Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = traditional vinification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1288 KB  
Article
Vinification Technique Matters: Kinetic Insight into Color, Phenolics, Volatiles, and Aging Potential of Babica Wines
by Živko Skračić, Josipa Marić, Ivica Ljubenkov, Maja Veršić Bratinčević, Petra Brzović, Martina Kukoleča, Lorena Pranjković, Luka Marinov, Ana Mucalo, Goran Zdunić and Ivana Generalić Mekinić
Processes 2025, 13(9), 2734; https://doi.org/10.3390/pr13092734 - 27 Aug 2025
Viewed by 352
Abstract
Unveiling how vinification technique shapes wine identity, this study provides a comparative insight into the chemical and sensory profiles of Babica wines produced using traditional, enzyme-assisted, and thermovinification approaches. The kinetics of color parameters changes and the phenolic extraction were monitored during the [...] Read more.
Unveiling how vinification technique shapes wine identity, this study provides a comparative insight into the chemical and sensory profiles of Babica wines produced using traditional, enzyme-assisted, and thermovinification approaches. The kinetics of color parameters changes and the phenolic extraction were monitored during the first five days of maceration. Individual phenolics and volatiles were determined using high-performance liquid and gas chromatography, respectively, while the overall sensory quality of the wines was evaluated by panelists. Significant differences in the extraction kinetics of compounds of interest were observed among treatments, particularly during the first days of maceration. By the end of the study, the thermovinified wine exhibited the highest color intensity (3.80), redness (52.5%), and approximately two-fold higher concentrations of total phenolics (2205 mg gallic acid equivalents/L) compared to the other two treatments. It contained the lowest concentration of tannins (100 mg catechin equivalents/L), anthocyanins (117 mg of malvidin-3-glucoside equivalents/L), and esters and showed the highest levels of volatile alcohols. It was also characterized by the most intense blueberry aroma and astringency in sensory analysis. The applied maceration technique affects the chemical and sensory profiles of Babica wines, with thermovinification favoring young and highly colored wines, whereas conventional vinification enhances the wine’s aging potential. Full article
(This article belongs to the Special Issue Analysis and Processes of Bioactive Components in Natural Products)
Show Figures

Figure 1

16 pages, 1739 KB  
Article
Impact of the Thermovinification Practice Combined with the Use of Autochthonous Yeasts on the Fermentation Kinetics of Red Wines
by Islaine Santos Silva, Ana Paula André Barros, Marcos dos Santos Lima, Bruna Carla Agustini, Carolina Oliveira de Souza and Aline Camarão Telles Biasoto
Fermentation 2025, 11(8), 436; https://doi.org/10.3390/fermentation11080436 - 29 Jul 2025
Viewed by 449
Abstract
Thermovinification has emerged as a rising alternative method in red wine production, gaining popularity among winemakers. The use of autochthonous yeasts isolated from grapes is also an interesting practice that contributes to the creation of wine with a distinctive regional character. This research [...] Read more.
Thermovinification has emerged as a rising alternative method in red wine production, gaining popularity among winemakers. The use of autochthonous yeasts isolated from grapes is also an interesting practice that contributes to the creation of wine with a distinctive regional character. This research investigated how combining thermovinification with autochthonous yeast strains influences the fermentation dynamics of Syrah wine. Six treatments were conducted, combining the use of commercial and two autochthonous yeasts with traditional vinification (7-day maceration) and thermovinification (65 °C for 2 h) processes. Sugars and alcohols were quantified during alcoholic fermentation by high-performance liquid chromatography with refractive index detection. Cell viability and kinetic parameters, such as ethanol formation rate and sugar consumption, were also evaluated. The Syrah wine’s composition was characterized by classical wine analyses (OIV procedures). The results showed that cell viability was unaffected by thermovinification. Thermovinification associated with autochthonous yeasts improved the efficiency of alcoholic fermentation. Thermovinified wines also yielded a higher alcohol content (13.9%). Future studies should investigate how thermovinification associated with autochthonous yeasts affects the metabolomic and flavoromic properties of Syrah wine and product acceptability. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Figure 1

