Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = total exosome isolation kit

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1253 KB  
Article
Comparison of Methods for Isolating Exosomes from Plasma Subjects with Normal and High Fat Percentages
by Jacqueline Noboa-Velástegui, Juan Carlos León, Jorge Castro, Ana Fletes, Perla Madrigal, Iñaki Álvarez and Rosa Navarro
Life 2025, 15(3), 410; https://doi.org/10.3390/life15030410 - 6 Mar 2025
Cited by 1 | Viewed by 1910
Abstract
Adipose tissue is responsible for fat storage and is an important producer of extracellular vesicles (EVs). The biological content of exosomes, one kind of EV, provides information on aspects such as immunometabolic alterations. This study aimed to compare three plasma exosome isolation methods—using [...] Read more.
Adipose tissue is responsible for fat storage and is an important producer of extracellular vesicles (EVs). The biological content of exosomes, one kind of EV, provides information on aspects such as immunometabolic alterations. This study aimed to compare three plasma exosome isolation methods—using a commercial kit (CK), size exclusion chromatography (SEC), and differential centrifugation (DC)—and select the best one. Individuals categorized by normal and high body fat percentages were used. The DC and CK were proven to be the most advantageous out of the exosome isolation methods, so we suggest these methods for further protein and molecular analyses, respectively. Still, we emphasize the importance of selecting an appropriate methodology depending on the specific research objectives. At the same time, no statistical differences in exosome quality, morphology, total protein, or microRNA concentration were observed between individuals categorized by body fat percentage, so we suggest that the exosomal cargo varies in individuals with normal and high fat percentages. Full article
Show Figures

Figure 1

21 pages, 4298 KB  
Article
Characterization of Extracellular Vesicles from Human Saliva: Effects of Age and Isolation Techniques
by Lucia Reseco, Angela Molina-Crespo, Mercedes Atienza, Esperanza Gonzalez, Juan Manuel Falcon-Perez and Jose L. Cantero
Cells 2024, 13(1), 95; https://doi.org/10.3390/cells13010095 - 2 Jan 2024
Cited by 18 | Viewed by 4600
Abstract
Salivary extracellular vesicles (EVs) represent an attractive source of biomarkers due to the accessibility of saliva and its non-invasive sampling methods. However, the lack of comparative studies assessing the efficacy of different EV isolation techniques hampers the use of salivary EVs in clinical [...] Read more.
Salivary extracellular vesicles (EVs) represent an attractive source of biomarkers due to the accessibility of saliva and its non-invasive sampling methods. However, the lack of comparative studies assessing the efficacy of different EV isolation techniques hampers the use of salivary EVs in clinical settings. Moreover, the effects of age on salivary EVs are largely unknown, hindering the identification of salivary EV-associated biomarkers across the lifespan. To address these questions, we compared salivary EV concentration, size mode, protein concentration, and purity using eight EV isolation techniques before and after magnetic bead immunocapture with antibodies against CD9, CD63, and CD81. The effects of age on salivary EVs obtained with each isolation technique were further investigated. Results showed higher expression of CD63 on isolated salivary EVs compared to the expression of CD81 and flotillin-1. Overall, magnetic bead immunocapture was more efficient in recovering salivary EVs with Norgen’s Saliva Exosome Purification Kit and ExoQuick-TC ULTRA at the cost of EV yield. Regardless of age, Invitrogen Total Exosome Isolation Solution showed the highest level of protein concentration, whereas Izon qEVOriginal-70nm columns revealed the highest purity. This study provides the first comprehensive comparison of salivary EVs in younger and older adults using different EV isolation techniques, which represents a step forward for assessing salivary EVs as a source of potential biomarkers of tissue-specific diseases throughout the life cycle. Full article
Show Figures

