Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (125)

Search Parameters:
Keywords = trophic pathway

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 735 KB  
Review
Protective Effects of PACAP in Diabetic Complications: Retinopathy, Nephropathy and Neuropathy
by Dora Reglodi, Andrea Tamas, Inez Bosnyak, Tamas Atlasz, Edina Szabo, Lina Li, Gabriella Horvath, Balazs Opper, Peter Kiss, Liliana Lucas, Grazia Maugeri, Agata Grazia D’Amico, Velia D’Agata, Eszter Fabian, Gyongyver Reman and Alexandra Vaczy
Int. J. Mol. Sci. 2025, 26(19), 9650; https://doi.org/10.3390/ijms26199650 - 3 Oct 2025
Viewed by 239
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide exerting, among others, strong trophic and protective effects. It plays a role in several physiological functions, including glucose homeostasis. The protective effects of PACAP are mainly mediated via its specific PAC1 receptor by stimulating anti-inflammatory, [...] Read more.
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide exerting, among others, strong trophic and protective effects. It plays a role in several physiological functions, including glucose homeostasis. The protective effects of PACAP are mainly mediated via its specific PAC1 receptor by stimulating anti-inflammatory, anti-apoptotic and antioxidant pathways. The aim of the present review is to summarize data on the protective effects of PACAP in the three major complications of diabetes, retinopathy, nephropathy and neuropathy, as well as some other complications. In type 1 and type 2 diabetic retinopathy models and in glucose-exposed cells of the eye, PACAP counteracted the degeneration of retinal layers and inhibited apoptosis and factors leading to abnormal vessel growth. In models of nephropathy, kidney morphology was better retained after PACAP administration, with decreased apoptosis and fibrosis. In diabetic neuropathy, PACAP protected against axonal–myelin lesions and less activation in pain processing centers. This neuropeptide has several other beneficial effects in diabetes-induced complications like altered vascular response, cognitive deficits and atherosclerosis. The promising therapeutic effects of PACAP in several pathological conditions have encouraged researchers to design PACAP-related drugs and to develop ways to enhance tissue delivery. These intentions are expected to result in overcoming the hurdles preventing PACAP from being introduced into therapeutic treatments, including diabetes-related conditions. Full article
Show Figures

Figure 1

22 pages, 1597 KB  
Article
The Plastic Signature: Microplastic Ingestion and Phthalate Exposure in Parapenaeus longirostris from Three Tyrrhenian Sites (Mediterranean Sea)
by Laura Ciaralli, Sara Vencato, Giuseppe Andrea de Lucia, Tommaso Valente, Eleonora Monfardini, Giovanni Libralato, Loredana Manfra, Martina Radicioli, Cecilia Silvestri, Sandro Dattilo, Paolo Maria Riccobene, Giorgia Gioacchini, Daniela Berto, Valentina Lombardi, Mariacristina Cocca and Marco Matiddi
Microplastics 2025, 4(4), 67; https://doi.org/10.3390/microplastics4040067 - 30 Sep 2025
Viewed by 369
Abstract
Microplastic pollution is pervasive in marine ecosystems and poses a growing threat to marine organisms and human health. This study simultaneously investigates microplastic ingestion and phthalate exposure in Parapenaeus longirostris, a commercially valuable and ecologically relevant Mediterranean crustacean occupying an intermediate trophic [...] Read more.
Microplastic pollution is pervasive in marine ecosystems and poses a growing threat to marine organisms and human health. This study simultaneously investigates microplastic ingestion and phthalate exposure in Parapenaeus longirostris, a commercially valuable and ecologically relevant Mediterranean crustacean occupying an intermediate trophic position. Specimens were collected from three coastal areas in the central Tyrrhenian Sea (Western Mediterranean): near the Tiber River mouth, one of the most polluted rivers in Italy, and two additional sites to the north and south. The frequency of individuals with ingested microplastics varied among locations: 78% near the Tiber River, 64% at site S, and 38% at site N, reflecting anthropogenic pressure gradients. Analyses confirmed the lower occurrence at site N, indicating higher ingestion near land-based pollution sources. Ingested microplastic polymer types varied among sites, reflecting location-specific contamination. Phthalates were present in shrimp muscle at all sites (5–1122 ng/g w.w.) with the highest average concentration (68.26 ± 55.74 ng/g) at the site with the highest microplastic ingestion. Although no statistical correlation was found, the similar spatial distribution of microplastics and phthalates suggests a potential link influenced by local pollution and individual variability. These findings provide novel evidence of microplastic and phthalate contamination in P. longirostris, highlighting its role as a trophic connector mediating contaminant transfer through the food web. While current levels suggest no potential risk to human health, continued monitoring and further studies on exposure along trophic pathways are recommended. Full article
(This article belongs to the Collection Feature Papers in Microplastics)
Show Figures

