Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,820)

Search Parameters:
Keywords = tropical temperature

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3004 KiB  
Article
Unveiling Species Diversity Within Early-Diverging Fungi from China VI: Four Absidia sp. nov. (Mucorales) in Guizhou and Hainan
by Yi-Xin Wang, Zi-Ying Ding, Xin-Yu Ji, Zhe Meng and Xiao-Yong Liu
Microorganisms 2025, 13(6), 1315; https://doi.org/10.3390/microorganisms13061315 - 5 Jun 2025
Abstract
Absidia is the most species-rich genus within the family Cunninghamellaceae, with its members commonly isolated from diverse substrates, particularly rhizosphere soil. In this study, four novel Absidia species, A. irregularis sp. nov., A. multiformis sp. nov., A. ovoidospora sp. nov., and A. verticilliformis [...] Read more.
Absidia is the most species-rich genus within the family Cunninghamellaceae, with its members commonly isolated from diverse substrates, particularly rhizosphere soil. In this study, four novel Absidia species, A. irregularis sp. nov., A. multiformis sp. nov., A. ovoidospora sp. nov., and A. verticilliformis sp. nov., were discovered from soil samples collected in southern and southwestern China, using integrated morphological and molecular analyses. Phylogenetic analyses based on concatenated ITS, SSU, LSU, Act, and TEF1α sequence data reconstructed trees that strongly supported the monophyly of each of these four new taxa. Key diagnostic features include A. irregularis (closely related to A. oblongispora) exhibiting irregular colony morphology, A. multiformis (sister to A. heterospora) demonstrating polymorphic sporangiospores, A. ovoidospora (forming a clade with A. panacisoli and A. abundans) producing distinctive ovoid sporangiospores, and A. verticilliformis (next to A. edaphica) displaying verticillately branched sporangiophores. Each novel species is formally described with comprehensive documentation, including morphological descriptions, illustrations, Fungal Names registration identifiers, designated type specimens, etymological explanations, maximum growth temperatures, and taxonomic comparisons. This work constitutes the sixth instalment in a series investigating early-diverging fungal diversity in China aiming to enhance our understanding of the diversity of fungi in tropical and subtropical ecosystems in Asia. In this paper, the known species of Absidia are expanded to 71. Full article
Show Figures

Figure 1

9 pages, 527 KiB  
Article
Tropicalization of the Mediterranean Sea Reflected in Fish Diversity Changes: A Case Study from Spanish Waters
by Davinia Torreblanca and José Carlos Báez
J. Mar. Sci. Eng. 2025, 13(6), 1119; https://doi.org/10.3390/jmse13061119 - 3 Jun 2025
Abstract
The Mediterranean Sea, a semi-enclosed basin at mid-latitudes, is experiencing significant environmental changes driven by global warming. This study examines recent shifts in fish species composition within Spanish Mediterranean waters, focusing on the potential tropicalization of marine communities. Using an updated dataset derived [...] Read more.
The Mediterranean Sea, a semi-enclosed basin at mid-latitudes, is experiencing significant environmental changes driven by global warming. This study examines recent shifts in fish species composition within Spanish Mediterranean waters, focusing on the potential tropicalization of marine communities. Using an updated dataset derived from the Spanish marine fishes checklist, we analyzed newly recorded species across two Spanish demarcations: the Levantine-Balearic (LEBA) and the Strait of Gibraltar and Alboran Sea (ESAL). A total of 25 new records (including 23 new species) were reported, with 15 new records in LEBA and 10 new records in ESAL and also including 2 new species recorded occurring in both demarcations. To assess changes in species’ thermal preferences, we compared the mean temperature of newly recorded species with that of previously established species in each demarcation using the Mann–Whitney U test. While no significant differences were found in LEBA, a marked increase of up to 6.08 °C in thermal preference was observed in ESAL. These findings suggest that tropicalization is occurring unevenly across the Spanish Mediterranean, with the Alboran Sea and Strait of Gibraltar being particularly affected. The complex oceanography of the Alboran Sea, coupled with extreme weather events and biological invasions, may exacerbate these shifts. Full article
Show Figures

