Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = transcript-specific translation and ribosomopathies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1751 KiB  
Article
GATA-1 Defects in Diamond–Blackfan Anemia: Phenotypic Characterization Points to a Specific Subset of Disease
by Birgit van Dooijeweert, Sima Kheradmand Kia, Niklas Dahl, Odile Fenneteau, Roos Leguit, Edward Nieuwenhuis, Wouter van Solinge, Richard van Wijk, Lydie Da Costa and Marije Bartels
Genes 2022, 13(3), 447; https://doi.org/10.3390/genes13030447 - 28 Feb 2022
Cited by 14 | Viewed by 4449
Abstract
Diamond–Blackfan anemia (DBA) is one of the inherited bone marrow failure syndromes marked by erythroid hypoplasia. Underlying variants in ribosomal protein (RP) genes account for 80% of cases, thereby classifying DBA as a ribosomopathy. In addition to RP genes, extremely rare variants in [...] Read more.
Diamond–Blackfan anemia (DBA) is one of the inherited bone marrow failure syndromes marked by erythroid hypoplasia. Underlying variants in ribosomal protein (RP) genes account for 80% of cases, thereby classifying DBA as a ribosomopathy. In addition to RP genes, extremely rare variants in non-RP genes, including GATA1, the master transcription factor in erythropoiesis, have been reported in recent years in patients with a DBA-like phenotype. Subsequently, a pivotal role for GATA-1 in DBA pathophysiology was established by studies showing the impaired translation of GATA1 mRNA downstream of the RP haploinsufficiency. Here, we report on a patient from the Dutch DBA registry, in which we found a novel hemizygous variant in GATA1 (c.220+2T>C), and an Iranian patient with a previously reported variant in the initiation codon of GATA1 (c.2T>C). Although clinical features were concordant with DBA, the bone marrow morphology in both patients was not typical for DBA, showing moderate erythropoietic activity with signs of dyserythropoiesis and dysmegakaryopoiesis. This motivated us to re-evaluate the clinical characteristics of previously reported cases, which resulted in the comprehensive characterization of 18 patients with an inherited GATA-1 defect in exon 2 that is presented in this case-series. In addition, we re-investigated the bone marrow aspirate of one of the previously published cases. Altogether, our observations suggest that DBA caused by GATA1 defects is characterized by distinct phenotypic characteristics, including dyserythropoiesis and dysmegakaryopoiesis, and therefore represents a distinct phenotype within the DBA disease spectrum, which might need specific clinical management. Full article
Show Figures

Figure 1

11 pages, 1329 KiB  
Review
Angiogenin (ANG)—Ribonuclease Inhibitor (RNH1) System in Protein Synthesis and Disease
by Mayuresh Anant Sarangdhar and Ramanjaneyulu Allam
Int. J. Mol. Sci. 2021, 22(3), 1287; https://doi.org/10.3390/ijms22031287 - 28 Jan 2021
Cited by 33 | Viewed by 6131
Abstract
Protein synthesis is a highly complex process executed by well-organized translation machinery. Ribosomes, tRNAs and mRNAs are the principal components of this machinery whereas RNA binding proteins and ribosome interacting partners act as accessory factors. Angiogenin (ANG)—Ribonuclease inhibitor (RNH1) system is one such [...] Read more.
Protein synthesis is a highly complex process executed by well-organized translation machinery. Ribosomes, tRNAs and mRNAs are the principal components of this machinery whereas RNA binding proteins and ribosome interacting partners act as accessory factors. Angiogenin (ANG)—Ribonuclease inhibitor (RNH1) system is one such accessory part of the translation machinery that came into focus afresh due to its unconventional role in the translation. ANG is conventionally known for its ability to induce blood vessel formation and RNH1 as a “sentry” to protect RNAs from extracellular RNases. However, recent studies suggest them to be important in translation regulation. During cell homeostasis, ANG in the nucleus promotes rRNA transcription. While under stress, ANG translocates to the cytosol and cleaves tRNA into fragments which inhibit ribosome biogenesis and protein synthesis. RNH1, which intimately interacts with ANG to inhibit its ribonucleolytic activity, can also bind to the 40S ribosomes and control translation by yet to be known mechanisms. Here, we review recent advancement in the knowledge of translation regulation by the ANG-RNH1 system. We also gather information about this system in cell homeostasis as well as in pathological conditions such as cancer and ribosomopathies. Additionally, we discuss the future research directions and therapeutic potential of this system. Full article
(This article belongs to the Special Issue Advanced Research in Ribosomal RNAs)
Show Figures

Figure 1

Back to TopTop