Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (407)

Search Parameters:
Keywords = transition to reproduction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2858 KB  
Article
Maternal Exposure to Diesel Exhaust Particles (DEPs) During Pregnancy and Adverse Pregnancy Outcomes: Focusing on the Effect of Particulate Matter on Trophoblast, Epithelial-Mesenchymal Transition
by Hyewon Hur, Hayan Kwon, Yun Ji Jung, Euna Choi, Joonggyeong Shin, Subin Jo, Yeji Lee, Min-A Kim, Yong-Sun Maeng and Ja-Young Kwon
Cells 2025, 14(17), 1317; https://doi.org/10.3390/cells14171317 - 26 Aug 2025
Viewed by 314
Abstract
During pregnancy, exposure to fine particulate matter (PM2.5), particularly diesel exhaust particles (DEPs), elevates the risk of placental dysfunction-related pregnancy complications; however, the underlying cellular mechanisms have yet to be fully elucidated. The objective of this study was to assess the [...] Read more.
During pregnancy, exposure to fine particulate matter (PM2.5), particularly diesel exhaust particles (DEPs), elevates the risk of placental dysfunction-related pregnancy complications; however, the underlying cellular mechanisms have yet to be fully elucidated. The objective of this study was to assess the effects of PM2.5 exposure on trophoblast functions and their interaction with endometrial stromal cells. We utilized a three-dimensional (3D) model in which human first-trimester trophoblasts (Sw71) formed blastocyst-like spheroids and were cultured with human endometrial stromal cells (HESCs). Trophoblast proliferation, migration, invasion, and 3D network formation following DEP exposure (0.5–20 μg/mL) were assessed using methyl thiazolyl diphenyl-tetrazolium bromide (MTT), wound healing, migration, and invasion assays. The expression levels of genes related to the epithelial-mesenchymal transition (EMT) were quantified by real-time reverse-transcription quantitative polymerase chain reaction (RT-qPCR). DEP exposure significantly inhibited trophoblast proliferation, migration, and invasion. DEP treatment dysregulated the EMT program by significantly decreasing the expression of key mesenchymal markers (SNAI1, SNAI2, SOX2, and KLF4) while upregulating epithelial markers. These changes may be related to inhibited trophoblast migration toward HESC monolayers and 3D invasive network formation. DEP directly impairs critical trophoblast functions that are essential for successful pregnancy. Disruption of the EMT program represents a molecular mechanism by which traffic-related air pollution contributes to placental dysfunction and pregnancy complications, highlighting the significant reproductive risks posed by ambient air pollution. Full article
Show Figures

Figure 1

19 pages, 509 KB  
Article
Zero-Inflated Distributions of Lifetime Reproductive Output
by Hal Caswell
Populations 2025, 1(3), 19; https://doi.org/10.3390/populations1030019 - 23 Aug 2025
Viewed by 253
Abstract
Lifetime reproductive output (LRO), also called lifetime reproductive success (LRS) is often described by its mean (total fertility rate or net reproductive rate), but it is in fact highly variable among individuals and often positively skewed. Several approaches exist to calculating the variance [...] Read more.
Lifetime reproductive output (LRO), also called lifetime reproductive success (LRS) is often described by its mean (total fertility rate or net reproductive rate), but it is in fact highly variable among individuals and often positively skewed. Several approaches exist to calculating the variance and skewness of LRO. These studies have noted that a major factor contributing to skewness is the fraction of the population that dies before reaching a reproductive age or stage. The existence of that fraction means that LRO has a zero-inflated distribution. This paper shows how to calculate that fraction and to fit a zero-inflated Poisson or zero-inflated negative binomial distribution to the LRO. We present a series of applications to populations before and after demographic transitions, to populations with particularly high probabilities of death before reproduction, and a couple of large mammal populations for good measure. The zero-inflated distribution also provides extinction probabilities from a Galton-Watson branching process. We compare the zero-inflated analysis with a recently developed analysis using convolution methods that provides exact distributions of LRO. The agreement is strikingly good. Full article
Show Figures