Figure 1

26 pages, 7778 KB  
Article
Comparison Study of Small Extracellular Vesicle Isolation Methods for Profiling Protein Biomarkers in Breast Cancer Liquid Biopsies
by Yujin Lee, Jie Ni, Valerie C. Wasinger, Peter Graham and Yong Li
Int. J. Mol. Sci. 2023, 24(20), 15462; https://doi.org/10.3390/ijms242015462 - 23 Oct 2023
Cited by 7 | Viewed by 2695
Abstract
Small extracellular vesicles (sEVs) are an important intercellular communicator, participating in all stages of cancer metastasis, immunity, and therapeutic resistance. Therefore, protein cargoes within sEVs are considered as a superior source for breast cancer (BC) biomarker discovery. Our study aimed to optimise the [...] Read more.
Small extracellular vesicles (sEVs) are an important intercellular communicator, participating in all stages of cancer metastasis, immunity, and therapeutic resistance. Therefore, protein cargoes within sEVs are considered as a superior source for breast cancer (BC) biomarker discovery. Our study aimed to optimise the approach for sEV isolation and sEV proteomic analysis to identify potential sEV protein biomarkers for BC diagnosis. sEVs derived from BC cell lines, BC patients’ plasma, and non-cancer controls were isolated using ultracentrifugation (UC), a Total Exosome Isolation kit (TEI), and a combined approach named UCT. In BC cell lines, the UC isolates showed a higher sEV purity and marker expression, as well as a higher number of sEV proteins. In BC plasma samples, the UCT isolates showed the highest proportion of sEV-related proteins and the lowest percentage of lipoprotein-related proteins. Our data suggest that the assessment of both the quantity and quality of sEV isolation methods is important in selecting the optimal approach for the specific sEV research purpose, depending on the sample types and downstream analysis. Full article
(This article belongs to the Special Issue Liquid Biopsy in Cancers)
Show Figures

Graphical abstract

11 pages, 7939 KB  
Article
Optimizing Concentration of Polyethelene Glycol for Exosome Isolation from Plasma for Downstream Application
by Marut Tangwattanachuleeporn, Phijitra Muanwien, Yothin Teethaisong and Poorichya Somparn
Medicina 2022, 58(11), 1600; https://doi.org/10.3390/medicina58111600 - 4 Nov 2022
Cited by 14 | Viewed by 4621
Abstract
Background: Exosomes are ubiquitous extracellular nanovesicles secreted from almost all living cells that are thought to be involved in several important cellular processes, including cell–cell communication and signaling. Exosomes serve as a liquid biopsy tool for clinical and translational research. Although many techniques [...] Read more.
Background: Exosomes are ubiquitous extracellular nanovesicles secreted from almost all living cells that are thought to be involved in several important cellular processes, including cell–cell communication and signaling. Exosomes serve as a liquid biopsy tool for clinical and translational research. Although many techniques have been used to isolate exosomes, including ultracentrigation, size-exclusion chromatography, and immunocapturing-based techniques, these techniques are not convenient, they require expensive instrumentation, and they are unhandy for clinical samples. Precipitation techniques from available commercial kits that contain polyethelene glycol (PEG) are now widely used, but these kits are expensive, especially if a large number of biological samples are to be processed. Objective: the purpose of this study is to compare and optimize the efficacy of different concentrations of PEG with two commercial kits ExoQuick (SBI) and Total Exosome Isolation (TEI) from Invitrogen in human plasma. Methods and Materials: we determined exosome quantity, size distribution, marker expression, and downstream application. Results: among the precipitation methods, we found the size of particles and concentrations with 10–20% PEG are similar to ExoQuick and better than TEI. Interestingly, we detected cfDNA with ExoQuick and 10–20% PEG but not TEI and 5% PEG. Moreover, 10% PEG detection of miR-122 and miR-16 expression was superior to ExoQuick and TEI. Furthermore, in proteomics results it also found the identified proteins better than commercial kits but there was a high level of contamination of other proteins in serum. Conclusions: together, these findings show that an optimal concentration of 10% PEG serves as a guide for use with clinical samples in exosome isolation for downstream applications. Full article
(This article belongs to the Section Translational Medicine)
Show Figures