15 pages, 2517 KB  
Article
Microbiota Diversity During Grape Drying and Spontaneous Fermentations of Vin Santo
by Damiano Barbato, Viola Galli, Silvia Mangani, Eleonora Mari, Giacomo Buscioni, Lisa Granchi and Simona Guerrini
Fermentation 2025, 11(6), 310; https://doi.org/10.3390/fermentation11060310 - 29 May 2025
Viewed by 849
Abstract
Vin Santo is a passito wine produced mainly in Tuscany. In the traditional production of Vin Santo, fermentation occurs naturally. Only a few reports have explored the microbial ecology of Vin Santo. Therefore, the present study aimed to investigate the microbial ecology and [...] Read more.
Vin Santo is a passito wine produced mainly in Tuscany. In the traditional production of Vin Santo, fermentation occurs naturally. Only a few reports have explored the microbial ecology of Vin Santo. Therefore, the present study aimed to investigate the microbial ecology and its impact on the fermentative kinetics in traditional processes of Vin Santo carried out in two different Tuscan wineries. Despite the different systems used for drying the grapes, both wineries showed similar microbial ecology. Non-Saccharomyces yeasts were the dominant microbial population during grape drying in different succession, even though in the end, the dominant species (at different percentages) in both were Metschnikowia pulcherrima, Kloeckera apiculata, and Starmerella bacillaris. The spontaneous fermentations were instead both dominated by Saccharomyces cerevisiae, however in different concentration throughout the process, leading to a different ethanol content—12% (v/v) and 10.8% (v/v) in winery A and B, respectively. In both wineries, acetic bacteria and moulds did not grow. Considering the intraspecific biodiversity of S. cerevisiae populations, the vinifications of both wineries displayed very similar biodiversity indices. No single strain of S. cerevisiae dominated the entire fermentation process. The analysis identified 30 distinct genetic patterns in the fermentations of winery A and 23 in the fermentations of winery B. The work provided an insight into the microbial communities and their metabolomic interactions during Vin Santo production which could improve the management and control of the process. Full article
Show Figures

Figure 1

11 pages, 543 KB  
Article
Chemical Characterisation of Inorganic Profile of Wine Obtained by Alternative Vinification in Comparison with Traditional One
by Nicola Mercanti, Ylenia Pieracci, Monica Macaluso, Angela Zinnai, Olivier F. X. Donard and Véronique Vacchina
Foods 2025, 14(11), 1912; https://doi.org/10.3390/foods14111912 - 28 May 2025
Viewed by 462
Abstract
The complex dynamics between oxygen exposure, sulphur dioxide use, and wine quality are of the utmost importance in modern winemaking. While SO2 acts as an effective antiseptic and antioxidant, its excessive use raises health concerns, prompting stricter regulations (Council Regulation EC No. [...] Read more.
The complex dynamics between oxygen exposure, sulphur dioxide use, and wine quality are of the utmost importance in modern winemaking. While SO2 acts as an effective antiseptic and antioxidant, its excessive use raises health concerns, prompting stricter regulations (Council Regulation EC No. 1493/1999; Commission Regulation EC No. 1622/2000) and increasing interest in natural alternatives. In this context, Bioma SA developed plant-based additives derived from vineyard by-products rich in phenolic compounds to replace SO2 in vinification. This study has evaluated the impact of these additives on the inorganic elemental composition of Sangiovese wines, comparing traditional sulphite-based vinification with the Bioma-based alternative. Using triple quadrupole ICP-MS, 23 elements were quantified and analysed via ANOVA and principal component analysis (PCA). The results revealed significant effects of the vinification protocol and ageing method on key elements such as Mn, Rb, Sr, Ni, and As. Importantly, all toxic elements, Pb (≤5.9 µg/L), Cd (≤0.3 µg/L), and As (≤12.1 µg/L), remained well below EU safety thresholds. PCA further highlighted distinct elemental profiles between traditional and Bioma wines. These findings confirm that Bioma additives enable the production of wines with reduced sulphur content and compliant elemental safety, supporting their potential as sustainable, health-conscious alternatives in modern oenology. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Figure 1