Figure 1

15 pages, 5863 KiB  
Article
Microsystem for Improving Energy Efficiency by Minimizing Room-Level Greenhouse Effects in Homes
by Shuza Binzaid and Abhitej Divi
Micro 2025, 5(2), 28; https://doi.org/10.3390/micro5020028 - 3 Jun 2025
Abstract
The greenhouse effect, responsible for trapping heat in Earth’s atmosphere, has a parallel thermal phenomenon at the indoor scale known as the Room-Level Greenhouse Effect (RGHE), where solar radiation elevates room temperatures and increases energy consumption. The RGHE contributes to indoor temperature increases [...] Read more.
The greenhouse effect, responsible for trapping heat in Earth’s atmosphere, has a parallel thermal phenomenon at the indoor scale known as the Room-Level Greenhouse Effect (RGHE), where solar radiation elevates room temperatures and increases energy consumption. The RGHE contributes to indoor temperature increases of 4–10 °C and elevates energy demands by 15–30% in high solar exposure zones, the effect being even worse in tropical zones. To address this problem, an innovative analog microarchitecture is proposed for real-time RGHE detection by sensing the sunlight intensity radiation factor (SIR). A compact analog system is introduced, comprising three stages: a Sensing Circuit Stage (SCS) that isolates the dynamic sunlight signal f (r) from static room condition factors (RCFs), an Amplification Stage (AS) that shifts and boosts the signal, and a Stabilized Peak Detection Stage (SPDS) that captures the peak solar intensity. The microsystem was tested across fixed f (m) levels of 0.75 V, 1.0 V, and 1.5 V, and varying f (r) values of 3 mV, 4 mV, and 5 mV. It successfully detects peak voltages ranging from 1.69 V to 1.92 V, with stabilization achieved within 60 µs, enabling accurate detection of the f (r) signal. The proposed microarchitecture offers a scalable approach to localized thermal monitoring in smart building environments using fully analog circuitry, designed and simulated in Cadence Virtuoso using the TSMC 180 nm technology library. Full article
(This article belongs to the Section Microscale Engineering)
Show Figures

Figure 1

18 pages, 15630 KiB  
Article
Resolving the Faint Young Sun Paradox and Climate Extremes: A Unified Thermodynamic Closure Theory
by Hsien-Wang Ou
Climate 2025, 13(6), 116; https://doi.org/10.3390/cli13060116 - 2 Jun 2025
Viewed by 217
Abstract
Clouds play a central role in regulating incoming solar radiation and outgoing terrestrial emission; hence, they must be internally constrained to prognose Earth’s temperature. At the same time, planetary fluids are inherently turbulent, so the climate state would tend toward maximum entropy production—a [...] Read more.
Clouds play a central role in regulating incoming solar radiation and outgoing terrestrial emission; hence, they must be internally constrained to prognose Earth’s temperature. At the same time, planetary fluids are inherently turbulent, so the climate state would tend toward maximum entropy production—a generalized second law of thermodynamics. Incorporating these requirements, I have previously formulated an aquaplanet model to demonstrate that intrinsic water properties may strongly lower the climate sensitivity to solar irradiance, thereby resolving the faint young Sun paradox (FYSP). In this paper, I extend the model to include other external forcings and show that sensitivity to the reduced outgoing longwave radiation by the elevated pCO2 can be several times greater, but the global temperature remains capped at ~40 °C by the exponential increase in saturated vapor pressure. I further show that planetary albedo augmented by a tropical supercontinent may cool the climate sufficiently to cause tropical glaciation. And since the glacial edge is marked by above-freezing temperature, it abuts an open, co-zonal ocean, thereby obviating the “Snowball Earth” hypothesis. Our theory thus provides a unified framework for interpreting Earth’s diverse climates, including the FYSP, the warm extremes of the Cambrian and Cretaceous, and the tropical glaciations of the Precambrian. Full article
Show Figures