Figure 1

16 pages, 438 KB  
Article
Psychometric Evaluation of the Validity and Reliability of the Italian Version of the London Measure of Unplanned Pregnancy Amongst Postnatal Women
by Martina Smorti, Paul Christiansen, Geraldine Barrett, Jennifer A. Hall, Chiara Ionio, Giulia Ciuffo, Marta Landoni, Anna Maria Della Vedova, Elana Payne, Mia Richell, Semra Worrall, Giulia Mauri, Victoria Fallon, Alessandra Bramante and Sergio A. Silverio
Healthcare 2025, 13(16), 2052; https://doi.org/10.3390/healthcare13162052 - 20 Aug 2025
Viewed by 436
Abstract
Background: Unplanned pregnancy is a public health issue and understanding women’s decision making aids practitioners in assessing fertility trends, contraception use, and family planning counselling. In Italy, Catholicism reinforces ‘natural reproduction’ and ‘traditional’ contraception, making it an ‘Imperfect Contraceptive Society.’ A valid [...] Read more.
Background: Unplanned pregnancy is a public health issue and understanding women’s decision making aids practitioners in assessing fertility trends, contraception use, and family planning counselling. In Italy, Catholicism reinforces ‘natural reproduction’ and ‘traditional’ contraception, making it an ‘Imperfect Contraceptive Society.’ A valid and reliable measure of pregnancy intentionality is increasingly important, and the London Measure of Unplanned Pregnancy (LMUP) has proved effective. Objectives and Methods: This study comprised four stages: (1) English–Italian translation and back-translation to create the Italian version [LMUP-IT]; (2) online data collection from postnatal women; (3) evaluation of its psychometric properties (targeting, reliability, construct validity via CFA and measurement invariance with a UK sample, ‘known groups’ hypothesis testing); and (4) exploratory analysis of its associations with perinatal mental health. The sample comprised 450 postnatal women (Mage = 33.6 ± 4.5). Results: The LMUP-IT was shown to be reliable (ωT = 0.81, α = 0.76), with acceptable targeting. Measurement invariance testing confirmed consistency with the UK sample in factor structure, loadings, intercepts, and errors. LMUP-IT scores significantly correlated with well-known indicators of perinatal mental health. Conclusions: Overall, the LMUP-IT is a reliable measure of pregnancy intention in Italian for postpartum women. Understanding pregnancy intention will help healthcare professionals tailor interventions to better support women’s mental health during the transition to motherhood. Full article
Show Figures

Figure 1

15 pages, 573 KB  
Article
Quantitative Risk Assessment and Tiered Classification of Indoor Airborne Infection Based on the REHVA Model: Application to Multiple Real-World Scenarios
by Hyuncheol Kim, Sangwon Han, Yonmo Sung and Dongmin Shin
Appl. Sci. 2025, 15(16), 9145; https://doi.org/10.3390/app15169145 - 19 Aug 2025
Viewed by 398
Abstract
The COVID-19 pandemic highlighted the need for a scientific framework that enables quantitative assessment and control of airborne infection risks in indoor environments. This study identifies limitations in the traditional Wells–Riley model—specifically its assumptions of perfect mixing and steady-state conditions—and addresses these shortcomings [...] Read more.
The COVID-19 pandemic highlighted the need for a scientific framework that enables quantitative assessment and control of airborne infection risks in indoor environments. This study identifies limitations in the traditional Wells–Riley model—specifically its assumptions of perfect mixing and steady-state conditions—and addresses these shortcomings by adopting the REHVA (Federation of European Heating, Ventilation and Air Conditioning Associations) infection risk assessment model. We propose a five-tier risk classification system (Monitor, Caution, Alert, High Risk, Critical) based on two key metrics: the probability of infection (Pₙ) and the event reproduction number (R_event). Unlike the classical model, our approach integrates airborne virus removal mechanisms—such as natural decay, gravitational settling, and filtration—with occupant dynamics to reflect realistic contagion scenarios. Simulations were conducted across 10 representative indoor settings—such as classrooms, hospital waiting rooms, public transit, and restaurants—considering ventilation rates and activity-specific viral emission patterns. The results quantify how environmental variables (ventilation, occupancy, time) impact each setting’s infection risk level. Our findings indicate that static mitigation measures such as mask-wearing or physical distancing are insufficient without dynamic, model-based risk evaluation. We emphasize the importance of incorporating real-time crowd density, occupancy duration, and movement trajectories into risk scoring. To support this, we propose integrating computer vision (CCTV-based crowd detection) and entry/exit counting sensors within a live airborne risk assessment framework. This integrated system would enable proactive, science-driven epidemic control strategies, supporting real-time adaptive interventions in indoor spaces. The proposed platform could serve as a practical tool for early warning and management during future airborne disease outbreaks. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