13 pages, 868 KB  
Article
The Effect of Clarification Protocols on the Vinification of White Wines with Papain and Bromelain Immobilized on Glutaraldehyde Activated Chitosan
by Emmanuel M. Papamichael, Efstathios Hatziloukas, Amalia-Sofia Afendra, Panagiota-Yiolanda Stergiou and Violeta Maltabe
Catalysts 2024, 14(11), 788; https://doi.org/10.3390/catal14110788 - 6 Nov 2024
Viewed by 1098
Abstract
The aim of this study is the implementation of reliable, inexpensive, and practical clarification methods of white wines, without affecting their traditional organoleptic characteristics, through treatment of musts and/or white wines with immobilized papain and bromelain. In all vinifications which focused on the [...] Read more.
The aim of this study is the implementation of reliable, inexpensive, and practical clarification methods of white wines, without affecting their traditional organoleptic characteristics, through treatment of musts and/or white wines with immobilized papain and bromelain. In all vinifications which focused on the production of white wines with improved organoleptic characteristics, the yeast strain Saccharomyces cerevisiae Z622 was used. Both purified papain and bromelain were immobilized on high-molecular-weight chitosan microparticles using three different protocols. The immobilized proteases with the most effective protocol were applied to both unfermented musts and fermented wines. Control vinifications were also performed using bentonite as a clarifying agent. Quantitative analyses of the white wines were carried out at the end of the alcoholic fermentation and after six months of bottling and storage in the refrigerator. The organoleptic characteristics of the clarified white wines treated with the immobilized proteases were compared with those treated with bentonite, a blank untreated white wine sample, and a commercial sample of Debina white wine through sensory evaluation. The results showed that only the musts treated with immobilized papain before fermentation resulted in clarified white wines with stable and improved sensory characteristics, similar to those of the Debina white wine sample. Full article
(This article belongs to the Section Biocatalysis)
Show Figures

Figure 1

16 pages, 1297 KB  
Article
Polyphenols Extraction from Different Grape Pomaces Using Natural Deep Eutectic Solvents
by Alessandro Frontini, Andrea Luvisi, Carmine Negro, Massimiliano Apollonio, Rita Accogli, Mariarosaria De Pascali and Luigi De Bellis
Separations 2024, 11(8), 241; https://doi.org/10.3390/separations11080241 - 8 Aug 2024
Cited by 10 | Viewed by 3594
Abstract
Exploiting by-products from the oenological industry to extract antioxidant chemicals is a shared goal that combines the need to reduce the wine sector’s environmental impact with the need to improve the availability of these biomolecules, according to a circular economy approach. Natural deep [...] Read more.
Exploiting by-products from the oenological industry to extract antioxidant chemicals is a shared goal that combines the need to reduce the wine sector’s environmental impact with the need to improve the availability of these biomolecules, according to a circular economy approach. Natural deep eutectic solvents (NaDES) have recently captured researchers’ interest as a safer and more environmentally friendly alternative to traditional solvents due to their effectiveness, low toxicity, and stability. In this work, we set out to investigate several NaDES for the extraction of phenolic chemicals from local monovarietal grape pomace resulting from different vinification procedures (including both red and rosé vinification of Negroamaro and Primitivo grapes; rosé vinification of Susumaniello grapes and white vinification of Chardonnay, Fiano and Malvasia bianca grapes), with the additional goal of generalizing the use of NaDES to extract chemicals of interest from organisms selected from the wide plant biodiversity. Three binary choline chloride-based NaDES (DES-Lac, DES-Tar, and DES-Gly, with lactic acid, tartaric acid, and glycerol as hydrogen bond donors, respectively) were compared to ethanol as a conventional solvent, and the extracts were evaluated using HPLC/MS and colorimetric techniques. The results revealed that each NaDES produces a substantially higher total phenolic yield than ethanol (up to 127.8 mg/g DW from Primitivo rosé grape pomace). DES-Lac and DES-Tar were more effective for anthocyanins extraction; the most abundant compound was malvidin 3-O-glucoside (highest extraction yield with DES-Lac from Susumaniello pomace: 29.4 mg/g DW). Regarding phenolic compounds, DES-Gly was the most effective NaDES producing results comparable to ethanol. Unexpectedly, Chardonnay pomace has the greatest content of astilbin. In most cases, grape pomace extracts obtained by rosé and white vinification provided the maximum yield. As a result, NaDES have emerged as a viable alternative to traditional organic solvent extraction techniques, allowing for higher (or equal) yields while significantly lowering costs, hazards, and environmental impact. Full article
Show Figures