Figure 1

12 pages, 2196 KiB  
Article
Post-El Niño Influence on Summer Monsoon Rainfall in Sri Lanka
by Pathmarasa Kajakokulan and Vinay Kumar
Water 2025, 17(11), 1664; https://doi.org/10.3390/w17111664 - 30 May 2025
Viewed by 269
Abstract
Sri Lanka typically experiences anomalously wet conditions during the summer following El Niño events, but this response varies due to El Niño complexity. This study investigates the impact of post-El Niño conditions on Sri Lanka’s Monsoon rainfall, contrasting summers after fast- and slow-decaying [...] Read more.
Sri Lanka typically experiences anomalously wet conditions during the summer following El Niño events, but this response varies due to El Niño complexity. This study investigates the impact of post-El Niño conditions on Sri Lanka’s Monsoon rainfall, contrasting summers after fast- and slow-decaying El Niño events. Results indicate that fast-decaying El Niño events lead to wet and cool summers while slow-decaying events result in dry and warm summers. These contrasting responses are linked to sea surface temperature (SST) changes in the central to eastern Pacific. During the fast-decaying El Niño, the transition to La Niña generates strong easterlies in the central and eastern Pacific, enhancing moisture convergence, upward motion, and cloud cover, resulting in wetter conditions over Sri Lanka. During the fast-decaying El Niño, enhanced precipitation over the Maritime Continent acts as a diabatic heating source, inducing Gill-type easterly wind anomalies over the tropical Pacific. These winds promote coupled feedbacks that accelerate the transition to La Niña, strengthening moisture convergence and upward motion over Sri Lanka. Conversely, slow-decaying El Niño events are associated with cooling in the western North Pacific and warming in the Indian Ocean, which promotes the development of the western North Pacific anticyclone, suppressing upward motion and reducing cloud cover, leading to conditions over Sri Lanka. Changes in the Walker circulation further contribute to these distinct rainfall patterns, highlighting its influence on regional climate dynamics. These findings enhance our understanding of the seasonal predictability of rainfall in Sri Lanka during post-El Niño Summers. Full article
Show Figures

Figure 1

25 pages, 6292 KiB  
Article
Improving Cocoa Drying Efficiency with a Mixed Forced Convection Solar Dryer in an Equatorial Climate
by Arnaud Nzendjang Mbakouop, Claude Bertin Nzoundja Fapi, André Désire Siéwé, Hyacinthe Tchakounté and Awoh Innocentia Ankungha
Thermo 2025, 5(2), 18; https://doi.org/10.3390/thermo5020018 - 30 May 2025
Viewed by 213
Abstract
A crucial stage in the post-harvest processing of cocoa beans, drying, has a direct effect on the finished product’s quality and market value. This study investigates the efficiency, quality outcomes, and environmental implications of a mixed forced convection solar dryer designed for drying [...] Read more.
A crucial stage in the post-harvest processing of cocoa beans, drying, has a direct effect on the finished product’s quality and market value. This study investigates the efficiency, quality outcomes, and environmental implications of a mixed forced convection solar dryer designed for drying cocoa beans in Ntui, Cameroon, compared to traditional open-air drying methods. The solar dryer’s design, incorporating a solar collector, forced ventilation, and thermal storage, leverages local materials and renewable energy, offering an environmentally sustainable alternative by reducing fossil fuel reliance and post-harvest losses. Experimental trials were conducted to assess key drying parameters, including the temperature, relative humidity, water removal rate, pH, and free fatty acid (FFA) content, under the equatorial climate conditions of high solar irradiation and humidity. Results demonstrate that the solar dryer significantly reduces drying time from an average of 4.83 days in open-air drying to 2.5 days, a 50% improvement, while maintaining optimal conditions for bean quality preservation. The solar-dried beans exhibited a stable pH (5.7–5.9), a low FFA content (0.282% oleic acid equivalent, well below the EU standard of 1.75%), and superior uniformity in texture and color, meeting international quality standards. In contrast, open-air drying showed greater variability in quality due to weather dependencies and contamination risks. The study highlights the dryer’s adaptability to equatorial climates and its potential to enhance cocoa yields and quality for small-scale producers. These findings underscore the viability of solar drying as a high-performance, eco-friendly solution, paving the way for its optimization and broader adoption in cocoa-producing regions. This research contributes to the growing body of knowledge on sustainable drying technologies, addressing both economic and environmental challenges in tropical agriculture. Full article
Show Figures