Figure 1

21 pages, 2387 KB  
Article
Characterizing Extracellular Vesicles and Particles Derived from Skeletal Muscle Myoblasts and Myotubes and the Effect of Acute Contractile Activity
by Benjamin Bydak, Taiana M. Pierdoná, Samira Seif, Karim Sidhom, Patience O. Obi, Hagar I. Labouta, Joseph W. Gordon and Ayesha Saleem
Membranes 2022, 12(5), 464; https://doi.org/10.3390/membranes12050464 - 26 Apr 2022
Cited by 10 | Viewed by 4138
Abstract
Extracellular vesicles (EVs), released from all cells, are essential to cellular communication and contain biomolecular cargo that can affect recipient cell function. Studies on the effects of contractile activity (exercise) on EVs usually rely on plasma/serum-based assessments, which contain EVs from many different [...] Read more.
Extracellular vesicles (EVs), released from all cells, are essential to cellular communication and contain biomolecular cargo that can affect recipient cell function. Studies on the effects of contractile activity (exercise) on EVs usually rely on plasma/serum-based assessments, which contain EVs from many different cells. To specifically characterize skeletal muscle–derived vesicles and the effect of acute contractile activity, we used an in vitro model where C2C12 mouse myoblasts were differentiated to form myotubes. EVs were isolated from conditioned media from muscle cells at pre-differentiation (myoblasts) and post-differentiation (myotubes) and also from acutely stimulated myotubes (1 h @ 14 V, C-Pace EM, IonOptix, Westwood, MA, USA) using total exosome isolation reagent (TEI, ThermoFisher (Waltham, MA, USA), referred to as extracellular particles [EPs]) and differential ultracentrifugation (dUC; EVs). Myotube-EPs (~98 nm) were 41% smaller than myoblast-EPs (~167 nm, p < 0.001, n = 8–10). Two-way ANOVA showed a significant main effect for the size distribution of myotube vs. myoblast-EPs (p < 0.01, n = 10–13). In comparison, myoblast-EPs displayed a bimodal size distribution profile with peaks at <200 nm and 400–600, whereas myotube-Eps were largely 50–300 nm in size. Total protein yield from myotube-EPs was nearly 15-fold higher than from the myoblast-EPs, (p < 0.001 n = 6–9). Similar biophysical characteristics were observed when EVs were isolated using dUC: myotube-EVs (~195 nm) remained 41% smaller in average size than myoblast-EVs (~330 nm, p = 0.07, n = 4–6) and had comparable size distribution profiles to EPs isolated via TEI. Myotube-EVs also had 4.7-fold higher protein yield vs. myoblast EVs (p < 0.05, n = 4–6). Myotube-EPs exhibited significantly decreased expression of exosomal marker proteins TSG101, CD63, ALIX and CD81 compared with myoblast-EPs (p < 0.05, n = 7–12). Conversely, microvesicle marker ARF6 and lipoprotein marker APO-A1 were only found in the myotube-EPs (p < 0.05, n = 4–12). There was no effect of acute stimulation on myotube-EP biophysical characteristics (n = 7) or on the expression of TSG101, ARF6 or CD81 (n = 5–6). Myoblasts treated with control or acute stimulation–derived EPs (13 µg/well) for 48 h and 72 h showed no changes in mitochondrial mass (MitoTracker Red, ThermoFisher, Waltham, MA, USA), cell viability or cell count (n = 3–4). Myoblasts treated with EP-depleted media (72 h) exhibited ~90% lower cell counts (p < 0.01, n = 3). Our data show that EVs differed in size, distribution, protein yield and expression of subtype markers pre vs. post skeletal muscle–differentiation into myotubes. There was no effect of acute stimulation on biophysical profile or protein markers in EPs. Acute stimulation–derived EPs did not alter mitochondrial mass or cell count/viability. Further investigation into the effects of chronic contractile activity on the biophysical characteristics and cargo of skeletal muscle–specific EVs are warranted. Full article
Show Figures

Figure 1

17 pages, 1829 KB  
Article
Isolation and Characterization of Plasma-Derived Exosomes from the Marine Fish Rock Bream (Oplegnathus fasciatus) by Two Isolation Techniques
by Chamilani Nikapitiya, Eriyawala Hewage Thimira Thulshan Jayathilaka, Shan Lakmal Edirisinghe, Dinusha C. Rajapaksha, Withanage Prasadini Wasana, Jayasinghage Nirmani Chathurangika Jayasinghe and Mahanama De Zoysa
Fishes 2022, 7(1), 36; https://doi.org/10.3390/fishes7010036 - 2 Feb 2022
Cited by 12 | Viewed by 5521
Abstract
Exosomes are important mediators of intercellular communication and modulate many physiological and pathological processes. Knowledge of secretion, content, and biological functions of fish exosomes during pathological infection is still scarce due to lack of suitable standardized isolation techniques. In this study, we aimed [...] Read more.
Exosomes are important mediators of intercellular communication and modulate many physiological and pathological processes. Knowledge of secretion, content, and biological functions of fish exosomes during pathological infection is still scarce due to lack of suitable standardized isolation techniques. In this study, we aimed to isolate exosomes from the plasma of marine fish, rock bream (Oplegnathus fasciatus), by two isolation methods: differential ultracentrifugation (UC) and a commercial membrane affinity spin column technique (kit). Morphological and physicochemical characteristics of the isolated exosomes were determined by these two methods, and the efficiencies of the two methods were compared. Exosomes isolated by both methods were in the expected size range (30–200 nm) and had a characteristic cup-shape in transmission electron microscopy observation. Moreover, more intact exosomes were identified using the kit-based method than UC. Nanoparticle tracking analysis demonstrated a heterogeneous population of exosomes with a mean particle diameter of 114.6 ± 4.6 and 111.2 ± 2.2 nm by UC and a kit-based method, respectively. The particle concentration obtained by the kit method (1.05 × 1011 ± 1.23 × 1010 particles/mL) was 10-fold higher than that obtained by UC (4.90 × 1010 ± 2.91 × 109 particles/mL). The kit method had a comparatively higher total protein yield (1.86 mg) and exosome protein recovery (0.55 mg/mL plasma). Immunoblotting analysis showed the presence of exosome marker proteins (CD81, CD63, and HSP90) in the exosomes isolated by both methods and suggests the existence of exosomes. However, the absence of cytotoxicity or adverse immune responses to fish and mammalian cells by the exosomes isolated by the UC procedure indicates its suitability for functional studies in vitro. Overall, our basic characterization results indicate that the kit-based method is more suitable for isolating high-purity exosomes from fish plasma, whereas UC has higher safety in terms of yielding exosomes with low toxicity. This study provides evidence for the existence of typical exosomes in rock beam plasma and facilitates the selection of an efficient exosome isolation procedure for future applications in disease diagnosis and exosome therapy as fish medicine. Full article
Show Figures