Figure 1

12 pages, 1945 KB  
Article
Energetic Comparison between Pneumatic and Traditional Disintegration in the Vinification of Negroamaro Grapes
by Ferruccio Giametta, Filippo Catalano, Claudio Perone and Biagio Bianchi
Sustainability 2024, 16(11), 4360; https://doi.org/10.3390/su16114360 - 22 May 2024
Cited by 1 | Viewed by 1134
Abstract
This study compares the energetic and functional aspects of pneumatic and traditional disintegration methods during the vinification of Negroamaro grapes to produce ready-to-drink wine, focusing on sustainability and energy efficiency in winemaking. It addresses the critical need to reducing costs and environmental impact [...] Read more.
This study compares the energetic and functional aspects of pneumatic and traditional disintegration methods during the vinification of Negroamaro grapes to produce ready-to-drink wine, focusing on sustainability and energy efficiency in winemaking. It addresses the critical need to reducing costs and environmental impact in the wine industry through improved energy efficiency and sustainable practices. The experimental tests conducted reveal that the pneumatic system exhibits advantages in terms of energy consumption, production time, and thermal homogenization during fermentation compared to the traditional system. Results indicate that the pneumatic system requires significantly lower energy consumption and shorter operating times during fermentation and pressing phases while maintaining consistent wine quality, highlighting its potential for more efficient and sustainable winemaking practices. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

18 pages, 1628 KB  
Article
Comparative Study of the Stilbenes and Other Phenolic Compounds in Cabernet Sauvignon Wines Obtained from Two Different Vinifications: Traditional and Co-Inoculation
by Aleksandar Petrović, Nikolina Živković, Ljilja Torović, Ana Bukarica, Vladan Nikolić, Jelena Cvejić and Ljiljana Gojković-Bukarica
Processes 2024, 12(5), 1020; https://doi.org/10.3390/pr12051020 - 17 May 2024
Cited by 2 | Viewed by 1828
Abstract
From grape cultivation to ripening and harvest timing to processing, each step of the winemaking process can be a critical point when it comes to wine quality and phenolic composition. In this study, the influence of winemaking technology on resveratrol and quercetin content, [...] Read more.
From grape cultivation to ripening and harvest timing to processing, each step of the winemaking process can be a critical point when it comes to wine quality and phenolic composition. In this study, the influence of winemaking technology on resveratrol and quercetin content, as well as other polyphenolic compounds, was investigated. Resveratrol is a non-flavonoid polyphenolic stilbene synthesized by grape skin when damaged by infectious diseases or ionizing radiation. Quercetin is a phenol found in grape skins and stems and is produced to protect grapes from UV light damage. Trans-resveratrol and quercetin are known to act as antioxidants, reduce the risk of atherosclerosis and type 2 diabetes, inhibit the growth of cancer cells, and prevent the release of allergic and inflammatory molecules. However, the question was whether red wine could be enriched with these phenols using a co-inoculation winemaking technology. The main new idea was to completely replace the cold maceration process with maceration with the addition of wild yeast (Torulaspora delbrueckii, Td). Maceration with the addition of wild yeast (Td) offers the following advantages over traditional cold maceration: (1) higher concentrations of trans-resveratrol (>35–40%) and quercetin (>35–40%) in the final wine, (2) the new wine has a higher potential for human health, (3) the wine has better aroma and stability due to the higher mannoprotein content, and (4) better energy efficiency in the production process. The study of stability during storage and aging also included derivatives of benzoic acid and hydroxycinnamic acid, piceid, catechin, naringenin, rutin, kaempherol, hesperetin, and anthocyanins. This study found that younger wines had higher phenolic content, while storage of the wine resulted in a decrease in total phenolic content, especially monomeric stilbenes and quercetin. This study represents a small part of the investigation of the influence of non-Saccharomyces yeasts on the phenolic profile of wine, which still requires extensive research with practical application. In addition, non-Saccharomyces yeasts such as Kluyveromyces thermotolerans, Candida stellata, and Metschnikowia pulcherrima could also be used in future studies. Full article
(This article belongs to the Special Issue Research and Optimization of Food Processing Technology)
Show Figures