16 pages, 1404 KB  
Review
The Final Phases of Ovarian Aging: A Tale of Diverging Functional Trajectories
by Stefania Bochynska, Miguel Ángel García-Pérez, Juan J. Tarín, Anna Szeliga, Blazej Meczekalski and Antonio Cano
J. Clin. Med. 2025, 14(16), 5834; https://doi.org/10.3390/jcm14165834 - 18 Aug 2025
Viewed by 467
Abstract
Ovarian aging is characterized by a gradual decline in both reproductive and endocrine functions, ultimately culminating in the cessation of ovarian activity around the age of 50, when most women experience natural menopause. The decline begins early, as follicular attrition is initiated in [...] Read more.
Ovarian aging is characterized by a gradual decline in both reproductive and endocrine functions, ultimately culminating in the cessation of ovarian activity around the age of 50, when most women experience natural menopause. The decline begins early, as follicular attrition is initiated in utero and continues throughout childhood and reproductive life. Most follicles undergo atresia without progressing through substantial stages of growth. With increasing age, a pronounced reduction occurs in the population of resting follicles within the ovarian reserve, accompanied by a decline in the size of growing follicular cohorts. Around the age of 38, the rate of follicular depletion accelerates, sometimes resulting in diminished ovarian reserve (DOR). The subsequent menopausal transition involves complex, irregular hormonal dynamics, manifesting as increasingly erratic menstrual patterns, primarily driven by fluctuations in circulating estrogens and a rising incidence of anovulatory cycles. In parallel with the progressive depletion of the follicular pool, the serum concentrations of anti-Müllerian hormone (AMH) decline gradually, while reductions in inhibin B levels become more apparent during the late reproductive years. The concomitant decline in both inhibin B and estrogen levels leads to a compensatory rise in circulating follicle-stimulating hormone (FSH) concentrations. Together, these endocrine changes, alongside the eventual exhaustion of the follicular reserve, converge in the onset of menopause, which is defined by the absence of menstruation for twelve consecutive months. The mechanisms contributing to ovarian aging are complex and multifactorial, involving both the oocyte and the somatic cells within the follicular microenvironment. Oxidative stress is thought to play a central role in the age-related decline in oocyte quality, primarily through its harmful effects on mitochondrial DNA integrity and broader aspects of cellular function. Although granulosa cells appear to be relatively more resilient, they are not exempt from age-associated damage, which may impair their hormonal activity and, given their close functional relationship with the oocyte, negatively influence oocyte competence. In addition, histological changes in the ovarian stroma, such as fibrosis and heightened inflammatory responses, are believed to further contribute to the progressive deterioration of ovarian function. A deeper understanding of the biological processes driving ovarian aging has facilitated the development of experimental interventions aimed at extending ovarian functionality. Among these are the autologous transfer of mitochondria and stem cell-based therapies, including the use of exosome-producing cells. Additional approaches involve targeting longevity pathways, such as those modulated by caloric restriction, or employing pharmacological agents with geroprotective properties. While these strategies are supported by compelling experimental data, robust clinical evidence in humans remains limited. Full article
(This article belongs to the Section Obstetrics & Gynecology)
Show Figures