Graphical abstract

14 pages, 1467 KB  
Article
B7-H3 in Medulloblastoma-Derived Exosomes; A Novel Tumorigenic Role
by Ian J. Purvis, Kiran K. Velpula, Maheedhara R. Guda, Daniel Nguyen, Andrew J. Tsung and Swapna Asuthkar
Int. J. Mol. Sci. 2020, 21(19), 7050; https://doi.org/10.3390/ijms21197050 - 25 Sep 2020
Cited by 27 | Viewed by 4252
Abstract
(1) Aim: Medulloblastoma is the most common aggressive pediatric cancer of the central nervous system. Improved therapies are necessary to improve life outcomes for medulloblastoma patients. Exosomes are a subset of extracellular vesicles that are excreted outside of the cell, and can transport [...] Read more.
(1) Aim: Medulloblastoma is the most common aggressive pediatric cancer of the central nervous system. Improved therapies are necessary to improve life outcomes for medulloblastoma patients. Exosomes are a subset of extracellular vesicles that are excreted outside of the cell, and can transport nucleic acids and proteins from donor cells to nearby recipient cells of the same or dissimilar tissues. Few publications exist exploring the role that exosomes play in medulloblastoma pathogenesis. In this study, we found B7-H3, an immunosuppressive immune checkpoint, present in D283 cell-derived exosomes. (2) Methods: Utilizing mass spectrometry and immunoblotting, the presence of B7-H3 in D283 control and B7-H3 overexpressing exosomes was confirmed. Exosomes were isolated by Systems Biosciences from cultured cells as well as with an isolation kit that included ultracentrifugation steps. Overlay experiments were performed to determine mechanistic impact of exosomes on recipient cells by incubating isolated exosomes in serum-free media with target cells. Impact of D283 exosome incubation on endothelial and UW228 medulloblastoma cells was assessed by immunoblotting. Immunocytochemistry was employed to visualize exosome fusion with recipient cells. (3) Results: Overexpressing B7-H3 in D283 cells increases exosomal production and size distribution. Mass spectrometry revealed a host of novel, pathogenic molecules associated with B7-H3 in these exosomes including STAT3, CCL5, MMP9, and PI3K pathway molecules. Additionally, endothelial and UW228 cells incubated with D283-derived B7-H3-overexpressing exosomes induced B7-H3 expression while pSTAT1 levels decreased in UW228 cells. (4) Conclusions: In total, our results reveal a novel role in exosome production and packaging for B7-H3 that may contribute to medulloblastoma progression. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

10 pages, 920 KB  
Article
Plasma Exosomal Brain-Derived Neurotrophic Factor Correlated with the Postural Instability and Gait Disturbance–Related Motor Symptoms in Patients with Parkinson’s Disease
by Chen Chih Chung, Pai Hao Huang, Lung Chan, Jia-Hung Chen, Li-Nien Chien and Chien Tai Hong
Diagnostics 2020, 10(9), 684; https://doi.org/10.3390/diagnostics10090684 - 11 Sep 2020
Cited by 23 | Viewed by 3692
Abstract
Brain-derived neurotrophic factor (BDNF) is an essential neurotrophin, responsible for neuronal development, function, and survival. Assessments of peripheral blood BDNF in patients with Parkinson’s disease (PD) previously yielded inconsistent results. Plasma exosomes can carry BDNF, so this study investigated the role of plasma [...] Read more.
Brain-derived neurotrophic factor (BDNF) is an essential neurotrophin, responsible for neuronal development, function, and survival. Assessments of peripheral blood BDNF in patients with Parkinson’s disease (PD) previously yielded inconsistent results. Plasma exosomes can carry BDNF, so this study investigated the role of plasma exosomal BDNF level as a biomarker of PD. A total of 114 patients with mild to moderate PD and 42 non-PD controls were recruited, and their clinical presentations were evaluated. Plasma exosomes were isolated with exoEasy Maxi Kits, and enzyme-linked immunosorbent assay was used to assess plasma exosomal BDNF levels. Statistical analysis was performed using SPSS version 19.0, and findings were considered significant at p < 0.05. The analysis revealed no significant differences in plasma exosomal BDNF levels between patients with PD and controls. Patients with PD with low plasma exosomal BDNF levels (in the lowest quartile) exhibited a significant association with daily activity dysfunction but not with cognition/mood or overall motor symptoms as assessed using the Unified Parkinson’s Disease Rating Scale (UPDRS). Investigation of UPDRS part III subitems revealed that low plasma exosomal BDNF level was significantly associated with increased motor severity of postural instability and gait disturbance (PIGD)-associated symptoms (rising from a chair, gait, and postural stability) after adjustment for age and sex. In conclusion, although plasma exosomal BDNF level could not distinguish patients with PD from controls, the association with PIGD symptoms in patients with PD may indicate its potential role as a biomarker. Follow-up studies should investigate the association between plasma exosomal BDNF levels and changes in clinical symptoms. Full article
Show Figures