Figure 1

15 pages, 275 KiB  
Article
Leonardite (Humic and Fulvic Acid Complex) Long-Term Supplementation in Lambs Finished Under Subtropical Climate Conditions: Growth Performance, Dietary Energetics, and Carcass Traits
by Alfredo Estrada-Angulo, Jesús A. Quezada-Rubio, Elizama Ponce-Barraza, Beatriz I. Castro-Pérez, Jesús D. Urías-Estrada, Jorge L. Ramos-Méndez, Yesica J. Arteaga-Wences, Lucía de G. Escobedo-Gallegos, Luis Corona and Alejandro Plascencia
Ruminants 2025, 5(2), 20; https://doi.org/10.3390/ruminants5020020 - 29 May 2025
Viewed by 141
Abstract
Leonardite (LEO), a microbial derived product rich in humic and fulvic acids, has been tested, due to its beneficial properties for health and well-being, as a feed additive, mainly in non-ruminant species. Although there are some reports of LEO supplementation in ruminants fed [...] Read more.
Leonardite (LEO), a microbial derived product rich in humic and fulvic acids, has been tested, due to its beneficial properties for health and well-being, as a feed additive, mainly in non-ruminant species. Although there are some reports of LEO supplementation in ruminants fed with high-to medium-forage based diets, there is no information available of the potential effects of LEO in ruminants fed, under sub-tropical climate conditions, with high-energy diets during long-term fattening. For this reason, the objective of the present experiment was to evaluate the effects of LEO levels inclusion in diets for feedlot lambs finished over a long-term period. For this reason, 48 Pelibuey × Katahdin lambs (initial weight = 20.09 ± 3.55 kg) were fed with a high-energy diet (88:12 concentrate to forage ratio) supplemented with LEO (with a minimum of 75% total humic acids) for 130 days as follows: (1) diet without LEO, (2) diet supplemented with 0.20% LEO, (3) diet supplemented with 0.40% LEO, and (4) diet supplemented with 0.60% LEO. For each treatment, Leonardite was incorporated with the mineral premix. Lambs were blocked by weight and housed in 24 pens (2 lambs/pen). Treatment effects were contrasted by orthogonal polynomials. The average climatic conditions that occurred during the experimental period were 31.6 ± 2.4 °C ambient temperature and 42.2 ± 8.1% relative humidity (RH). Those values of ambient temperature and RH represent a temperature humidity index (THI) of 79.07; thus, lambs were finished under high heat load conditions. The inclusion of LEO in diet did not affect dry matter intake (p ≥ 0.25) and average daily gain (p ≥ 0.21); therefore, feed to gain ratio was not affected (p ≥ 0.18). The observed to expected dietary net energy averaged 0.96 and was not affected by LEO inclusion (p ≥ 0.26). The lower efficiency (−4%) of dietary energy utilization is an expected response given the climatic conditions of high ambient heat load presented during fattening. Lambs that were slaughtered at an average weight of 49.15 ± 6.00 kg did not show differences on the variables measured for carcass traits (p ≥ 0.16), shoulder tissue composition (p ≥ 0.59), nor in visceral mass (p ≥ 0.46) by inclusion of LEO. Under the climatic conditions in which this experiment was carried out, LEO supplementation up to 0.60% in diet (equivalent to 0.45% of humic substances) did not did not help to alleviate the extra-energy expenditure used to dissipate the excessive heat and did not change the gained tissue composition of the lambs that were fed with high-energy diets during long-term period under sub-tropical climate conditions. Full article
(This article belongs to the Special Issue Nutrients and Feed Additives in Sheep and Goats)
19 pages, 4285 KiB  
Article
Future Expansion of Sterculia foetida L. (Malvaceae): Predicting Invasiveness in a Changing Climate
by Heba Bedair, Harish Chandra Singh, Ahmed R. Mahmoud and Mohamed M. El-Khalafy
Forests 2025, 16(6), 912; https://doi.org/10.3390/f16060912 - 29 May 2025
Viewed by 290
Abstract
Sterculia foetida L., commonly known as the Java olive, is a tropical tree species native to regions of East Africa, tropical Asia, and northern Australia. This study employs species distribution modeling (SDM) to predict the potential geographic distribution of S. foetida under current [...] Read more.
Sterculia foetida L., commonly known as the Java olive, is a tropical tree species native to regions of East Africa, tropical Asia, and northern Australia. This study employs species distribution modeling (SDM) to predict the potential geographic distribution of S. foetida under current and future climate scenarios. Using 1425 occurrence data and 19 environmental variables, we applied an ensemble modelling approach of three algorithms: Boosting Regression Trees (BRT), Generalized Linear Model (GLM), and Random Forests (RF), to generate distribution maps. Our models showed high accuracy (mean AUC = 0.98) to indicate that S. foetida has a broad ecological niche, with high suitability in tropical and subtropical regions of north Australia (New Guinea and Papua), Southeast Asia (India, Thailand, Myanmar, Taiwan, Philippines, Malaysia, Sri Lanka), Oman and Yemen in the southwest of Asia, Central Africa (Guinea, Ghana, Nigeria, Congo, Kenya and Tanzania), the Greater and Lesser Antilles, Mesoamerica, and the north of South America (Colombia, Panama, Venezuela, Ecuador and Brazil). Indeed, the probability of occurrence of S. foetida positively correlates with the Maximum temperature of warmest month (bio5), Mean temperature of wettest quarter (bio8) and Precipitation of wettest month (bio13). The model results showed a suitability area of 4,744,653 km2, representing 37.86% of the total study area, classified into Low (14.12%), Moderate (8.71%), and High suitability (15.02%). Furthermore, the study found that habitat suitability for S. foetida showed similar trends under both near future climate scenarios (SSP1-2.6 and SSP5-8.5 for 2041–2060), with a slight loss in potential distribution (0.24% and 0.25%, respectively) and moderate gains (1.98% and 2.12%). In the far future (2061–2080), the low scenario (SSP1-2.6) indicated a 0.29% loss and a 2.52% gain, while the high scenario (SSP5-8.5) showed a more dramatic increase in both loss (0.6%) and gain areas (3.79%). These findings are crucial for conservation planning and management, particularly in regions where S. foetida is considered invasive and could become problematic. The study underscores the importance of incorporating climate change projections in SDM to better understand species invasiveness dynamics and inform biodiversity conservation strategies. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