Figure 1

23 pages, 2242 KB  
Review
The Complex Role of the Complement C3a Receptor (C3aR) in Cerebral Injury and Recovery Following Ischemic Stroke
by Naseem Akhter, Ateeq Lambay, Reema Almotairi, Abdullah Hamadi, Kanchan Bhatia, Saif Ahmad and Andrew F. Ducruet
Cells 2025, 14(18), 1440; https://doi.org/10.3390/cells14181440 - 15 Sep 2025
Viewed by 725
Abstract
The Complement C3a Receptor (C3aR) plays a multifaceted role along the varying temporal phases of brain injury following cerebral ischemia. C3aR is a G-protein-coupled receptor (GPCR) that binds to its ligand, C3a an anaphylatoxin generated during activation of the complement cascade. During ischemia, [...] Read more.
The Complement C3a Receptor (C3aR) plays a multifaceted role along the varying temporal phases of brain injury following cerebral ischemia. C3aR is a G-protein-coupled receptor (GPCR) that binds to its ligand, C3a an anaphylatoxin generated during activation of the complement cascade. During ischemia, complement is activated as part of the initial inflammatory response, with C3aRs playing a time-dependent role in both brain injury and repair mechanisms. In the acute phase (minutes to hours post-ischemia), C3aR activation promotes the recruitment of immune cells and the release of chemokines and cytokines, driving blood–brain barrier (BBB) permeability and brain edema. During the subacute phase (hours to days post-ischemia), C3aR continues to modulate immune cell activity, worsening secondary brain injury, although emerging evidence suggests that C3aR activation in this phase may also aid in the clearance of cellular debris and cell survival. In the chronic phase (days to weeks post-ischemia), chronically elevated C3aR activity can prolong neuroinflammation and impair recovery, whereas controlled C3aR signaling in the subacute/chronic phase can activate reparative pathways (e.g., microglial phagocytosis, astrocyte trophic support). As a result, targeting the C3aR requires careful timing to optimize its benefits. Given the dual impact of C3aR activation, which serves to exacerbate injury in the acute phase but supports repair beginning in the subacute and chronic phases, a targeted therapeutic approach should focus on context- and time-dependent modulation of the C3a/C3aR axis. This strategy would involve blocking the C3aR during the acute phase to reduce inflammation and BBB breakdown while controlling C3a signaling in later phases to promote tissue repair. Full article
(This article belongs to the Special Issue Stroke Immunology: Mechanisms and Therapeutic Prospects)
Show Figures

Figure 1

25 pages, 1660 KB  
Review
Planktonic Trophic Transitions in the Black Sea: Functional Perspectives and Ecosystem Policy Relevance
by Elena Bisinicu and Luminita Lazar
Phycology 2025, 5(3), 39; https://doi.org/10.3390/phycology5030039 - 20 Aug 2025
Viewed by 656
Abstract
Phytoplankton–mesozooplankton interactions play a central role in shaping Black Sea food web dynamics, yet their trophic coupling has been insufficiently investigated in policy-relevant frameworks. This systematic review of 86 peer-reviewed studies (1987–2025) synthesizes research trends, limitations, and knowledge gaps in the field. The [...] Read more.
Phytoplankton–mesozooplankton interactions play a central role in shaping Black Sea food web dynamics, yet their trophic coupling has been insufficiently investigated in policy-relevant frameworks. This systematic review of 86 peer-reviewed studies (1987–2025) synthesizes research trends, limitations, and knowledge gaps in the field. The analysis reveals a clear dominance of work on plankton community structure (81%), whereas topics such as modeling and scenario analysis (7%), ecosystem assessment (7%), and bloom dynamics and seasonality (5%) remain comparatively underrepresented. Post-2020 publications indicate a promising shift toward scenario-based frameworks, gelatinous zooplankton impacts, and trait-based indicators, although functional integration remains fragmented. Keyword co-occurrence and network analyses revealed a concentration on nutrient–phytoplankton–zooplankton pathways, while other themes—such as bioluminescence and redoxcline dynamics—appeared only marginally represented in the literature we analyzed. To support ecosystem-based management under the Marine Strategy Framework Directive (MSFD), we highlight three priorities: improving NPZD-type models, using trophic efficiency metrics, and standardizing plankton indicators across the region. Strengthening the mechanistic understanding of planktonic trophic linkages is critical for improving food web assessments and adaptive marine governance in the Black Sea. Full article
Show Figures