Graphical abstract

21 pages, 14870 KB  
Article
Exploring the Mechanisms of Amino Acid and Bioactive Constituent Formation During Fruiting Body Development in Lyophyllum decastes by Metabolomic and Transcriptomic Analyses
by Lidan Liang, Peijin Zhang, Jiayan Lu, Wenjin Han, Pengfei Ren, Yufei Lan, Qingji Wang, Zhuang Li and Li Meng
J. Fungi 2025, 11(8), 586; https://doi.org/10.3390/jof11080586 - 8 Aug 2025
Viewed by 591
Abstract
Lyophyllum decastes, a common edible mushroom, is prized for its exceptional taste and rich nutritional composition. The concentrations of amino acids and polysaccharides in the fruiting body exhibited a dynamic increase throughout development, reaching their highest levels in the maturation stages, with [...] Read more.
Lyophyllum decastes, a common edible mushroom, is prized for its exceptional taste and rich nutritional composition. The concentrations of amino acids and polysaccharides in the fruiting body exhibited a dynamic increase throughout development, reaching their highest levels in the maturation stages, with values of 45,107.39 μg/g and 13.66 mg/g, respectively. Integrated metabolomic and transcriptomic analyses uncovered dynamic metabolites changing during the transition from vegetative growth to reproductive development. Several differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) were identified, associated with secondary metabolite, amino acid, and carbohydrate metabolism. The shift in metabolites was linked to key nutrient synthesis, explaining the abundant production of amino acids and polysaccharides at maturity. Our results provide novel insights into the developmental biology of L. decastes, demonstrating that this mushroom is a valuable source of bioactive compounds and contributing to the optimization of cultivation strategies, as well as improving research into its application as a functional food and nutraceutical source. Full article
Show Figures

Figure 1

16 pages, 3450 KB  
Article
Comparative In Vitro Analysis of Composite Resins Used in Clear Aligner Attachments
by Francesca Gazzani, Denise Bellisario, Chiara Pavoni, Loredana Santo, Paola Cozza and Roberta Lione
Appl. Sci. 2025, 15(15), 8698; https://doi.org/10.3390/app15158698 - 6 Aug 2025
Viewed by 354
Abstract
Background: Attachments are essential components in clear aligner therapy, enhancing retention and improving the predictability of tooth movements. Mechanical and wear properties of the composite resins used for attachment reproduction are critical to maintaining their integrity and shape over time. This study aimed [...] Read more.
Background: Attachments are essential components in clear aligner therapy, enhancing retention and improving the predictability of tooth movements. Mechanical and wear properties of the composite resins used for attachment reproduction are critical to maintaining their integrity and shape over time. This study aimed to evaluate and compare the mechanical properties, thermal behavior, and wear performance of the hybrid composite Aligner Connect (AC) and the flowable resin (Connect Flow, CF). Methods: Twenty samples (ten AC and ten CF) were reproduced. All specimens underwent differential scanning calorimetry (DSC), combustion analysis, flat instrumented indentation, compression stress relaxation tests, and tribological analysis. A 3D wear profile reconstruction was performed to assess wear surfaces. Results: DSC and combustion analyses revealed distinct thermal transitions, with CF showing significantly lower Tg values (103.8 °C/81.4 °C) than AC (110.8 °C/89.6 °C) and lower residual mass after combustion (23% vs. 61%), reflecting reduced filler content and greater polymer mobility. AC exhibited superior mechanical properties, with higher maximum load (585.9 ± 22.36 N) and elastic modulus (231.5 ± 9.1 MPa) than CF (290.2 ± 5.52 N; 156 ± 10.5 MPa). Stress relaxation decrease was less pronounced in AC (18 ± 4%) than in CF (20 ± 4%). AC also showed a significantly higher friction coefficient (0.62 ± 0.060) than CF (0.55 ± 0.095), along with greater wear volume (0.012 ± 0.0055 mm3 vs. 0.0070 ± 0.0083 mm3) and maximum depth (36.88 ± 3.642 µm vs. 17.91 ± 3.387 µm). Surface roughness before wear was higher for AC (Ra, 0.577 ± 0.035 µm; Rt, 4.369 ± 0.521 µm) than for CF (Ra, 0.337 ± 0.070 µm; Rt, 2.862 ± 0.549 µm). After wear tests, roughness values converged (Ra, 0.247 ± 0.036 µm for AC; Ra, 0.236 ± 0.019 µm for CF) indicating smoothened and similar surfaces for both composites. Conclusions: The hybrid nanocomposite demonstrated greater properties in terms of stiffness, load-bearing capacity, and structural integrity when compared with flowable resin. Its use may ensure more durable attachment integrity and improved aligner–tooth interface performance over time. Full article
(This article belongs to the Special Issue Innovative Materials and Technologies in Orthodontics)
Show Figures

