Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (953)

Search Parameters:
Keywords = transmission and distribution characteristics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2476 KB  
Article
Magnetic Field Analysis of Unconventional High Surge Impedance Loading (HSIL) Transmission Lines with Different Subconductor Configurations: Numerical Comparisons and Performance Evaluation
by Easir Arafat, Babak Porkar and Mona Ghassemi
Magnetism 2025, 5(3), 20; https://doi.org/10.3390/magnetism5030020 - 5 Sep 2025
Viewed by 268
Abstract
High-voltage transmission lines are the backbone of modern power systems, facilitating the delivery of electricity from diverse generation sources, including conventional power plants and renewable energy systems, to consumers. As the electricity demand grows, the expansion of transmission infrastructure becomes essential to connecting [...] Read more.
High-voltage transmission lines are the backbone of modern power systems, facilitating the delivery of electricity from diverse generation sources, including conventional power plants and renewable energy systems, to consumers. As the electricity demand grows, the expansion of transmission infrastructure becomes essential to connecting new consumers with power suppliers. However, traditional transmission lines require significant right-of-way, posing challenges related to land use and environmental impact, as well as limited loadability. To address this issue, compact unconventional High Surge Impedance Loading (HSIL) transmission lines offer a viable solution by reducing right-of-way requirements while enhancing line natural power, mainly leading to less voltage drop. Before the implementation of the new unconventional HSIL lines, it is crucial to assess key parameters, such as magnetic field distribution under the lines, to ensure compliance with environmental and safety standards. This paper presents a numerical analysis of the magnetic field characteristics of compact unconventional HSIL transmission lines with different subconductor configurations. The results show that the proposed HSIL designs can reduce the magnetic field at ground level by up to 71.74% compared to a conventional 500 kV line near the center, as well as by up to 74% at the right-of-way edge, while maintaining magnetic field levels well below the limits set by ICNIRP and state-specific regulations. This study evaluates the magnetic field distribution within the right-of-way, providing insights into the electromagnetic performance and potential implications for transmission line design. Full article
Show Figures

Figure 1

15 pages, 2254 KB  
Article
Modeling the Joint Influence of Milk Fat Particle Size Micro-Distribution and Absorption on Optical Scattering and Composition Determination
by Siqi Zhang, Linghao Wu, Ang Li, Jiaan Wang and Xu Yang
Processes 2025, 13(9), 2846; https://doi.org/10.3390/pr13092846 - 5 Sep 2025
Viewed by 163
Abstract
Optical scattering techniques often lead to simplified assumptions about secondary factors, such as neglecting the absorption effect of particles or the residual particle size micro-distribution after homogenization; these are made to enhance measurement efficiency. However, such simplifications can introduce systematic errors in precise [...] Read more.
Optical scattering techniques often lead to simplified assumptions about secondary factors, such as neglecting the absorption effect of particles or the residual particle size micro-distribution after homogenization; these are made to enhance measurement efficiency. However, such simplifications can introduce systematic errors in precise detection. This study uses the scattering–transmission ratio composition determination method as an example, revises the basic scattering–transmission ratio model to incorporate absorption effects, and demonstrates the coefficient calculation process. Furthermore, Mie key coefficients, including the particle size micro-distribution—which are core parameters of this method—are derived. Based on these models, effective particles from image processing are analyzed to assess the impact of these two factors. The results demonstrate the joint influence of the micro-distribution and absorption characteristics of milk fat particles on Mie key coefficients and composition determination, exhibiting non-uniform enhancement and reduction effects. Specifically, at a wavelength of 800 nm, the scattering–transmission ratio of the modified model increases by a factor of 1.56 compared to the traditional model at a volume concentration of 0.5%, while at 3.3% concentration, the scattering–transmission ratio of the modified model is approximately one-third of the traditional model. These findings provide a theoretical basis for developing dairy product quality assessment technologies. Full article
(This article belongs to the Section Particle Processes)
Show Figures