Figure 1

18 pages, 4489 KB  
Article
Influence of Regional PM2.5 Sources on Air Quality: A Network-Based Spatiotemporal Analysis in Northern Thailand
by Khuanchanok Chaichana, Supanut Chaidee, Sayan Panma, Nattakorn Sukantamala, Neda Peyrone and Anchalee Khemphet
Mathematics 2025, 13(15), 2468; https://doi.org/10.3390/math13152468 - 31 Jul 2025
Viewed by 1362
Abstract
Northern Thailand frequently suffers from severe PM2.5 air pollution, especially during the dry season, due to agricultural burning, local emissions, and transboundary haze. Understanding how pollution moves across regions and identifying source–receptor relationships are critical for effective air quality management. This study investigated [...] Read more.
Northern Thailand frequently suffers from severe PM2.5 air pollution, especially during the dry season, due to agricultural burning, local emissions, and transboundary haze. Understanding how pollution moves across regions and identifying source–receptor relationships are critical for effective air quality management. This study investigated the spatial and temporal dynamics of PM2.5 in northern Thailand. Specifically, it explored how pollution at one monitoring station influenced concentrations at others and revealed the seasonal structure of PM2.5 transmission using network-based analysis. We developed a Python-based framework to analyze daily PM2.5 data from 2022 to 2023, selecting nine representative stations across eight provinces based on spatial clustering and shape-based criteria. Delaunay triangulation was used to define spatial connections among stations, capturing the region’s irregular geography. Cross-correlation and Granger causality were applied to identify time-lagged relationships between stations for each season. Trophic coherence analysis was used to evaluate the hierarchical structure and seasonal stability of the resulting networks. The analysis revealed seasonal patterns of PM2.5 transmission, with certain stations, particularly in Chiang Mai and Lampang, consistently acting as source nodes. Provinces such as Phayao and Phrae were frequently identified as receptors, especially during the winter and rainy seasons. Trophic coherence varied by season, with the winter network showing the highest coherence, indicating a more hierarchical but less stable structure. The rainy season exhibited the lowest coherence, reflecting greater structural stability. PM2.5 spreads through structured, seasonal pathways in northern Thailand. Network patterns vary significantly across seasons, highlighting the need for adaptive air quality strategies. This framework can help identify influential monitoring stations for early warning and support more targeted, season-specific air quality management strategies in northern Thailand. Full article
(This article belongs to the Special Issue Application of Mathematical Theory in Data Science)
Show Figures