Figure 1

15 pages, 1685 KB  
Article
Wildfires and Palm Species Response in a Terra Firme Amazonian Social Forest
by Tinayra T. A. Costa, Vynicius B. Oliveira, Maria Fabíola Barros, Fernando W. C. Andrade, Marcelo Tabarelli and Ima C. G. Vieira
Forests 2025, 16(8), 1271; https://doi.org/10.3390/f16081271 - 3 Aug 2025
Viewed by 497
Abstract
Tropical forests continue to experience high levels of habitat loss and degradation, with wildfires becoming a frequent component of human-modified landscapes. Here we investigate the response of palm species to the conversion of old-growth forests to successional mosaics, including forest patches burned during [...] Read more.
Tropical forests continue to experience high levels of habitat loss and degradation, with wildfires becoming a frequent component of human-modified landscapes. Here we investigate the response of palm species to the conversion of old-growth forests to successional mosaics, including forest patches burned during wildfires. Palms (≥50 cm height) were recorded once in 2023–2024, across four habitat classes: terra firme old-growth stands, regenerating forest stands associated with slash-and-burn agriculture, old-growth stands burned once and twice, and active cassava fields, in the Tapajós-Arapiuns Extractive Reserve, in the eastern Brazilian Amazon. The flammability of palm leaf litter and forest litter were also examined to assess the potential connections between palm proliferation and wildfires. A total of 10 palm species were recorded in this social forest (including slash-and-burn agriculture and resulting successional mosaics), with positive, negative, and neutral responses to land use. Species richness did not differ among forest habitats, but absolute palm abundance was greatest in disturbed habitats. Only Attalea spectabilis Mart. (curuá) exhibited increased relative abundance across disturbed habitats, including active cassava field. Attalea spectabilis accounted for almost 43% of all stems in the old-growth forest, 89% in regenerating forests, 90% in burned forests, and 79% in crop fields. Disturbed habitats supported a five-to-ten-fold increment in curuá leaves as a measure of habitat flammability. Although curuá litter exhibited lower flame temperature and height, its lower carbon and higher volatile content is expected to be more sensitive to fire ignition and promote the spread of wildfires. The conversion of old-growth forests into social forests promotes the establishment of palm-dominated forests, increasing the potential for a forest transition further fueled by wildfires, with effects on forest resilience and social reproduction still to be understood. Full article
(This article belongs to the Special Issue Ecosystem-Disturbance Interactions in Forests)
Show Figures

Figure 1

10 pages, 401 KB  
Systematic Review
Relugolix in Monotherapy and Combined Therapy for the Treatment of Uterine Diseases and Its Effects on Bones: A Systematic Review
by Antonio Carballo García, Ana Cristina Fernández Rísquez, Silvia Delgado García, Pablo Romero Duarte and Jesús Carlos Presa Lorite
Biomedicines 2025, 13(8), 1851; https://doi.org/10.3390/biomedicines13081851 - 30 Jul 2025
Viewed by 737
Abstract
Background: Uterine fibroids (UFs) and endometriosis are gynecological conditions that significantly increase morbidity among women of reproductive age. Relugolix, a novel gonadotropin-releasing hormone receptor antagonist, is approved in combined therapy for the management of symptoms related to these disorders. However, its potential impact [...] Read more.
Background: Uterine fibroids (UFs) and endometriosis are gynecological conditions that significantly increase morbidity among women of reproductive age. Relugolix, a novel gonadotropin-releasing hormone receptor antagonist, is approved in combined therapy for the management of symptoms related to these disorders. However, its potential impact on bone mineral density (BMD) and osteoporosis risk should be considered when using a gonadotropin-releasing hormone (GnRH) antagonist. This systematic review aims to evaluate the effects of daily relugolix intake in monotherapy and combination therapy on BMD, ensuring safe long-term management. Methods: A systematic literature review was conducted following PRISMA 2020 guidelines. Searches were performed in PubMed, Medline, and the Cochrane Library. Relevant clinical guidelines from international societies were also reviewed. Studies assessing the impact of relugolix on BMD were selected, and data on treatment efficacy, adverse effects, and bone health outcomes were synthesized. Results: Relugolix monotherapy has been associated with significant BMD loss due to its potent estrogen-suppressing effect. To mitigate this, combination therapy with estradiol and norethisterone acetate has been developed. Although initial monotherapy before transitioning to combination therapy results in transient BMD reduction, clinical trials have demonstrated that relugolix combination therapy maintains BMD over two years while effectively reducing endometriosis- and UF-related symptoms. Conclusions: Relugolix combination therapy is an effective and well-tolerated treatment for UFs and endometriosis, minimizing the risk of hypoestrogenism-related bone loss while maintaining clinical benefits. Although monotherapy may lead to transient BMD reduction, combination therapy appears to stabilize bone health. Full article
(This article belongs to the Section Endocrinology and Metabolism Research)
Show Figures