Figure 1

16 pages, 2936 KB  
Article
Towards Sulphite-Free Winemaking: A New Horizon of Vinification and Maturation
by Nicola Mercanti, Monica Macaluso, Ylenia Pieracci, Guido Flamini, Giulio Scappaticci, Andrea Marianelli and Angela Zinnai
Foods 2024, 13(7), 1108; https://doi.org/10.3390/foods13071108 - 4 Apr 2024
Cited by 7 | Viewed by 3485
Abstract
The complex dynamics between oxygen exposure, sulphur dioxide (SO2) utilization, and wine quality are of the utmost importance in wine sector, and this study aims to explore their fine balance in winemaking. As a common additive, SO2 works as an [...] Read more.
The complex dynamics between oxygen exposure, sulphur dioxide (SO2) utilization, and wine quality are of the utmost importance in wine sector, and this study aims to explore their fine balance in winemaking. As a common additive, SO2 works as an antiseptic and antioxidant. However, its excessive use has raised health concerns. Regulatory guidelines, including Council Regulation (EC) N° 1493/1999 and Commission Regulation (EC) No 1622/2000, dictate SO2 concentrations in wines. The increasing demand for natural preservatives is driving the search for alternatives, with natural plant extracts, rich in phenolic compounds, emerging as promising substitutes. In this context, Bioma Company has proposed alternative additives deriving from vineyard waste to replace SO2 during winemaking. Thus, the aim of the present work was to compare the compositional characteristics between the product obtained with the alternative vinification and the traditional one during the winemaking, as well as the aroma compositions of the final wines. After a year of experimentation, the wines produced with Bioma products showed compositional characteristics comparable to their traditional counterparts. Notably, these wines comply with current legislation, with significantly reduced total sulphur content, allowing their designation as “without added sulphites”. Bioma products emerge as potential catalysts for sustainable and health-conscious winemaking practices, reshaping the landscape of the industry. Full article
Show Figures

Figure 1

19 pages, 2320 KB  
Article
Characterization of Semisweet and Sweet Wines from Kos Island Produced Traditionally and Conventionally
by Adriana Skendi, Stefanos Stefanou and Maria Papageorgiou
Foods 2023, 12(20), 3762; https://doi.org/10.3390/foods12203762 - 13 Oct 2023
Cited by 2 | Viewed by 1541
Abstract
Eight wines, four semisweet rosé and four sweet red, produced on Kos Island in Greece, were analyzed. Wines produced following different winemaking procedures were characterized based on their physicochemical parameters, total phenolic content, antioxidant activity, and chromatic properties. Moreover, their elemental composition was [...] Read more.
Eight wines, four semisweet rosé and four sweet red, produced on Kos Island in Greece, were analyzed. Wines produced following different winemaking procedures were characterized based on their physicochemical parameters, total phenolic content, antioxidant activity, and chromatic properties. Moreover, their elemental composition was studied with ICP–OES. Differences were observed among the measurements performed. All of the samples were below the levels set for SO2 content. The sweet red wines had higher alcoholic strength than semisweet rosé ones, and were characterized by a higher yellow proportion. The vinification process significantly affected SO2 levels, phenolics, and antioxidant activity. The red wines were high in Na content, with one sample exceeding the level set by OIV (International Organization of Vine and Wine). The levels of all the other elements related to quality (Fe, Cu, Zn) or safety (Pb, Cd) were far below the limits set. Rosé wines contained less Mg, but were higher in Na than the red ones. The obtained data suggest that sweet and semisweet wines produced with traditional procedures are safe and of high quality, holding antioxidant capacity beneficial to health. The information reported contributes to a better understanding of these types of wines. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Figure 1

13 pages, 6471 KB  
Article
Yeasts Inoculation Effect on Bacterial Development in Carbonic Maceration Wines Elaboration
by Ana Rosa Gutiérrez, Pilar Santamaría, Lucía González-Arenzana, Patrocinio Garijo, Carmen Olarte and Susana Sanz
Foods 2023, 12(14), 2755; https://doi.org/10.3390/foods12142755 - 20 Jul 2023
Cited by 5 | Viewed by 1581
Abstract
Carbonic maceration (CM) vinification is a very traditional method that allows saving energy without great equipment investment, obtaining high-quality wines. However, due to its particularities, CM winemaking implies a higher risk of microbial alteration. This work studies the evolution of bacterial population along [...] Read more.
Carbonic maceration (CM) vinification is a very traditional method that allows saving energy without great equipment investment, obtaining high-quality wines. However, due to its particularities, CM winemaking implies a higher risk of microbial alteration. This work studies the evolution of bacterial population along carbonic maceration wines elaboration with and without yeast inoculation. In the same way, two strategies of yeast inoculation were studied: “pied de cuve” and Active Dry Yeasts (ADY) seed. For this purpose, three conditions were assayed: spontaneous fermentation (without inoculation), “pied de cuve” technology, and ADY inoculation. For each condition, two winemaking methods were compared: carbonic maceration and the standard method of destemming and crushing (DC). The bacterial evolution (lactic acid and acetic acid bacteria) was followed in different fermentation stages. Finally, the wines obtained were analysed (pH and volatile acidity). In the non-inoculated wines produced by CM, high development of the bacterial population was observed (counts of acetic acid bacteria around 4.3 log cfu/mL), and finished wines presented high values of volatile acidity (>1.5 g/L), which did not occur in the inoculated vinifications (counts of acetic acid bacteria around 1.5 log cfu/mL and 0.5 g/l of volatile acidity). Thus, the control of yeast population, as a “pied de cuve” as ADY seed, seems to be an effective tool to avoid bacterial alterations in CM vinifications. Full article
Show Figures