Figure 1

32 pages, 1739 KB  
Review
Effects of Pharmaceuticals and Endocrine-Disrupting Chemicals on Reproductive Biology of Aquatic Fauna: Penguins as Sentinel Species
by Grace Emily Okuthe, Edith Dube and Patrick Siyambulela Mafunda
J. Xenobiot. 2025, 15(4), 110; https://doi.org/10.3390/jox15040110 - 4 Jul 2025
Cited by 1 | Viewed by 1671
Abstract
The escalating global contamination of aquatic ecosystems by pharmaceuticals and endocrine-disrupting chemicals (EDCs) stemming from diverse anthropogenic sources represents a critical and pervasive threat to planetary Earth. These contaminants exhibit bioaccumulative properties in long-lived organisms and undergo trophic biomagnification, leading to elevated concentrations [...] Read more.
The escalating global contamination of aquatic ecosystems by pharmaceuticals and endocrine-disrupting chemicals (EDCs) stemming from diverse anthropogenic sources represents a critical and pervasive threat to planetary Earth. These contaminants exhibit bioaccumulative properties in long-lived organisms and undergo trophic biomagnification, leading to elevated concentrations in apex predators. This review synthesizes current knowledge regarding the far-reaching impacts of pharmaceutical and EDC pollution on the reproductive biology of aquatic fauna, focusing on the heightened vulnerability of the endangered African penguin. A rigorous literature review across key scientific databases—PubMed, Scopus, Web of Science, and Google Scholar—using targeted search terms (e.g., penguins, contaminants of emerging concern, penguin species, seabird species, Antarctica, pharmaceuticals, personal care products, EDCs) underpins this analysis. This review explores the anthropogenic sources of pharmaceuticals and EDCs in aquatic ecosystems. It discusses the mechanisms by which these chemicals disrupt the reproductive physiology of aquatic fauna. Recent studies on the ecological and population-level consequences of these contaminants are also reviewed. Furthermore, the review elaborates on the urgent need for comprehensive mitigating strategies to address their effects on vulnerable penguin populations. These approaches hold the potential to unlock innovative pathways for conservation initiatives and the formulation of robust environmental management policies aimed at safeguarding aquatic ecosystems and the diverse life they support. Full article
Show Figures

Figure 1

16 pages, 1059 KB  
Review
Research Progress on Source Analysis, Ecological Effects, and Separation Technology of Soil Microplastics
by Kuan Chang, Yong Ma and Yulai Han
Microplastics 2025, 4(3), 39; https://doi.org/10.3390/microplastics4030039 - 2 Jul 2025
Viewed by 622
Abstract
Soil microplastic pollution poses a significant threat to the integrity of terrestrial ecosystems and agricultural sustainability. This review provides a comprehensive synthesis of recent progress on soil microplastic (MP) sources, ecological impacts, and separation technologies. Agricultural practices (e.g., residual plastic mulch and wastewater [...] Read more.
Soil microplastic pollution poses a significant threat to the integrity of terrestrial ecosystems and agricultural sustainability. This review provides a comprehensive synthesis of recent progress on soil microplastic (MP) sources, ecological impacts, and separation technologies. Agricultural practices (e.g., residual plastic mulch and wastewater irrigation) and atmospheric deposition serve as primary drivers of contamination accumulation, with pronounced spatial heterogeneity observed across regions. Predominant MP types such as polyethylene, polystyrene, and polypropylene disrupt soil structure and biogeochemical processes through three core mechanisms: physical interference, chemical toxicity, and biological accumulation. These particles further form carrier–pollutant complexes, exacerbating ecotoxicological impacts across trophic levels. While emerging separation techniques like magnetic separation and solvent extraction demonstrate enhanced efficiency, their implementation faces challenges stemming from soil matrix complexity and high operational costs. This article underscores the need for global collaborative efforts to accelerate innovation in biodegradable polymers, offering practical pathways for sustainable soil management. Full article
Show Figures