Figure 1

18 pages, 3069 KB  
Article
Transcriptomic Profiling of Buds Unveils Insights into Floral Initiation in Tea-Oil Tree (Camellia oleifera ‘changlin53’)
by Hongyan Guo, Zongshun Zhou, Jian Zhou, Chao Yan, Wenbin Zhong, Chang Li, Ying Jiang, Yaqi Yuan, Linqing Cao, Wenting Pan, Jinfeng Wang, Jia Wang, Tieding He, Yikai Hua, Yisi Liu, Lixian Cao and Chuansong Chen
Plants 2025, 14(15), 2348; https://doi.org/10.3390/plants14152348 - 30 Jul 2025
Viewed by 433
Abstract
Flowering is a key agronomic trait that directly influences the yield of the tea-oil tree (Camellia oleifera). Floral initiation, which precedes flower bud differentiation, represents a critical developmental stage affecting the flowering outcomes. However, the molecular mechanisms underlying floral initiation in [...] Read more.
Flowering is a key agronomic trait that directly influences the yield of the tea-oil tree (Camellia oleifera). Floral initiation, which precedes flower bud differentiation, represents a critical developmental stage affecting the flowering outcomes. However, the molecular mechanisms underlying floral initiation in C. oleifera remain poorly understood. In this study, buds from five key developmental stages of a 12-year-old C. oleifera cultivar ‘changlin53’ were collected as experimental samples. Scanning electron microscopy was employed to identify the stage of floral initiation. UPLC-MS/MS was used to analyze endogenous gibberellin (GA) concentrations, while transcriptomic analysis was performed to reveal the underlying transcriptional regulatory network. Six GA types were detected during floral initiation and petal development. GA4 was exclusively detected at the sprouting stage (BII), while GA3 was present in all samples but was significantly lower in BII and the flower bud primordium formation stage (BIII) than in the other samples. A total of 64 differentially expressed genes were concurrently enriched in flower development, reproductive shoot system development, and shoot system development. Weighted gene co-expression network analysis (WGCNA) identified eight specific modules significantly associated with different developmental stages. The magenta module, containing Unigene0084708 (CoFT) and Unigene0037067 (CoLEAFY), emerged as a key regulatory module driving floral initiation. Additionally, GA20OX1 and GA2OX8 were identified as candidate genes involved in GA-mediated regulation of floral initiation. Based on morphological and transcriptomic analyses, we conclude that floral initiation of C. oleifera is a continuous regulatory process governed by multiple genes, with the FT-LFY module playing a central role in the transition from apical meristem to floral meristem. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

13 pages, 3095 KB  
Article
Uterine Microbiota Composition in Dairy Cows with Different Vaginal Discharge Scores: Suggesting Caviibacter as a Potential Pathogen in Mild Purulent Metritis
by Xiaolei He, Jiajia Wang, Lin Jiang, Xinyu Wang, Yuxing Wang, Yang Liu, Yanping Cheng, Fei Xu and Xiubo Li
Microorganisms 2025, 13(8), 1728; https://doi.org/10.3390/microorganisms13081728 - 24 Jul 2025
Viewed by 467
Abstract
The uterine microbiota plays a crucial role in maintaining postpartum reproductive health in dairy cows, and its dysregulation is closely associated with uterine diseases. Vaginal discharge characteristics serve as important clinical indicators for assessing uterine status and guiding clinical decision-making. This study employed [...] Read more.
The uterine microbiota plays a crucial role in maintaining postpartum reproductive health in dairy cows, and its dysregulation is closely associated with uterine diseases. Vaginal discharge characteristics serve as important clinical indicators for assessing uterine status and guiding clinical decision-making. This study employed 16S rRNA gene sequencing to analyze uterine microbial diversity in cows with different discharge types. Results revealed significant microbial shifts associated with discharge severity. Notably, Caviibacter was highly enriched (up to 60.25%) in cows with mildly purulent discharge (<50%), suggesting its potential role in early-stage endometritis. In contrast, Fusobacterium and Helcococcus dominated when purulent discharge exceeded 50%, while Bacteroides, Porphyromonas, and Peptostreptococcus prevailed in cows with malodorous or discolored secretions, indicating severe inflammation. This study extends previous findings by uncovering stage-specific microbial transitions and proposing Caviibacter as a potential early biomarker of endometritis. These insights support early diagnosis and targeted interventions, contributing to improved reproductive management and sustainable dairy farming. Full article
(This article belongs to the Special Issue Veterinary Microbiology and Immunology)
Show Figures