Figure 1

24 pages, 7877 KB  
Article
Comparative Study of Force and Deformation Characteristics of Closed Cavity Thin-Walled Components in Prefabricated Metro Station
by Dechun Cao and Desen Kong
Appl. Sci. 2025, 15(17), 9674; https://doi.org/10.3390/app15179674 - 2 Sep 2025
Viewed by 329
Abstract
The increased use of prefabricated assembly technology promotes the transformation of urban subway construction in the lightweight direction, in which the closed cavity thin-walled component is increasingly widely used in underground structures due to its excellent material efficiency benefits. In order to investigate [...] Read more.
The increased use of prefabricated assembly technology promotes the transformation of urban subway construction in the lightweight direction, in which the closed cavity thin-walled component is increasingly widely used in underground structures due to its excellent material efficiency benefits. In order to investigate the effect of closed cavity thin-walled components, numerical models of a seven-ring solid structure and cavity structure were constructed based on the four-block prefabricated metro station of Qingdao Metro Line 9, Chengzi Station. This study considers the longitudinal effect between rings and compares the nonlinear force and deformation characteristics of both structures under the load of self-weight and use stage. The study indicates that incorporating closed cavities within structures reduces internal forces in most sections while increasing principal strain, displacement, and stress. As the applied load increases, the rate of internal force reduction diminishes, and the increment of displacement deformation also decreases. Shear lag effects occur in closed cavity sections, leading to a non-uniform normal stress distribution, with maximum shear stress appearing at rib intersections. The cavity location, mortise–tenon joints, and columns represent critical locations for deformation and force transmission within cavity structures. Optimization design must prioritize ensuring their deformation resistance and load-bearing capacity to enhance the overall structural integrity, safety, and reliability. Full article
Show Figures

Figure 1

12 pages, 1531 KB  
Article
Long-Term Genomic Surveillance and Immune Escape of SARS-CoV-2 in the Republic of Korea, with a Focus on JN.1-Derived Variants
by Il-Hwan Kim, Eun Ju Lee, Jin Sun No, Ji Yeong Noh, Chae Young Lee, Sang Won O, Yong Jun Choi, Jeong-Ah Kim, Bo Min An, Jeong-Hyun Nam, Jeong-Min Kim, Jee Eun Rhee and Eun-Jin Kim
Viruses 2025, 17(9), 1202; https://doi.org/10.3390/v17091202 - 31 Aug 2025
Viewed by 530
Abstract
Since the onset of the COVID-19 pandemic, the Republic of Korea has experienced continuous waves of SARS-CoV-2 variants. The current study aimed to analyze the long-term trends of variant prevalence and associated changes in immune responses within the country. Whole-genome sequencing was performed [...] Read more.
Since the onset of the COVID-19 pandemic, the Republic of Korea has experienced continuous waves of SARS-CoV-2 variants. The current study aimed to analyze the long-term trends of variant prevalence and associated changes in immune responses within the country. Whole-genome sequencing was performed on confirmed patient samples collected from December 2020 to May 2025, and variant distribution, genetic diversity, and neutralization were compared. As a result of analyzing a total of 157,962 gene sequences, various Omicron sub-lineages, including BA.1, BA.2, BA.5, followed by JN.1, KP.3, and NB.1.8.1, were seen to circulate sequentially over time. The nucleotide diversity of the SARS-CoV-2 genome gradually increased after the JN.1 outbreak. Of the tested variants, hamster antiserum neutralization analysis indicated that Omicron NB.1.8.1, which began to circulate in 2025, exhibited the lowest neutralization activity, with an approximately 6.6-fold decrease compared to JN.1. This suggests a potential expansion in the dominance of new variants with enhanced immune evasion. As the transmission of SARS-CoV-2 continues, new variants with novel characteristics may emerge; therefore, continuous national genomic surveillance and immunological characterization are considered crucial for early detection of emerging variants and for guiding effective public health responses. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Figure 1