Figure 1

16 pages, 5130 KB  
Review
The Fingerprint of Fortified Wines—From the Sui Generis Production Processes to the Distinctive Aroma
by Rosa Perestrelo, Yassine Jaouhari, Teresa Abreu, Mariangie M. Castillo, Fabiano Travaglia, Jorge A. M. Pereira, José S. Câmara and Matteo Bordiga
Foods 2023, 12(13), 2558; https://doi.org/10.3390/foods12132558 - 30 Jun 2023
Cited by 5 | Viewed by 3399
Abstract
The fortified wines that originated in Mediterranean countries have, in common, a high alcohol content to increase their shelf-life during long journeys to northern Europe and the American continent. Nowadays, the world’s better-known wines, including Marsala, Madeira, Port, and Sherry, due to their [...] Read more.
The fortified wines that originated in Mediterranean countries have, in common, a high alcohol content to increase their shelf-life during long journeys to northern Europe and the American continent. Nowadays, the world’s better-known wines, including Marsala, Madeira, Port, and Sherry, due to their high alcoholic content, sweet taste, and intense aromatic profile, are designated as dessert wines and sometimes served as aperitifs. This review gives an overview of the traditional vinification process, including the microbiota and autochthonous yeast, as well as the regulatory aspects of the main Italian, Portuguese, and Spanish fortified wines. The winemaking process is essential to defining the volatile organic compounds (VOCs) that characterize the aroma of each fortified wine, giving them an organoleptic fingerprint and “terroir” characteristics. The various volatile and odorous compounds found in fortified wines during the oxidative aging are discussed in the last part of this review. Full article
(This article belongs to the Special Issue From Grapes to Wine: Trend of 2022)
Show Figures

Figure 1

13 pages, 5995 KB  
Article
Cultivar-Dependent Effects of Non-Saccharomyces Yeast Starter on the Oenological Properties of Wines Produced from Two Autochthonous Grape Cultivars in Southern Italy
by Vito Michele Paradiso, Luigi Sanarica, Ignazio Zara, Chiara Pisarra, Giuseppe Gambacorta, Giuseppe Natrella and Massimiliano Cardinale
Foods 2022, 11(21), 3373; https://doi.org/10.3390/foods11213373 - 26 Oct 2022
Cited by 9 | Viewed by 1965
Abstract
Global warming poses a threat to winemaking worldwide, especially in dry–warm regions such as Southern Italy. Must fermentation with non-Saccharomyces yeast starter is a possible approach to limit the negative effects of climate change, leading to desirable effects such as an increase [...] Read more.
Global warming poses a threat to winemaking worldwide, especially in dry–warm regions such as Southern Italy. Must fermentation with non-Saccharomyces yeast starter is a possible approach to limit the negative effects of climate change, leading to desirable effects such as an increase in total acidity and/or aroma improvement. The aim of this study was to evaluate the effects of the use of a non-Saccharomyces starter (Lachancea thermotolerans) on the chemical and sensory properties of wines obtained by the the fermentation of two autochthonous Apulian grape cultivars, namely Bombino nero and Minutolo, as compared to the traditional Saccharomyces cerevisiae-driven fermentation. Bombino and Minutolo wines fermented with either Lachancea thermotolerans or Saccharomyces cerevisiae were characterized for their oenological parameters, volatile profiles, and sensory properties. Both chemical and sensory properties were affected by the yeast starter. Inoculation of L. thermotolerans increased sensory complexity, with different floral and sweet-like attributes for both cultivars. Bombino nero, a neutral cultivar, showed a clear effect on wine composition, with both an increase in lactic acid and a change in the volatile profile. On the contrary, the impact of L. thermotolerans was partially masked in Minutolo due to the strong primary aroma background of this highly terpenic cultivar. In this work, we evidenced a notable cultivar × yeast interaction, showing how generalizations of the effects of non-Saccharomyces yeasts on vinification are difficult to achieve, as they show a cultivar-specific outcome. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Figure 1