Figure 1

13 pages, 2060 KB  
Article
Proteomic Profiles of Exosomes of Septic Patients Presenting to the Emergency Department Compared to Healthy Controls
by Daniel C. Morris, Anja K. Jaehne, Michael Chopp, Zhanggang Zhang, Laila Poisson, Yalei Chen, Indrani Datta and Emanuel P. Rivers
J. Clin. Med. 2020, 9(9), 2930; https://doi.org/10.3390/jcm9092930 - 11 Sep 2020
Cited by 13 | Viewed by 3655
Abstract
Background: Septic Emergency Department (ED) patients provide a unique opportunity to investigate early sepsis. Recent work focuses on exosomes, nanoparticle-sized lipid vesicles (30–130 nm) that are released into the bloodstream to transfer its contents (RNA, miRNA, DNA, protein) to other cells. Little is [...] Read more.
Background: Septic Emergency Department (ED) patients provide a unique opportunity to investigate early sepsis. Recent work focuses on exosomes, nanoparticle-sized lipid vesicles (30–130 nm) that are released into the bloodstream to transfer its contents (RNA, miRNA, DNA, protein) to other cells. Little is known about how early changes related to exosomes may contribute to the dysregulated inflammatory septic response that leads to multi-organ dysfunction. We aimed to evaluate proteomic profiles of plasma derived exosomes obtained from septic ED patients and healthy controls. Methods: This is a prospective observational pilot study evaluating a plasma proteomic exosome profile at an urban tertiary care hospital ED using a single venipuncture blood draw, collecting 40 cc Ethylenediaminetetraacetic acid (EDTA) blood. Measurements: We recruited seven patients in the ED within 6 h of their presentation and five healthy controls. Plasma exosomes were isolated using the Invitrogen Total Exosome Isolation Kit. Exosome proteomic profiles were analyzed using fusion mass spectroscopy and Proteome Discoverer. Principal component analysis (PCA) and differential expression analysis (DEA) for sepsis versus control was performed. Results: PCA of 261 proteins demonstrated septic patients and healthy controls were distributed in two groups. DEA revealed that 62 (23.8%) proteins differed between the exosomes of septic patients and healthy controls, p-value < 0.05. Adjustments using the False Discovery Rate (FDR) showed 23 proteins remained significantly different (FDR < 0.05) between sepsis and controls. Septic patients and controls were classified into two distinct groups by hierarchical clustering using the 62 nominally DE proteins. After adjustment multiple comparisons, three acute phase proteins remained significantly different between patients and controls: Serum amyloid A-1, C-reactive protein and Serum Amyloid A-2. Inflammatory response proteins immunoglobulin heavy constant Δ and Fc-fragment of IgG binding protein were increased. Conclusion: Exosome proteomic profiles of septic ED patients differ from their healthy counterparts with regard to acute phase response and inflammation. Full article
(This article belongs to the Special Issue Sepsis: Current Clinical Practices and New Perspectives)
Show Figures