Figure 1

20 pages, 2613 KB  
Review
The Genetic Basis of Wheat Spike Architecture
by Zhen Ji, Xin Liu, Fei Yan, Shouqing Wu and Yanfang Du
Agriculture 2025, 15(15), 1575; https://doi.org/10.3390/agriculture15151575 - 22 Jul 2025
Viewed by 631
Abstract
Wheat is one of the three major staple crops globally. The wheat spike serves as the primary structure bearing wheat grains. Spike architectures of wheat have a direct impact on the number of grains per spike, and thus the grain yield per spike. [...] Read more.
Wheat is one of the three major staple crops globally. The wheat spike serves as the primary structure bearing wheat grains. Spike architectures of wheat have a direct impact on the number of grains per spike, and thus the grain yield per spike. The development of wheat spike morphology is conserved to some extent in cereal crops, yet also exhibits differences, being strictly regulated by photoperiod and temperature. This paper compiles QTLs and genes related to wheat spike traits that have been published over the past two decades, summarizes the photoperiod and vernalization pathways influencing the transition from vegetative to reproductive growth, and organizes the key regulatory networks controlling spikelet and floret development. Additionally, it anticipates advancements in wheat gene cloning methods, challenges in optimizing wheat spike architecture for high yield and future directions in wheat spike trait research. Full article
(This article belongs to the Section Crop Genetics, Genomics and Breeding)
Show Figures

Figure 1

12 pages, 1380 KB  
Communication
The GnRH Agonist Triptorelin Causes Reversible, Focal, and Partial Testicular Atrophy in Rats, Maintaining Sperm Production
by Alberto Marcos, Maria Cruz Rodríguez del Cerro, Rosa María Fernández, Eduardo Pásaro, Nuria Arias-Ramos, Pilar López-Larrubia, Pilar González-Peramato, Antonio Guillamon and Maria P. De Miguel
Int. J. Mol. Sci. 2025, 26(14), 6566; https://doi.org/10.3390/ijms26146566 - 8 Jul 2025
Viewed by 677
Abstract
We aim to provide a translational model to investigate the reproductive consequences of pubertal delay using the GnRH agonist triptorelin in transgender girls, tested in particular on testicular maturation in peripubertal rats. A total of 30 Sprague Dawley rats were utilized, with 10 [...] Read more.
We aim to provide a translational model to investigate the reproductive consequences of pubertal delay using the GnRH agonist triptorelin in transgender girls, tested in particular on testicular maturation in peripubertal rats. A total of 30 Sprague Dawley rats were utilized, with 10 subjects assigned to each of three groups from day P30 postpartum (prepubertal) until day P95 (postpubertal), mimicking treatment timing in patients. Rats received triptorelin at three time points (P30, P50, and P71), or only at P30 and P50. Control rats were injected with vehicle. Plasma testosterone levels were determined using MRM analysis. Testes and epididymides were examined histologically. There were significantly lower testosterone levels at postnatal day 48 in treated rats, indicating delayed puberty, with further reductions by day 69. By day 93, testosterone levels had recovered in rats given vehicle at P71 but remained low in the triptorelin-continuous group, suggesting the reversibility of the treatment. Treated rats had smaller testes; however, the majority of the testicular parenchyma was unaffected, with most seminiferous tubules displaying complete spermatogenesis. However, focal atrophic changes were observed in 1–30% of the parenchyma. One-third of the short-term group and half of the long-term group were classified as atrophic. Despite these changes, all treated rats had mature sperm in the epididymis, ensuring their fertility. In conclusion, triptorelin treatment promotes a decline in testosterone levels accompanied by discrete atrophy of the seminiferous tubules, which is partially reversible and compatible with sperm production and fertility preservation. Triptorelin could be an appropriate treatment prior to estrogen therapy for patients seeking gender transition. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