23 pages, 2218 KB  
Article
Improved Time-Domain Distance Protection for Two-Terminal Weak Feed AC Systems Considering the Influence of Control Strategies and Distributed Capacitor Currents
by Ping Xiong, Xiaoqian Zhu, Yu Sun, Lie Li, Yifan Zhao, Qiangqiang Gao and Junjie Hou
Electronics 2025, 14(17), 3431; https://doi.org/10.3390/electronics14173431 - 28 Aug 2025
Viewed by 352
Abstract
The flexible DC transmission project of renewable energy has become an inevitable development trend for large-scale renewable energy grid connection. A two-terminal weak feed (TTWF) AC system is often composed of 100% power electronic equipment. The traditional fault control strategy adopted after a [...] Read more.
The flexible DC transmission project of renewable energy has become an inevitable development trend for large-scale renewable energy grid connection. A two-terminal weak feed (TTWF) AC system is often composed of 100% power electronic equipment. The traditional fault control strategy adopted after a fault in the converter at both terminals of the line limits the fault current and controls the phase, resulting in a decrease in the time-domain distance protection performance. This paper first analyzes the adaptability challenges of time-domain distance protection in TTWF. Based on detailed fault characteristic studies, two improvement approaches are proposed: (1) accounting for phase control effects by equivalently modeling the fault impedance as a series combination of fault resistance and inductance; and (2) incorporating distributed capacitance effects through fault differential equation derivation based on π-type line equivalent models. A novel time-domain distance protection method is subsequently developed, comprehensively considering control strategy impacts and distributed capacitive currents. Simulation tests verify that the proposed method maintains reliable operation under severe conditions, including 300 Ω fault resistance and 30 dB white noise interference, demonstrating significantly improved resistance to fault impedance and noise compared to conventional solutions. Full article
Show Figures

Figure 1

54 pages, 22294 KB  
Article
Research on Risk Evolution Probability of Urban Lifeline Natech Events Based on MdC-MCMC
by Shifeng Li and Yu Shang
Sustainability 2025, 17(17), 7664; https://doi.org/10.3390/su17177664 - 25 Aug 2025
Viewed by 716
Abstract
Urban lifeline Natech events are coupled systems composed of multiple risks and entities with complex dynamic transmission chains. Predicting risk evolution probabilities is the core task for achieving the safety management of urban lifeline Natech events. First, the risk evolution mechanism is analyzed, [...] Read more.
Urban lifeline Natech events are coupled systems composed of multiple risks and entities with complex dynamic transmission chains. Predicting risk evolution probabilities is the core task for achieving the safety management of urban lifeline Natech events. First, the risk evolution mechanism is analyzed, where urban lifeline Natech events exhibit spatial evolution characteristics, which involves dissecting the parallel and synergistic effects of risk evolution in spatial dimensions. Next, based on fitting marginal probability distribution functions for natural hazard and urban lifeline risk evolution, a Multi-dimensional Copula (MdC) function for the joint probability distribution of urban lifeline Natech event risk evolution is constructed. Building upon the MdC function, a Markov Chain Monte Carlo (MCMC) model for predicting risk evolution probabilities of urban lifeline Natech events is developed using the Metropolis–Hastings (M-H) algorithm and Gibbs sampling. Finally, taking the 2021 Zhengzhou ‘7·20’ catastrophic rainstorm as a case study, joint probability distribution functions for risk evolution under Rainfall-Wind speed scenarios are fitted for traffic, electric, communication, water supply, and drainage systems (including different risk transmission chains). Numerical simulations of joint probability distributions for risk evolution are conducted, and visualizations of joint probability predictions for risk evolution are generated. Full article
Show Figures