17 pages, 3120 KiB  
Article
A Deep Learning Inversion Method for 3D Temperature Structures in the South China Sea with Physical Constraints
by Dongcan Xu, Yahao Liu and Yuan Kong
J. Mar. Sci. Eng. 2025, 13(6), 1061; https://doi.org/10.3390/jmse13061061 - 28 May 2025
Viewed by 76
Abstract
The South China Sea, a vital marginal sea in tropical–subtropical Southeast Asia, plays a globally significant role in marine biodiversity and climate system dynamics. The accurate monitoring of its thermal structure is essential for ecological and climatic studies, yet retrieving subsurface temperature remains [...] Read more.
The South China Sea, a vital marginal sea in tropical–subtropical Southeast Asia, plays a globally significant role in marine biodiversity and climate system dynamics. The accurate monitoring of its thermal structure is essential for ecological and climatic studies, yet retrieving subsurface temperature remains challenging due to complex ocean–atmosphere interactions. This study develops a Convolutional Long Short-Term Memory (ConvLSTM) neural network, integrating multi-source satellite remote sensing data, to reconstruct the Ocean Subsurface Temperature Structure (OSTS). To address the multiparameter complexity of temperature retrieval, physical constraints—particularly the heat budget balance of water bodies—are incorporated into the loss function. Experiments demonstrate that the physics-informed ConvLSTM model significantly improves the temperature estimation accuracy by simultaneously optimizing the physical consistency and predictive performance. The proposed approach advances ocean remote sensing by synergizing data-driven learning with thermodynamic principles, offering a robust framework for understanding the South China Sea’s thermal variability. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

