to future climate scenarios. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

Back to TopTop