Figure 1

10 pages, 3025 KB  
Article
miR-365 (microRNA): Potential Biomarker in Oral Squamous Cell Carcinoma Exosomes and Extracellular Vesicles
by Jeffery Coon, Karl Kingsley and Katherine M. Howard
Int. J. Mol. Sci. 2020, 21(15), 5317; https://doi.org/10.3390/ijms21155317 - 27 Jul 2020
Cited by 29 | Viewed by 4459
Abstract
Introduction: miR-365 is a non-coding microRNA that regulates transcription and has been demonstrated to promote oncogenesis and metastasis in some cancers, while suppressing these effects in others. Many microRNAs are produced and then exported extracellularly in exosomes, which are small extracellular vesicles ranging [...] Read more.
Introduction: miR-365 is a non-coding microRNA that regulates transcription and has been demonstrated to promote oncogenesis and metastasis in some cancers, while suppressing these effects in others. Many microRNAs are produced and then exported extracellularly in exosomes, which are small extracellular vesicles ranging from 30 to 100 nm that are found in eukaryotic fluids and facilitate many cellular functions. Exosomes and extracellular vesicles are produced by many cell types, including oral cancer cells—although no study to date has evaluated miR-365 and oral cancer exosomes or extracellular vesicles. Based on this information, our research question was to evaluate whether oral cancers produce exosomes or extracellular vesicles containing miR-365. Materials and Methods: Two commercially available oral cancer cell lines (SCC25 and CAL27) and a normal oral keratinocyte (OKF4) were grown in serum-free media, supplemented with exosome-depleted fetal bovine serum. Extracellular vesicles and exosomes were then isolated using the Invitrogen total exosome RNA and protein isolation kit for processing using the hsa-miR-365a-5p microRNA qPCR assay kit. Results: RNA was successfully isolated from the exosome-depleted supernatant from each cell line—SCC9, SCC15, SCC25, and CAL27 (oral squamous cell carcinomas) and OKF4 (oral epithelial cell line). Relative concentrations of RNA were similar among each cell line, which were not significantly different, p = 0.233. RNA quality was established by A260:A280 absorbance using a NanoDrop, revealing purity ranging 1.73–1.86. Expression of miR-16 was used to confirm the presence of microRNA from the extracted exosomes and extracellular vesicles. The presence of miR-365 was then confirmed and normalized to miR-16 expression, which demonstrated an increased level of miR-365 in both CAL27 and SCC25. In addition, the normalized relative quantity (RQ) for miR-365 exhibited greater variation among SCC25 (1.382–4.363) than CAL27 cells (1.248–1.536). Conclusions: These results confirm that miR-365 is not only expressed in oral cancer cell lines, but also is subsequently exported into exosomes and extracellular vesicles derived from these cultures. These data may help to contextualize the potential for this microRNA to contribute to the phenotypes and behaviors of oral cancers that express this microRNA. Future research will begin to investigate these potential mechanisms and pathways and to determine if miR-365 may be useful as an oral cancer biomarker for salivary or liquid biopsies. Full article
(This article belongs to the Special Issue Extracellular Vesicles as a New Source of Liquid Biopsy)
Show Figures

Figure 1

14 pages, 2356 KB  
Article
When Less Is More: Specific Capture and Analysis of Tumor Exosomes in Plasma Increases the Sensitivity of Liquid Biopsy for Comprehensive Detection of Multiple Androgen Receptor Phenotypes in Advanced Prostate Cancer Patients
by Chiara Foroni, Natasa Zarovni, Laura Bianciardi, Simona Bernardi, Luca Triggiani, Davide Zocco, Marta Venturella, Antonio Chiesi, Francesca Valcamonico and Alfredo Berruti
Biomedicines 2020, 8(5), 131; https://doi.org/10.3390/biomedicines8050131 - 22 May 2020
Cited by 40 | Viewed by 4816
Abstract
We evaluated the advantages and the reliability of novel protocols for the enrichment of tumor extracellular vesicles (EVs), enabling a blood-based test for the noninvasive parallel profiling of multiple androgen receptor (AR) gene alterations. Three clinically relevant AR variants related to response/resistance [...] Read more.
We evaluated the advantages and the reliability of novel protocols for the enrichment of tumor extracellular vesicles (EVs), enabling a blood-based test for the noninvasive parallel profiling of multiple androgen receptor (AR) gene alterations. Three clinically relevant AR variants related to response/resistance to standard-of-care treatments (AR-V7 transcript, AR T878A point mutation and AR gene amplification) were evaluated by digital PCR in 15 samples from patients affected by Castration-Resistant Prostate Cancer (CRPC). Plasma was processed to obtain circulating RNA and DNA using protocols based on tumor EVs enrichment through immuno-affinity and peptide-affinity compared to generic extraction kits. Our results showed that immuno-affinity enrichment prior to RNA extraction clearly outperforms the generic isolation method in the detection of AR-V7, also allowing for a distinction between responder (R) and non-responder (NR) patients. The T878A mutation was detected, overall, in nine out of 15 samples and no approach alone was able to reveal mutations in all harboring samples, showing that the employed methods complement each other. AR amplification was detected in the majority of CRPC samples analysed using either cell-free DNA (cfDNA) or exosome isolation kits (80%). We demonstrated that selective isolation of a subset of circulating exosomes enriched for tumor origin, rather than analysis of total plasma exosomes, or total plasma nucleic acids, increases sensitivity and specificity for the detection of specific alterations. Full article
(This article belongs to the Special Issue Liquid Biopsies in Cancer Diagnosis, Monitoring and Prognosis)
Show Figures