Figure 1

19 pages, 931 KB  
Article
Widespread Contamination by Anticoagulant Rodenticides in Insectivorous Wildlife from the Canary Islands: Exploring Alternative Routes of Exposure
by Beatriz Martín Cruz, Andrea Acosta Dacal, Ana Macías-Montes, Cristian Rial-Berriel, Manuel Zumbado, Luis Alberto Henríquez-Hernández, Ramón Gallo-Barneto, Miguel Ángel Cabrera-Pérez and Octavio P. Luzardo
Toxics 2025, 13(6), 505; https://doi.org/10.3390/toxics13060505 - 15 Jun 2025
Viewed by 983
Abstract
Research on anticoagulant rodenticides (ARs) in wildlife has primarily focused on apex predators, with less attention given to their potential integration into lower trophic levels and the associated exposure pathways. At the base of the terrestrial food web, invertebrates have been suggested as [...] Read more.
Research on anticoagulant rodenticides (ARs) in wildlife has primarily focused on apex predators, with less attention given to their potential integration into lower trophic levels and the associated exposure pathways. At the base of the terrestrial food web, invertebrates have been suggested as potential vectors of ARs to insectivorous species such as small mammals, reptiles, and birds. To explore this hypothesis, we analyzed the presence of nine anticoagulant rodenticides—including both first-generation (FGARs) and second-generation (SGARs) rodenticides—in 36 liver samples from Yemen chameleons (Chamaeleo calyptratus) and 98 liver samples from six non-raptorial, predominantly insectivorous bird species from the Canary Islands. Through HPLC-MS/MS analysis, only SGARs were detected in both animal groups collected between 2021 and 2024. Approximately 80% of reptiles and 40% of birds tested positive for at least one SGAR, with brodifacoum being the most frequently detected compound. In more than 90% of positive cases, it was found as the sole contaminant, while co-occurrence with other SGARs was uncommon. Additionally, most concentrations were below 50 ng/g wet weight, except for two bird specimens, suggesting heterogeneous exposure scenarios and potential variability in contamination sources across individuals. These findings provide evidence of AR integration at the base of the terrestrial food web in the Canary Islands and suggest secondary exposure via invertebrates as a plausible route of contamination. Further research directly analyzing invertebrate samples is needed to confirm their role as vectors of ARs to insectivorous wildlife in insular ecosystems. Full article
(This article belongs to the Section Ecotoxicology)
Show Figures

Graphical abstract

21 pages, 1628 KB  
Review
Microplastics in Aquatic Ecosystems: A Global Review of Distribution, Ecotoxicological Impacts, and Human Health Risks
by Atiqur Rahman Sunny, Sharif Ahmed Sazzad, Mohammed Ariful Islam, Mahmudul Hasan Mithun, Monayem Hussain, António Raposo and Md Khurshid Alam Bhuiyan
Water 2025, 17(12), 1741; https://doi.org/10.3390/w17121741 - 9 Jun 2025
Cited by 4 | Viewed by 5735
Abstract
Microplastics (MPs), defined as synthetic polymer particles less than 5 mm in diameter, are widely acknowledged as ubiquitous contaminants in aquatic ecosystems, including freshwater, marine, and polar environments. Global concern with MPs has significantly increased; nevertheless, much of the current knowledge remains fragmented [...] Read more.
Microplastics (MPs), defined as synthetic polymer particles less than 5 mm in diameter, are widely acknowledged as ubiquitous contaminants in aquatic ecosystems, including freshwater, marine, and polar environments. Global concern with MPs has significantly increased; nevertheless, much of the current knowledge remains fragmented and, at times, limited to specific regions or ecological compartments. This study emphasizes the necessity of a thorough synthesis by critically analyzing global microplastics’ dispersion patterns, ecological consequences, and associated human health concerns. A systematic approach was employed, integrating specific search terms and establishing inclusion and exclusion criteria across various scientific databases to obtain a representative collection of literature. The study covers important topics such as the classification of MPs, their distribution, environmental impacts, and interactions with other pollutants, including heavy metals, pharmaceuticals and endocrine-disrupting chemicals. Particular emphasis is placed on comparing ecosystem-specific vulnerabilities, such as those found in tropical wetlands, marine gyres, and polar systems. The review examines potential human exposure pathways, via contaminated seafood, water, and air, while also compiling new information about cellular and physiological damage, including oxidative stress, inflammation, hormone disruption, and possible genetic effects. This investigation highlights the value of collaborative monitoring, the adoption of biodegradable alternatives, policy development, and interdisciplinary research by integrating knowledge from ecology and public health. The primary objective is to advance ecosystem-specific mitigation techniques and promote evidence-based policy development in addressing this intricate environmental issue. Full article
(This article belongs to the Special Issue Impact of Microplastic Pollution on Soil and Groundwater Environment)
Show Figures