12 pages, 652 KB  
Review
Unraveling the Contribution of Estrobolome Alterations to Endometriosis Pathogenesis
by Giulia Nannini, Francesco Cei and Amedeo Amedei
Curr. Issues Mol. Biol. 2025, 47(7), 502; https://doi.org/10.3390/cimb47070502 - 1 Jul 2025
Cited by 1 | Viewed by 884
Abstract
Endometriosis (EMS) is a long-term inflammatory disease. It represents one of the most prevalent gynecological conditions, impacting an estimated 5% of reproductive women. Therefore, endometriosis contributes to substantial worldwide health challenges and healthcare costs. In EMS disease, endometrial glandular and stromal tissues are [...] Read more.
Endometriosis (EMS) is a long-term inflammatory disease. It represents one of the most prevalent gynecological conditions, impacting an estimated 5% of reproductive women. Therefore, endometriosis contributes to substantial worldwide health challenges and healthcare costs. In EMS disease, endometrial glandular and stromal tissues are abnormally located outside the uterus. Similarly to the natural endometrium, these tissues grow and proliferate in response to estrogen-dependent signals. The pain and limited effectiveness of treatments are often linked to the inflammatory reaction triggered by EMS-associated ectopic tissue. This is especially amplified during the peaks of estrogen release that occur as the menstrual cycle transitions from the proliferative phase to ovulation. Maintaining the integrity of the mucosal lining, defending against pathogenic insults, and controlling physiological processes are all made possible by a healthy, balanced state of gut biomass. Additionally, numerous intestinal bacteria have been discovered to possess estrogen-metabolizing enzymes, which affect the estrobolome and, consequently, influence estrogen-related disorders. Therefore, there is increasing interest in understanding the role of microbiota and the estrobolome in endometriosis pathogenesis. This review will focus on the role of microbiota and the impact of estrobolome alterations in endometriosis pathogenesis. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

14 pages, 375 KB  
Article
Assessing the Relationship Between Depressive Symptoms and Menopausal Quality of Life Among Academic Women in Saudi Arabia
by Sally Mohammed Farghaly Abdelaliem, Noha Mohamed Mahmoud Hassan, Aljory Alqahtani, Lama Alamer, Noura Alhomaid, Hessa Alsubaie, Rania Alsaeed, Dalal Al-Qahtani and Mudhawi Alenazi
Healthcare 2025, 13(13), 1557; https://doi.org/10.3390/healthcare13131557 - 30 Jun 2025
Viewed by 461
Abstract
Background/Objective: Menopause marks a significant life transition for women, signaling the end of reproductive ability and triggering various physiological and psychological changes. During this phase, women may experience a range of physical and emotional challenges that can affect their quality of life. [...] Read more.
Background/Objective: Menopause marks a significant life transition for women, signaling the end of reproductive ability and triggering various physiological and psychological changes. During this phase, women may experience a range of physical and emotional challenges that can affect their quality of life. This study aims to assess the relationship between women’s mental health and their menopausal quality of life. Methods: A descriptive correlational study was conducted among 350 women aged 45–60 years who had either experienced menopausal symptoms or undergone menopause. Using convenience sampling, participants were recruited from academic institutions in Riyadh, Saudi Arabia. Data were collected using validated tools, including the Menopause Rating Scale (MRS) and the Depression Anxiety Stress Scales (DASS-21). Descriptive and inferential statistical analyses assessed symptom severity and its association with mental health and quality of life. Results: Findings indicated that 27.8% of participants experienced moderate to severe menopausal symptoms. Urogenital symptoms were the most common, reported by 59% of women. Significant correlations were observed between menopausal symptoms and high levels of depression (63%), anxiety (60%), and stress (58%), all of which significantly impacted quality of life. Conclusions: Menopausal symptoms have a profound impact on both physical and mental health, significantly affecting quality of life. Depression, in particular, was found to be the most influential factor. These findings highlight the need for integrated healthcare approaches that address both physical and psychological aspects of menopause. Full article
(This article belongs to the Special Issue Women’s Health Care: State of the Art and New Challenges)
Show Figures

Figure 1

Back to TopTop