Figure 1

14 pages, 2935 KB  
Article
Different Diets Change the Expression of Bovine Serum Extracellular Vesicle-miRNAs
by Suyu Quan, Xuemei Nan, Kun Wang, Linshu Jiang, Junhu Yao and Benhai Xiong
Animals 2019, 9(12), 1137; https://doi.org/10.3390/ani9121137 - 13 Dec 2019
Cited by 14 | Viewed by 3822
Abstract
Cells can communicate with neighboring or distant cells using extracellular vesicles (EVs), mainly attributed to their containing miRNAs. Given that diets can change host circulatory miRNA profiling, and EVs are the major miRNA carriers in serum, we hypothesized that different diets could change [...] Read more.
Cells can communicate with neighboring or distant cells using extracellular vesicles (EVs), mainly attributed to their containing miRNAs. Given that diets can change host circulatory miRNA profiling, and EVs are the major miRNA carriers in serum, we hypothesized that different diets could change bovine circulating EV-miRNA expression. We partly replaced alfalfa hay with whole cotton seed and soybean hull in the feed formula of the tested cows. Blood EVs were isolated using a polyethylene glycol precipitation kit. Particle size analysis revealed exosomes were dominant in bovine serum EVs. Small RNAs were enriched in bovine serum EVs, including miRNAs, snRNAs, tiRNAs, Cis-regulatory elements, piRNAs, etc. In total, 359 types of Bos taurus miRNAs were identified by Solexa sequencing. Each cow in the control group contained about 244 types of serum EV-miRNAs, compared to 246 types in the tested group. There were 15 immune-related miRNAs in the top 20 serum EV-miRNAs, accounting for about 80% of the total. Seven differently expressed known miRNAs were detected in responding to different diets. An analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG) showed differently expressed miRNAs were related to hormone signal pathways and protein metabolism. Bovine serum EVs are abundant with miRNAs, most of which are immune-related. Different diets eventually change the miRNA profiling of bovine serum EVs. Full article
(This article belongs to the Section Animal Physiology)
Show Figures

Graphical abstract

16 pages, 2870 KB  
Article
Enrichment of Exosome-Like Extracellular Vesicles from Plasma Suitable for Clinical Vesicular miRNA Biomarker Research
by Sohee Moon, Dong Wun Shin, Sujin Kim, Young-Sun Lee, Sakulrat Mankhong, Seong Wook Yang, Phil Hyu Lee, Dong-Ho Park, Hyo-Bum Kwak, Jae-Sun Lee and Ju-Hee Kang
J. Clin. Med. 2019, 8(11), 1995; https://doi.org/10.3390/jcm8111995 - 15 Nov 2019
Cited by 33 | Viewed by 6125
Abstract
Exosome-like extracellular vesicles (ELVs) contain biomolecules that have potential as diagnostic biomarkers, such as proteins, micro-RNAs (miRNAs), and lipids. However, it is difficult to enrich ELVs consistently with high yield and purity from clinical samples, which hampers the development of ELV biomarkers. This [...] Read more.
Exosome-like extracellular vesicles (ELVs) contain biomolecules that have potential as diagnostic biomarkers, such as proteins, micro-RNAs (miRNAs), and lipids. However, it is difficult to enrich ELVs consistently with high yield and purity from clinical samples, which hampers the development of ELV biomarkers. This is particularly true for miRNAs in protein-rich plasma. Hence, we modified ELV isolation protocols of three commercially available polymer-precipitation-based kits using proteinase K (PK) treatment to quantify ELV-associated miRNAs in human plasma. We compared the yield, purity, and characteristics of enriched plasma ELVs, and measured the relative quantity of three selected miRNAs (miR-30c, miR-126, and miR-192) in ELVs using six human plasma samples. Compared with the original protocols, we demonstrated that ELVs can be isolated with PK treatment with high purity (i.e., lack of non-exosomal proteins and homogeneous size of vesicles) and yield (i.e., abundancy of exosomal markers), which were dependent on kits. Using the kit with the highest purity and yield with PK treatment, we successfully quantified ELV miRNAs (levels of 45%–65% in total plasma) with acceptable variability. Collectively, ELV enrichment using the modified easy-to-use method appears suitable for the analysis of miRNAs, although its clinical applicability needs to be confirmed in larger clinical studies. Full article
(This article belongs to the Section Clinical Laboratory Medicine)
Show Figures