Figure 1

26 pages, 6872 KB  
Article
Enhancing Performance of Digital Hydraulic Motors: Pulsation Mitigation and Efficient Control Strategies
by Hao Zhang and Xiaochao Liu
Machines 2025, 13(9), 756; https://doi.org/10.3390/machines13090756 - 24 Aug 2025
Viewed by 358
Abstract
Hydraulic motors are increasingly pivotal in high-power drive systems for heavy-duty vehicles and industrial machinery due to their high power density. Radial piston hydraulic motors are commonly employed in heavy-load applications, while digital hydraulic motors have surfaced as a potential substitute for traditional [...] Read more.
Hydraulic motors are increasingly pivotal in high-power drive systems for heavy-duty vehicles and industrial machinery due to their high power density. Radial piston hydraulic motors are commonly employed in heavy-load applications, while digital hydraulic motors have surfaced as a potential substitute for traditional hydraulic motors. Yet challenges such as torque pulsation and inefficient flow distribution persist in traditional designs. To improve performance and reliability, this paper proposed a digital radial piston hydraulic motor using several switching valves to distribute hydraulic oil, along with a comprehensive strategy to mitigate flow pulsation and enhance hydraulic transmission efficiency in digital hydraulic motors. The inherent torque pulsation characteristics are systematically investigated, revealing their dependence on valve actuation patterns and load dynamics. A novel torque pulsation mitigation design is introduced. Then, valve modeling and efficiency evaluation are developed; the phase-correction-based flow distribution method is conducted by optimizing valve sequencing; and simulations and experiments are carried out to demonstrate the feasibility. In conclusion, insights have been drawn to direct the design and control of radial piston digital hydraulic motors. This paper presents a potential solution for heavy-duty traction applications. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

30 pages, 1456 KB  
Article
Adaptive Stochastic GERT Modeling of UAV Video Transmission for Urban Monitoring Systems
by Serhii Semenov, Magdalena Krupska-Klimczak, Michał Frontczak, Jian Yu, Jiang He and Olena Chernykh
Appl. Sci. 2025, 15(17), 9277; https://doi.org/10.3390/app15179277 - 23 Aug 2025
Viewed by 464
Abstract
The growing use of unmanned aerial vehicles (UAVs) for real-time video surveillance in smart city and smart region infrastructures requires reliable and delay-aware data transmission models. In urban environments, UAV communication links are subject to stochastic variability, leading to jitter, packet loss, and [...] Read more.
The growing use of unmanned aerial vehicles (UAVs) for real-time video surveillance in smart city and smart region infrastructures requires reliable and delay-aware data transmission models. In urban environments, UAV communication links are subject to stochastic variability, leading to jitter, packet loss, and unstable video delivery. This paper presents a novel approach based on the Graphical Evaluation and Review Technique (GERT) for modeling the transmission of video frames from UAVs over uncertain network paths with probabilistic feedback loops and lognormally distributed delays. The proposed model enables both analytical and numerical evaluation of key Quality-of-Service (QoS) metrics, including mean transmission time and jitter, under varying levels of channel variability. Additionally, the structure of the GERT-based framework allows integration with artificial intelligence mechanisms, particularly for adaptive routing and delay prediction in urban conditions. Spectral analysis of the system’s characteristic function is also performed to identify instability zones and guide buffer design. The results demonstrate that the approach supports flexible, parameterized modeling of UAV video transmission and can be extended to intelligent, learning-based control strategies in complex smart city environments. This makes it suitable for a wide range of applications, including traffic monitoring, infrastructure inspection, and emergency response. Beyond QoS optimization, the framework explicitly accommodates security and privacy preserving operations (e.g., encryption, authentication, on-board redaction), enabling secure UAV video transmission in urban networks. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