Figure 1

20 pages, 1819 KB  
Article
Hypersalinity Drives Dramatic Shifts in the Invertebrate Fauna of Estuaries
by Ben J. Roots, Ruth Lim, Stephanie A. Fourie, Essie M. Rodgers, Emily J. Stout, Sorcha Cronin-O’Reilly and James R. Tweedley
Animals 2025, 15(11), 1629; https://doi.org/10.3390/ani15111629 - 1 Jun 2025
Cited by 2 | Viewed by 864
Abstract
In some estuaries, low inflow and/or isolation from the ocean can result in evapoconcentration and hypersalinity (≥40 ppt). This can create osmoregulatory and energetic challenges for the faunal community, leading to reductions in diversity as more species pass their thresholds. As climate change [...] Read more.
In some estuaries, low inflow and/or isolation from the ocean can result in evapoconcentration and hypersalinity (≥40 ppt). This can create osmoregulatory and energetic challenges for the faunal community, leading to reductions in diversity as more species pass their thresholds. As climate change is increasing the magnitude and duration of hypersaline conditions, we used benthic macroinvertebrate data from 12 estuaries across a Mediterranean climatic region (southwestern Australia) to assess the influence of salinity (0–122 ppt) on the invertebrate fauna. Taxa richness and diversity were highest in salinities between 0 and 39 ppt, peaking at salinities closest to seawater, while total density peaked at 40–49 ppt. Beyond 50 ppt, these measures declined significantly. Community composition changed markedly along the salinity gradient. In lower salinities, communities were diverse, comprising polychaetes, malacostracans, hexapods, ostracods, bivalves, and gastropods. However, in salinities ≥50 ppt, many taxa declined, leading to communities dominated by polychaetes (mainly Capitella spp.) and hexapods (mostly larval chironomids). At 90 ppt, only polychaetes and hexapods remained, and at ≥110 ppt, only the latter taxon persisted. This faunal shift towards insect dominance in hypersaline conditions mirrors observations in other Mediterranean and arid/semi-arid regions, with the resulting communities resembling saline wetlands or salt lakes. This loss of invertebrates can substantially impact ecosystem functioning and trophic pathways, and the findings of this study provide a basis for predicting how these communities will respond to increasing hypersalinity driven by climate change. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

35 pages, 1464 KB  
Review
Pharmaceuticals and Microplastics in Aquatic Environments: A Comprehensive Review of Pathways and Distribution, Toxicological and Ecological Effects
by Haithem Aib, Md. Sohel Parvez and Herta Mária Czédli
Int. J. Environ. Res. Public Health 2025, 22(5), 799; https://doi.org/10.3390/ijerph22050799 - 20 May 2025
Cited by 2 | Viewed by 3366
Abstract
Pharmaceuticals and microplastics are persistent emerging contaminants that pose significant risks to aquatic ecosystems and ecological health. Although extensively reviewed individually, a comprehensive, integrated assessment of their environmental pathways, bioaccumulation dynamics, and toxicological impacts remains limited. This review synthesizes current research on the [...] Read more.
Pharmaceuticals and microplastics are persistent emerging contaminants that pose significant risks to aquatic ecosystems and ecological health. Although extensively reviewed individually, a comprehensive, integrated assessment of their environmental pathways, bioaccumulation dynamics, and toxicological impacts remains limited. This review synthesizes current research on the environmental fate and impact of pharmaceuticals and microplastics, emphasizing their combined influence on aquatic organisms and ecosystems. This review provides a thorough and comprehensive examination of their predominant pathways, sources, and distribution, highlighting wastewater disposal, agricultural runoff, and atmospheric deposition. Studies indicate that pharmaceuticals, such as antibiotics and painkillers, are detected in concentrations ranging from ng/L to μg/L in surface waters, while MPs are found in densities up to 106 particles/m3 in some marine and freshwater systems. The toxicological effects of these pollutants on aquatic organisms, particularly fish, are discussed, with emphasis on bioaccumulation and biomagnification in the food chain, physiological effects including effects on growth, reproduction, immune system performance, and behavioral changes. The ecological consequences, including disruptions to trophic dynamics and ecosystem stability, are also addressed. Although valuable efforts, mitigation and remediation strategies remain inadequate, and further research is needed because they do not capture the scale and complexity of these hazards. This review highlights the urgent need to advance treatment technologies, establish comprehensive regulatory frameworks, and organize intensive research on long-term ecological impacts to address the environmental threats posed by pharmaceuticals and microplastics. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