Figure 1

9 pages, 1190 KB  
Article
Differential MicroRNA Expression of miR-21 and miR-155 within Oral Cancer Extracellular Vesicles in Response to Melatonin
by Matthew Hunsaker, Greta Barba, Karl Kingsley and Katherine M. Howard
Dent. J. 2019, 7(2), 48; https://doi.org/10.3390/dj7020048 - 1 May 2019
Cited by 42 | Viewed by 5960
Abstract
Objective: Extracellular vesicles derived from oral cancer cells, which include Exosomes and Oncosomes, are membranous vesicles secreted into the surrounding extracellular environment. These extracellular vesicles can regulate and modulate oral squamous cell carcinoma (OSCC) progression through the horizontal transfer of bioactive molecules including [...] Read more.
Objective: Extracellular vesicles derived from oral cancer cells, which include Exosomes and Oncosomes, are membranous vesicles secreted into the surrounding extracellular environment. These extracellular vesicles can regulate and modulate oral squamous cell carcinoma (OSCC) progression through the horizontal transfer of bioactive molecules including proteins, lipids and microRNA (miRNA). The primary objective of this study was to examine the potential to isolate and evaluate extracellular vesicles (including exosomes) from various oral cancer cell lines and to explore potential differences in miRNA content. Methods: The OSCC cell lines SCC9, SCC25 and CAL27 were cultured in DMEM containing 10% exosome-free fetal bovine serum. Cell-culture conditioned media was collected for exosome and extracellular vesicle isolation after 72 h. Isolation was completed using the Total Exosome Isolation reagent (Invitrogen) and extracellular vesicle RNA was purified using the Total Exosome RNA isolation kit (Invitrogen). Extracellular vesicle miRNA content was evaluated using primers specific for miR-16, -21, -133a and -155. Results: Extracellular vesicles were successfully isolated from all three OSCC cell lines and total extracellular vesicle RNA was isolated. Molecular screening using primers specific for several miRNA revealed differential baseline expression among the different cell lines. The addition of melatonin significantly reduced the expression of miR-155 in all of the OSCC extracellular vesicles. However, miR-21 was significantly increased in each of the three OSCC isolates. No significant changes in miR-133a expression were observed under melatonin administration. Conclusions: Although many studies have documented changes in gene expression among various cancers under melatonin administration, few studies have evaluated these effects on microRNAs. These results may be among the first to evaluate the effects of melatonin on microRNA expression in oral cancers, which suggests the differential modulation of specific microRNAs, such as miR-21, miR-133a and miR-155, may be of significant importance when evaluating the mechanisms and pathways involved in melatonin-associated anti-tumor effects. Full article
Show Figures

Figure 1

13 pages, 2916 KB  
Article
Characterization of Plasma-Derived Extracellular Vesicles Isolated by Different Methods: A Comparison Study
by Esther Serrano-Pertierra, Myriam Oliveira-Rodríguez, Montserrat Rivas, Pedro Oliva, Javier Villafani, Ana Navarro, M. Carmen Blanco-López and Eva Cernuda-Morollón
Bioengineering 2019, 6(1), 8; https://doi.org/10.3390/bioengineering6010008 - 17 Jan 2019
Cited by 110 | Viewed by 12299
Abstract
Extracellular vesicles (EV) are small membrane structures released by cells that act as potent mediators of intercellular communication. The study of EV biology is important, not only to strengthen our knowledge of their physiological roles, but also to better understand their involvement in [...] Read more.
Extracellular vesicles (EV) are small membrane structures released by cells that act as potent mediators of intercellular communication. The study of EV biology is important, not only to strengthen our knowledge of their physiological roles, but also to better understand their involvement in several diseases. In the field of biomedicine they have been studied as a novel source of biomarkers and drug delivery vehicles. The most commonly used method for EV enrichment in crude pellet involves serial centrifugation and ultracentrifugation. Recently, different protocols and techniques have been developed to isolate EV that imply less time and greater purification. Here we carry out a comparative analysis of three methods to enrich EV from plasma of healthy controls: ultracentrifugation, ExoQuickTM precipitation solution (System Biosciences), and Total Exosome Isolation kit (Invitrogen). Our results show that commercial precipitation reagents are more efficient and enable higher EV enrichment factors compared with traditional ultracentrifugation, although subsequent imaging analysis is not possible with some of them. We hope that this work will contribute to the current research on isolation techniques to assist the progress of clinical applications with diagnostic or therapeutic objectives. Full article
(This article belongs to the Special Issue Extracellular Vesicles: From Biology to Biomedical Applications)
Show Figures

Graphical abstract

Back to TopTop