38 pages, 7440 KB  
Article
Research on the Mechanism of the Impact of Population Aging in the Yangtze River Delta Urban Agglomeration on Economic Growth
by Chen Li and Xing Li
Reg. Sci. Environ. Econ. 2025, 2(3), 25; https://doi.org/10.3390/rsee2030025 - 18 Aug 2025
Viewed by 285
Abstract
In the context of the deep transformation of population structure and the coordinated advancement of high-quality development, exploring the mechanism of the impact of aging on economic growth has become a major issue related to the sustainable development of China. This study takes [...] Read more.
In the context of the deep transformation of population structure and the coordinated advancement of high-quality development, exploring the mechanism of the impact of aging on economic growth has become a major issue related to the sustainable development of China. This study takes the 41 cities of the Yangtze River Delta urban agglomeration as a sample, using the population and economic census data from 2000 to 2020. It comprehensively applies an improved Solow model, GIS spatial analysis, spatial econometric models, and mediation effect tests to arrive at the following findings: (1) There is a significant asynchrony between economic growth and population aging in the Yangtze River Delta urban agglomeration. Economic growth has shifted from high-speed to high-quality development, while the aging process is accelerating and becoming more aged. (2) Population aging in the Yangtze River Delta has a nonlinear positive impact on economic growth. The intensity of this impact shows a characteristic of “strong-weak-strong,” with the first aging rate threshold being 11.63% and the second being 17.53%. (3) There is significant spatial autocorrelation between population aging and economic growth in the Yangtze River Delta urban agglomeration. The overall direction of the effect shows a spatial distribution pattern of “positive in the south and negative in the north.” The deepening of population aging in neighboring areas promotes local economic growth. (4) Labor productivity and optimization of the living environment constitute the core transmission pathways. Together, they account for more than 80% of the contribution and serve as the key mechanism for transforming aging pressures into growth momentum. This research provides practical guidance for solving the “rich” and “aging” contradictions in the Yangtze River Delta. It also offers a universal theoretical framework and a Chinese solution for aging economies worldwide to address the risk of growth stagnation. Full article
Show Figures

Figure 1

18 pages, 4600 KB  
Article
Research on the Response Characteristics of Core Grounding Current Signals in Power Transformers Under Different Operating Conditions
by Li Wang, Hongwei Ding, Dong Cai, Yu Liu, Peng Du, Xiankang Dai, Zhenghai Sha and Xutao Han
Energies 2025, 18(16), 4365; https://doi.org/10.3390/en18164365 - 16 Aug 2025
Viewed by 362
Abstract
This study delves into the response characteristics of core grounding current signals in power transformers across different operating conditions, aiming to enhance the accuracy of transformer condition assessment. Existing detection technologies often rely on single-parameter methods, which fall short in providing a comprehensive [...] Read more.
This study delves into the response characteristics of core grounding current signals in power transformers across different operating conditions, aiming to enhance the accuracy of transformer condition assessment. Existing detection technologies often rely on single-parameter methods, which fall short in providing a comprehensive evaluation of transformer conditions. To address this limitation, this research develops a wideband circuit model based on multi-conductor transmission line theory and backed by experimental validation. The model systematically investigates the response mechanisms of core grounding current to various electrical stresses, including impulse voltages, power-frequency harmonics, and partial discharges. The findings reveal distinct response characteristics of core grounding current under different stresses. Under impulse voltage excitation, the core current exhibits high-frequency oscillatory decay with characteristics linked to voltage waveform parameters. In harmonic conditions, the current spectrum shows linear correspondence with excitation voltages, with no resonance below 1 kHz. Partial discharges induce high-frequency oscillations in the grounding current due to multi-resonant networks formed by distributed winding-core parameters. This study establishes a new theoretical framework for transformer condition assessment based on core grounding current analysis, offering critical insights for optimizing detection technologies and overcoming the limitations of traditional methods. Full article
Show Figures