16 pages, 3313 KB  
Article
Entomopathogenic Fungus Treatment Affects Trophic Interactions by Altering Volatile Emissions in Tomato
by Asim Munawar, Haonan Zhang, Jinyi Zhang, Xiangfen Zhang, Xiao-Xiao Shi, Xuan Chen, Zicheng Li, Xiaoli He, Jian Zhong, Zengrong Zhu, Yaqiang Zheng and Wenwu Zhou
Agronomy 2025, 15(5), 1161; https://doi.org/10.3390/agronomy15051161 - 9 May 2025
Viewed by 1087
Abstract
Entomopathogenic fungi (EPFs) can influence plant–insect interactions through complex molecular and chemical mechanisms. This study investigates how EPF treatment of tomato plants modulates volatile organic compound (VOC) emissions and subsequent trophic interactions between tomato plants, the herbivorous pest Phthorimaea absoluta, and the [...] Read more.
Entomopathogenic fungi (EPFs) can influence plant–insect interactions through complex molecular and chemical mechanisms. This study investigates how EPF treatment of tomato plants modulates volatile organic compound (VOC) emissions and subsequent trophic interactions between tomato plants, the herbivorous pest Phthorimaea absoluta, and the parasitic wasp, Trichogramma chilonis. Our results demonstrate that EPF-treated plants exhibited reduced attractiveness to adult P. absoluta moths, which were actively repelled by EPF-induced VOCs. Conversely, these same plants showed enhanced recruitment of the parasitoid T. chilonis, which demonstrated positive chemotaxis toward the modified VOC profile. Chemical analysis revealed significantly elevated emissions of key VOCs in EPF-treated plants, particularly (E)-β-Caryophyllene, β-phellandrene, and α-Phellandrene. This increase is correlated with enhanced production of defense-related phytohormones, including JA, SA, and JA-Ile, which may regulate VOC biosynthesis pathways. Behavioral response studies using synthetic VOCs and electroantennogram (EAG) measurements confirmed that these EPF-induced VOCs elicited strong olfactory responses in both insect species. To summarize, EPF treatment reshapes multitrophic interactions by strategically modulating plant VOC emissions and activating defense signaling pathways in tomato plants, providing new insights for potential applications in sustainable pest management strategies. Full article
(This article belongs to the Special Issue Pests, Pesticides, Pollinators and Sustainable Farming)
Show Figures

Figure 1

14 pages, 3851 KB  
Article
Dietary Differentiation Mitigates Interspecific Interference Competition Between Sympatric Pallas’s Cats (Otocolobus manul) and Red Foxes (Vulpes vulpes)
by Dong Wang, Quanbang Li, Jingyu Gao, Luyi Hou, Yanjun Zou and Xinming Lian
Animals 2025, 15(9), 1267; https://doi.org/10.3390/ani15091267 - 29 Apr 2025
Cited by 1 | Viewed by 650
Abstract
The comparative analysis of the feeding ecology among sympatric small carnivores reveals both differentiation and overlap in resource utilization patterns, which serves as a critical pathway for understanding interspecific interactions and maintaining ecosystem stability. In this study, we collected fecal samples from sympatric [...] Read more.
The comparative analysis of the feeding ecology among sympatric small carnivores reveals both differentiation and overlap in resource utilization patterns, which serves as a critical pathway for understanding interspecific interactions and maintaining ecosystem stability. In this study, we collected fecal samples from sympatric Pallas’s cats (Otocolobus manul, n = 26) and red foxes (Vulpes vulpes, n = 13) within the Sanjiangyuan National Park (SNP) in China. Subsequently, DNA barcoding technology was employed to analyze the dietary composition and interspecific differences of these two small carnivores. The results demonstrated that both species primarily prey on plateau pikas (Ochotona curzoniae) and small rodents. Despite a high trophic niche overlap between Pallas’s cats and red foxes (Ojk = 0.81), interspecific competition is mitigated through differentiate feeding proportions of shared prey species. Furthermore, the trophic niche breadth of red foxes (B = 267.89) exceeds that of Pallas’s cats (B = 162.94), reflecting a greater diversity of prey resources utilized by red foxes. Consequently, the two small carnivores achieve sympatric coexistence via differentiated resource utilization. These findings enhance our understanding of the coexistence mechanisms within carnivore communities and provide a scientific basis for the conservation of wildlife in the SNP. Full article
(This article belongs to the Section Ecology and Conservation)
Show Figures