17 pages, 1352 KB  
Article
Influence of Oak Chips and Oak Barrel Ageing on Volatile Profile in Chardonnay Wine of Romania
by Diana Ionela Stegăruș, Anamaria Călugăr, Corneliu Tanase, Adriana Muscă, Oana Romina Botoran, Mihail Manolache, Anca Cristina Babeș, Claudiu Bunea, Emese Gál, Andrea Bunea and Teodora Emilia Coldea
Appl. Sci. 2021, 11(8), 3691; https://doi.org/10.3390/app11083691 - 19 Apr 2021
Cited by 16 | Viewed by 4590
Abstract
The influence of the addition of oak chips and barrel ageing on basic wine parameters and volatile compounds of Chardonnay wines has been studied. Chardonnay wines were obtained by the traditional wine-making process. Oak chips (4 g/L—non-toasted and light toasted) were added at [...] Read more.
The influence of the addition of oak chips and barrel ageing on basic wine parameters and volatile compounds of Chardonnay wines has been studied. Chardonnay wines were obtained by the traditional wine-making process. Oak chips (4 g/L—non-toasted and light toasted) were added at the final stage of the winemaking process for ageing 1, 2 and 3 months, respectively. Also, the control wine was aged in non-toasted barrels for the same period of time. Following Liquid-liquid extraction-gas chromatography-mass spectrometry analysis, alcohols, esters, fatty acids, lactones, and phenolic compounds were identified and quantified. The light toasted wine was clearly separated by phenolic compounds (vanillin, p-vinyl guaiacol and acetovanillone). The floral aroma supplied by 2-phenylethanol was slowly increased by ageing with odor activity values (OAV) higher in aged samples than control wine (1.07). The vanilla scent could be easily perceived in all aged samples, mainly for light toasted chip-treated samples with OAV values between 2.30 and 2.37. After 3 months, the volatile compounds of wine from non-toasted medium (chips and barrels) were almost similar from the volatile profile point of view. This could have economic and vinification management implications since oak barrels are expensive and the wine oak barrel aging is a long process. All wines studied in this research can provide a viable alternative to young varietal wines. Full article
(This article belongs to the Special Issue Wine Chemistry)
Show Figures

Figure 1

17 pages, 4097 KB  
Article
Energetic Retrofit Strategies for Traditional Sicilian Wine Cellars: A Case Study
by Francesco Nocera, Rosa Caponetto, Giada Giuffrida and Maurizio Detommaso
Energies 2020, 13(12), 3237; https://doi.org/10.3390/en13123237 - 22 Jun 2020
Cited by 26 | Viewed by 3327
Abstract
Sicily is characterized by rural buildings, Palmenti, destined to wine production, which are scattered along the countryside and part of the local historical heritage. There are different types of rural buildings, but all have in common the use of ancient and well-established bioclimatic [...] Read more.
Sicily is characterized by rural buildings, Palmenti, destined to wine production, which are scattered along the countryside and part of the local historical heritage. There are different types of rural buildings, but all have in common the use of ancient and well-established bioclimatic techniques for wine conservation and aging. Most of them were built with the double function of living space for the owner and productive spaces for all the activities correlated to the cultivations. Indeed, many rural houses, destined to the wine production, are characterized by wineries and wine cellars (the first for the wine production, the second to store the wine for the aging process). The growing production of high-quality Sicilian wines, very appreciated all over the world, leads to upgrade the ancient Palmenti to seek optimal hygrothermal conditions and, therefore, to guarantee high performance of the produced and stored wines. The purpose of this study is to investigate how the retrofit measures taken to comply with the energy regulations could affect the thermal behavior of a wine cellar constructed with consolidated bioclimatic technics. The results show the importance of not insulating the solid ground floor for maintaining suitable temperatures for the fermentation and aging of wine. This study can be useful for future analysis when comparing the optimal hygrothermal conditions of wine cellars located in homogeneous viticultural areas (with same climate, geology, soil, physical features, and height) in other parts of the world. Full article
Show Figures

Figure 1

Back to TopTop