Figure 1

17 pages, 28737 KB  
Article
Implementation of a Dynamic LoRa Network for Real-Time Monitoring of Water Quality
by Kevin Joel Berrio Quintanilla, Pamela Lorena Huayta Cosi, Jorge Leonardo Huarca Quispe, Juan Carlos Cutipa Luque and Juan Pablo Julca Avila
Designs 2025, 9(4), 96; https://doi.org/10.3390/designs9040096 - 15 Aug 2025
Viewed by 481
Abstract
Water quality is a key factor in environmental and agronomic sustainability. Due to the influence of human activity and industrial development, the composition of rivers or lakes can experience significant variations both immediately and over time. In order to obtain a more accurate [...] Read more.
Water quality is a key factor in environmental and agronomic sustainability. Due to the influence of human activity and industrial development, the composition of rivers or lakes can experience significant variations both immediately and over time. In order to obtain a more accurate and documented assessment of these data, distributed monitoring with multiple sampling points is necessary. This paper presents the design and implementation of a scalable monitoring network based on long range (LoRa) and Message Queuing Telemetry Transport (MQTT), integrating a submersible sensor module (SSM) that works as a static measuring station or as a complement to sediment collectors, capable of measuring key water quality parameters such as TDS, turbidity, pH, temperature, and river kinematics with a gyroscope. The system includes a LoRa repeater (LRR) and a gateway, in addition to the SSM, which manages information transmission to a monitoring server (MS) using a tree topology. This configuration allows for dynamic antenna power adjustment based on the Received Signal Strength Indicator (RSSI) between the LRR and the gateway. Evaluations were performed on the Chil River in Arequipa, Peru, a rapid river that demonstrated ideal characteristics for validating the system’s efficacy. The results confirm the design’s efficacy and its capacity for real-time remote water quality monitoring. Full article
Show Figures

Figure 1

22 pages, 7832 KB  
Article
Investigation into the Dynamic Evolution Characteristics of Gear Injection Lubrication Based on the CFD-VOF Model
by Yihong Gu, Xinxing Zhang, Lin Li and Qing Yan
Processes 2025, 13(8), 2540; https://doi.org/10.3390/pr13082540 - 12 Aug 2025
Viewed by 383
Abstract
In response to the growing demand for lightweight and high-efficiency industrial equipment, this study addresses the critical issue of lubrication failure in high-speed, heavy-duty gear reducers, which often leads to reduced transmission efficiency and premature mechanical damage. A three-dimensional transient multiphysics-coupled model of [...] Read more.
In response to the growing demand for lightweight and high-efficiency industrial equipment, this study addresses the critical issue of lubrication failure in high-speed, heavy-duty gear reducers, which often leads to reduced transmission efficiency and premature mechanical damage. A three-dimensional transient multiphysics-coupled model of oil-jet lubrication is developed based on computational fluid dynamics (CFD). The model integrates the Volume of Fluid (VOF) multiphase flow method with the shear stress transport (SST) k−ω turbulence model. This framework enables the accurate capture of oil-jet interface fragmentation, reattachment, and turbulence-coupled behavior within the gear meshing region. A parametric study is conducted on oil injection velocities ranging from 20 to 50 m/s to elucidate the coupling mechanisms between geometric configuration and flow dynamics, as well as their impacts on oil film evolution, energy dissipation, and thermal management. The results reveal that the proposed method can reveal the dynamic evolution characteristics of the gear injection lubrication. Adopting an appropriately moderate injection velocity (30 m/s) improves oil film coverage and continuity, with the lubricant transitioning from discrete droplets to a dense wedge-shaped film within the meshing zone. Optimal lubrication performance is achieved at this velocity, where oil shear-carrying capacity and kinetic energy utilization efficiency are maximized, while excessive turbulent kinetic energy dissipation is effectively suppressed. Dynamic monitoring data at point P further corroborate that a well-tuned injection velocity stabilizes lubricant-velocity fluctuations and improves lubricant oil distribution, thereby promoting consistent oil film formation and more efficient heat transfer. The proposed closed-loop collaborative framework—comprising model initialization, numerical solution, and post-processing—together with the introduced quantitative evaluation metrics, provides a solid theoretical foundation and engineering reference for structural optimization, energy control, and thermal reliability design of gearbox lubrication systems. This work offers important insights into precision lubrication of high-speed transmissions and contributes to the sustainable, green development of industrial machinery. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