Figure 1

25 pages, 3380 KB  
Article
Organic Amendments Enhance Agroecosystem Multifunctionality via Divergent Regulation of Energy Flow Uniformity in Soil Nematode Food Webs
by Tianyuan Huang, Jinghua Huang, Jing Zhang, Guoqing Li and Shiwei Zhao
Agronomy 2025, 15(5), 1048; https://doi.org/10.3390/agronomy15051048 - 26 Apr 2025
Viewed by 928
Abstract
Applying organic amendments enhances agroecosystem multifunctionality (EMF), yet its mechanisms via soil food-web energetics remain unclear. A field experiment was conducted on China’s Loess Plateau in a winter wheat system, comparing mineral fertilizer with straw, biochar, and liquid organic fertilizer to assess their [...] Read more.
Applying organic amendments enhances agroecosystem multifunctionality (EMF), yet its mechanisms via soil food-web energetics remain unclear. A field experiment was conducted on China’s Loess Plateau in a winter wheat system, comparing mineral fertilizer with straw, biochar, and liquid organic fertilizer to assess their impacts on nematode communities and EMF (plant performance and carbon, nitrogen, phosphorus cycling). Using high-throughput sequencing and energy flux modeling, we found that straw and biochar enhanced nematode diversity and co-occurrence network complexity, while liquid organic fertilizer reduced network complexity. Straw balanced fungal- and bacterial-driven energy pathways, enhancing energy flow uniformity (1.05) and EMF. However, its high C:N ratio requires mineral fertilizers to alleviate nitrogen limitations, ensuring stable bacterial energy fluxes and preventing functional trade-offs. Biochar elevated total energy flux but prioritized bacterial- and herbivore-driven pathways, reducing energy flow uniformity (0.76) and functional balance. Liquid organic fertilizer favored omnivores-predators, destabilizing lower trophic functions with minimal functional gains. Amendment properties (C:N ratio, pH) shaped nematode-mediated energy distribution, linking biodiversity to multifunctionality. Overall, straw is optimal for supporting EMF when combined with mineral fertilizers, while biochar and liquid fertilizer require tailored management to mitigate functional trade-offs. These findings advance sustainable strategies for dryland agroecosystems in the Loess Plateau region and similar environments. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

38 pages, 2926 KB  
Review
Bioaccumulation and Trophic Transfer of Heavy Metals in Marine Fish: Ecological and Ecosystem-Level Impacts
by Andra Oros
J. Xenobiot. 2025, 15(2), 59; https://doi.org/10.3390/jox15020059 - 18 Apr 2025
Cited by 16 | Viewed by 6605
Abstract
Heavy metal contamination in marine ecosystems poses a critical environmental challenge, with significant implications for biodiversity, trophic dynamics, and human health. Marine fish are key bioindicators of heavy metal pollution because of their role in food webs and their capacity for bioaccumulation and [...] Read more.
Heavy metal contamination in marine ecosystems poses a critical environmental challenge, with significant implications for biodiversity, trophic dynamics, and human health. Marine fish are key bioindicators of heavy metal pollution because of their role in food webs and their capacity for bioaccumulation and trophic transfer. This review synthesizes current knowledge on the pathways and mechanisms of heavy metal accumulation in marine fish, focusing on factors that influence the uptake, retention, and tissue distribution. We explore the processes governing trophic transfer and biomagnification, highlighting species-specific accumulation patterns and the risks posed to apex predators, including humans. Additionally, we assess the ecological consequences of heavy metal contamination at population, community, and ecosystem levels, emphasizing its effects on fish reproduction, community structure, and trophic interactions. By integrating recent findings, this review highlights key knowledge gaps and suggests future research directions to improve environmental monitoring and risk assessment. Given the persistence and bioavailability of heavy metals in marine environments, effective pollution control strategies and sustainable fisheries management are imperative to mitigate long-term ecological and public health risks. Full article
Show Figures

Figure 1

Back to TopTop