Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = transpterygoid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 71445 KiB  
Review
Operative Corridors in Endoscopic Skull Base Tumor Surgery
by A. Karim Ahmed, Nicholas R. Rowan and Debraj Mukherjee
Brain Sci. 2024, 14(3), 207; https://doi.org/10.3390/brainsci14030207 - 23 Feb 2024
Cited by 3 | Viewed by 1938
Abstract
Advances in technology, instrumentation, and reconstruction have paved the way for extended endoscopic approaches to skull base tumors. In the sagittal plane, the endonasal approach may safely access pathologies from the frontal sinus to the craniocervical junction in the sagittal plane, the petrous [...] Read more.
Advances in technology, instrumentation, and reconstruction have paved the way for extended endoscopic approaches to skull base tumors. In the sagittal plane, the endonasal approach may safely access pathologies from the frontal sinus to the craniocervical junction in the sagittal plane, the petrous apex in the coronal plane, and extend posteriorly to the clivus and posterior cranial fossa. This review article describes these modular extended endoscopic approaches, along with crucial anatomic considerations, illustrative cases, and practical operative pearls. Full article
(This article belongs to the Special Issue Advances in Skull Base Tumor Surgery: The Practical Pearls)
Show Figures

Figure 1

20 pages, 7371 KiB  
Article
Quantitative Anatomical Comparison of Surgical Approaches to Meckel’s Cave
by Luca Zanin, Edoardo Agosti, Florian Ebner, Lucio de Maria, Francesco Belotti, Barbara Buffoli, Rita Rezzani, Bernard Hirt, Marco Ravanelli, Tamara Ius, Marco Zeppieri, Marcos Soares Tatagiba, Marco Maria Fontanella and Francesco Doglietto
J. Clin. Med. 2023, 12(21), 6847; https://doi.org/10.3390/jcm12216847 - 30 Oct 2023
Cited by 6 | Viewed by 3761
Abstract
Background: Meckel’s cave is a challenging surgical target due to its deep location and proximity to vital neurovascular structures. Surgeons have developed various microsurgical transcranial approaches (MTAs) to access it, but there is no consensus on the best method. Newer endoscopic approaches have [...] Read more.
Background: Meckel’s cave is a challenging surgical target due to its deep location and proximity to vital neurovascular structures. Surgeons have developed various microsurgical transcranial approaches (MTAs) to access it, but there is no consensus on the best method. Newer endoscopic approaches have also emerged. This study seeks to quantitatively compare these surgical approaches to Meckel’s cave, offering insights into surgical volumes and exposure areas. Methods: Fifteen surgical approaches were performed bilaterally in six specimens, including the pterional approach (PTA), fronto-temporal-orbito-zygomatic approach (FTOZA), subtemporal approach (STA), Kawase approach (KWA), retrosigmoid approach (RSA), retrosigmoid approach with suprameatal extension (RSAS), endoscopic endonasal transpterygoid approach (EETPA), inferolateral transorbital approach (ILTEA) and superior eyelid approach (SEYA). All the MTAs were performed both with 10 mm and 15 mm of brain retraction, to consider different percentages of surface exposure. A dedicated navigation system was used to quantify the surgical working volumes and exposure of different areas of Meckel’s cave (ApproachViewer, part of GTx-Eyes II, University Health Network, Toronto, Canada). Microsurgical transcranial approaches were quantified with two different degrees of brain retraction (10 mm and 15 mm). Statistical analysis was performed using a mixed linear model with bootstrap resampling. Results: The RSAS with 15 mm of retraction offered the maximum exposure of the trigeminal stem (TS). If compared to the KWA, the RSA exposed more of the TS (69% vs. 46%; p = 0.01). The EETPA and ILTEA exposed the Gasserian ganglion (GG) mainly in the anteromedial portion, but with a significant 20% gain in exposure provided by the EETPA compared to ILTEA (42% vs. 22%; p = 0.06). The STA with 15 mm of retraction offered the maximum exposure of the GG, with a significant gain in exposure compared to the STA with 10 mm of retraction (50% vs. 35%; p = 0.03). The medial part of the three trigeminal branches was mainly exposed by the EETPA, particularly for the ophthalmic (66%) and maxillary (83%) nerves. The EETPA offered the maximum exposure of the medial part of the mandibular nerve, with a significant gain in exposure compared to the ILTEA (42% vs. 11%; p = 0.01) and the SEY (42% vs. 2%; p = 0.01). The FTOZA offered the maximum exposure of the lateral part of the ophthalmic nerve, with a significant gain of 67% (p = 0.03) and 48% (p = 0.04) in exposure compared to the PTA and STA, respectively. The STA with 15 mm of retraction offered the maximum exposure of the lateral part of the maxillary nerve, with a significant gain in exposure compared to the STA with 10 mm of retraction (58% vs. 45%; p = 0.04). The STA with 15 mm of retraction provided a significant exposure gain of 23% for the lateral part of the mandibular nerve compared to FTOZA with 15 mm of retraction (p = 0.03). Conclusions: The endoscopic approaches, through the endonasal and transorbital routes, can provide adequate exposure of Meckel’s cave, especially for its more medial portions, bypassing the impediment of major neurovascular structures and significant brain retraction. As far as the most lateral portion of Meckel’s cave, MTA approaches still seem to be the gold standard in obtaining optimal exposure and adequate surgical volumes. Full article
(This article belongs to the Special Issue A Multidisciplinary Approach in Head and Neck Malignancies)
Show Figures

Figure 1

Back to TopTop