20 pages, 5638 KB  
Article
Influence of Heat Treatment on Precipitate and Microstructure of 38CrMoAl Steel
by Guofang Xu, Shiheng Liang, Bo Chen, Jiangtao Chen, Yabing Zhang, Xiaotan Zuo, Zihan Li, Bo Song and Wei Liu
Materials 2025, 18(15), 3703; https://doi.org/10.3390/ma18153703 - 6 Aug 2025
Viewed by 437
Abstract
To address the central cracking problem in continuous casting slabs of 38CrMoAl steel, high-temperature tensile tests were performed using a Gleeble-3800 thermal simulator to characterize the hot ductility of the steel within the temperature range of 600–1200 °C. The phase transformation behavior was [...] Read more.
To address the central cracking problem in continuous casting slabs of 38CrMoAl steel, high-temperature tensile tests were performed using a Gleeble-3800 thermal simulator to characterize the hot ductility of the steel within the temperature range of 600–1200 °C. The phase transformation behavior was computationally analyzed via the Thermo-Calc software, while the microstructure, fracture morphology, and precipitate characteristics were systematically investigated using a metallographic microscope (MM), a field-emission scanning electron microscope (FE-SEM), and transmission electron microscopy (TEM). Additionally, the effects of different holding times and cooling rates on the microstructure and precipitates of 38CrMoAl steel were also studied. The results show that the third brittle temperature region of 38CrMoAl steel is 645–1009 °C, and the fracture mechanisms can be classified into three types: (I) in the α single-phase region, the thickness of intergranular proeutectoid ferrite increases with rising temperature, leading to reduced hot ductility; (II) in the γ single-phase region, the average size of precipitates increases while the number density decreases with increasing temperature, thereby improving hot ductility; and (III) in the α + γ two-phase region, the precipitation of proeutectoid ferrite promotes crack propagation and the dense distribution of precipitates at grain boundaries causes stress concentration, further deteriorating hot ductility. Heat treatment experiments indicate that the microstructures of the specimen transformed under water cooling, air cooling, and furnace cooling conditions as follows: martensite + proeutectoid ferrite → bainite + ferrite → ferrite. The average size of precipitates first decreased, then increased, and finally decreased again with increasing holding time, while the number density exhibited the opposite trend. Therefore, when the holding time was the same, reducing the cooling rate could increase the average size of the precipitates and decrease their number density, thereby improving the hot ductility of 38CrMoAl steel. Full article
(This article belongs to the Special Issue Microstructure Engineering of Metals and Alloys, 3rd Edition)
Show Figures

Figure 1

20 pages, 4021 KB  
Article
Mumps Epidemiology in the Autonomous Province of Vojvodina, Serbia: Long-Term Trends, Immunization Gaps, and Conditions Favoring Future Outbreaks
by Mioljub Ristić, Vladimir Vuković, Smiljana Rajčević, Marko Koprivica, Nikica Agbaba and Vladimir Petrović
Vaccines 2025, 13(8), 839; https://doi.org/10.3390/vaccines13080839 - 6 Aug 2025
Viewed by 735
Abstract
Background/Objectives: Mumps remains a relevant vaccine-preventable disease globally, especially in settings where immunization coverage fluctuates or vaccine-induced immunity wanes. This study aimed to assess long-term trends in mumps incidence, vaccination coverage, clinical outcomes, and demographic characteristics in the Autonomous Province of Vojvodina [...] Read more.
Background/Objectives: Mumps remains a relevant vaccine-preventable disease globally, especially in settings where immunization coverage fluctuates or vaccine-induced immunity wanes. This study aimed to assess long-term trends in mumps incidence, vaccination coverage, clinical outcomes, and demographic characteristics in the Autonomous Province of Vojvodina (AP Vojvodina), Serbia, over a 47-year period. Methods: We conducted a retrospective observational study using surveillance data from the Institute of Public Health of Vojvodina. Analyses included annual mumps incidence rates (1978–2024), coverage with mumps-containing vaccines (MuCVs; 1986–2024), monthly case counts, and individual-level case data for the 1997–2024 period. Variables analyzed included age, month of notification, gender, vaccination status, presence of clinical complications, and the method used for case confirmation. Results: Following the introduction of MuCV in 1986, the mumps incidence markedly declined, with limited resurgences in 2000, 2009, and 2012. Between 1997 and 2024, a total of 1358 cases were reported, with 62.7% occurring in males. Over time, the age distribution shifted, with adolescents and young adults being increasingly affected during the later (2011–2024) observed period. In 2012, the highest age-specific incidence was observed among individuals aged 10–19 and 20–39 years (49.1 and 45.5 per 100,000, respectively). Vaccination coverage for both MuCV doses was suboptimal in several years. The proportion of unvaccinated cases decreased over time, while the proportion with unknown vaccination status increased. Mumps-related complications—such as orchitis, pancreatitis, and meningitis—were rare and predominantly affected unvaccinated individuals: 84.2% of orchitis, 40.0% of pancreatitis, and all meningitis cases. Only two pancreatitis cases (40.0%) were reported after one MMR dose, while fully vaccinated individuals (two doses) had one orchitis case (5.3%) and no other complications. Laboratory confirmation was applied more consistently from 2009 onward, with 49.6% of cases confirmed that year (58 out of 117), and, in several years after 2020, only laboratory-confirmed cases were reported, indicating improved diagnostic capacity. Conclusions: Despite substantial progress in controlling mumps, gaps in vaccine coverage, waning immunity, and incomplete vaccination records continue to pose a risk for mumps transmission. Strengthening routine immunization, ensuring high two-dose MuCV coverage, improving vaccination record keeping, and enhancing laboratory-based case confirmation are critical. Consideration should be given to booster doses in high-risk populations and to conducting a seroepidemiological study to estimate the susceptible population for mumps in AP Vojvodina. Full article
(This article belongs to the Special Issue Vaccination and Infectious Disease Epidemics)
Show Figures

Figure 1

17 pages, 2641 KB  
Article
Pilot Protection for Transmission Line of Grid-Forming Photovoltaic Systems Based on Jensen–Shannon Distance
by Kuan Li, Qiang Huang and Rongqi Fan
Appl. Sci. 2025, 15(15), 8697; https://doi.org/10.3390/app15158697 - 6 Aug 2025
Viewed by 329
Abstract
When faults occur in transmission lines of grid-forming PV systems, the LVRT control and virtual impedance function cause the fault characteristics of grid-forming inverters to differ significantly from those of synchronous generators, which deteriorates the performance of existing protection schemes. To address this [...] Read more.
When faults occur in transmission lines of grid-forming PV systems, the LVRT control and virtual impedance function cause the fault characteristics of grid-forming inverters to differ significantly from those of synchronous generators, which deteriorates the performance of existing protection schemes. To address this issue, this paper analyzes the fault characteristics of PV transmission lines under grid-forming control objectives and the adaptability of traditional current differential protection. Subsequently, a novel pilot protection based on the Jensen–Shannon distance is proposed for transmission line of grid-forming PV systems. Initially, the post-fault current samples are modeled as discrete probability distributions. The Jensen–Shannon distance algorithm quantifies the similarity between the distributions on both line ends. Based on the calculated distance results, internal and external faults are distinguished, optimizing the performance of traditional waveform-similarity-based pilot protection. Simulation results verify that the proposed protection reliably identifies internal and external faults on the protected line. It demonstrates satisfactory performance across different fault resistances and fault types, and exhibits strong noise immunity and synchronization error tolerance. In addition, the proposed pilot protection is compared with the existing waveform-similarity-based protection schemes. Full article
(This article belongs to the Special Issue Power System Protection: Current and Future Prospectives)
Show Figures

Figure 1

Back to TopTop