12 pages, 3793 KiB  
Article
Semi-Annual Climate Modes in the Western Hemisphere
by Mark R. Jury
Climate 2025, 13(6), 111; https://doi.org/10.3390/cli13060111 - 27 May 2025
Viewed by 161
Abstract
Semi-annual climate oscillations in the Western Hemisphere (20 S–35 N, 150 W–20 E) were studied via empirical orthogonal function (EOF) eigenvector loading patterns and principal component time scores from 1980 to 2023. The spatial loading maximum for 850 hPa zonal wind extended from [...] Read more.
Semi-annual climate oscillations in the Western Hemisphere (20 S–35 N, 150 W–20 E) were studied via empirical orthogonal function (EOF) eigenvector loading patterns and principal component time scores from 1980 to 2023. The spatial loading maximum for 850 hPa zonal wind extended from the north Atlantic to the east Pacific; channeling was evident over the southwestern Caribbean. The eigenvector loading maximum for precipitation reflected an equatorial trough, while the semi-annual SST formed a dipole with loading maxima in upwelling zones off Angola (10 E) and Peru (80 W). Weakened Caribbean trade winds and strengthened tropical convection correlated with a warm Atlantic/cool Pacific pattern (R = 0.46). Wavelet spectral analysis of principal component time scores found a persistent 6-month rhythm disrupted only by major El Nino Southern Oscillation events and anomalous mid-latitude conditions associated with negative-phase Arctic Oscillation. Historical climatologies revealed that 6-month cycles of wind, precipitation, and sea temperature were tightly coupled in the Western Hemisphere by heat surplus in the equatorial ocean diffused by meridional overturning Hadley cells. External forcing emerged in early 2010 when warm anomalies over Canada diverted the subtropical jet, suppressing subtropical trade winds and evaporative cooling and intensifying the equatorial trough across the Western Hemisphere. Climatic trends of increased jet-stream instability suggest that the semi-annual amplitude may grow over time. Full article
Show Figures

Figure 1

17 pages, 4204 KiB  
Article
Decadal Modulation of Summertime Northwestern Pacific Subtropical High Linked to Indian Ocean Basin Warming
by Takashi Mochizuki and Yuta Ando
Climate 2025, 13(6), 106; https://doi.org/10.3390/cli13060106 - 24 May 2025
Viewed by 273
Abstract
The Northwestern Pacific Subtropical High (NPSH), usually enhanced by the basin-scale warming of the Indian Ocean (IOBW), plays a major role in controlling the summertime East Asian climate. To assess factors contributing to the decadal modulation of the NPSH and IOBW relationship in [...] Read more.
The Northwestern Pacific Subtropical High (NPSH), usually enhanced by the basin-scale warming of the Indian Ocean (IOBW), plays a major role in controlling the summertime East Asian climate. To assess factors contributing to the decadal modulation of the NPSH and IOBW relationship in recent years, we conducted sensitivity experiments using an atmospheric general circulation model. We particularly focused on decadal-scale differences between the periods of 1982–2001 and 2002–2021, with the contribution of the climatological sea surface temperature (SST) as the background, in combination with the tropical Pacific SST anomaly in relation to the rapid or slow decay of the El Niño Southern Oscillation (ENSO). The results indicate that the IOBW-related SST anomalies in the Indian and tropical Pacific Oceans—which, overall, represent the well-known characteristics of the so-called Indo-western Pacific Ocean Capacitor effects—cooperatively enhanced the NPSH in the earlier period (1982–2001). On the other hand, the suppressed and westward-shifted SST anomalies in the tropical Pacific Ocean and the resultant changes in the diabatic heating of cumulus convection suppressed the NPSH enhancement in recent years (2002–2021). These results indicate that the modulation in the NPSH responses linked to the IOBW is primarily due to the so-called ENSO diversity rather than climatology. Full article
(This article belongs to the Section Climate Dynamics and Modelling)
Show Figures

Figure 1

15 pages, 1818 KiB  
Article
Latitudinal Zonality of Phytolith-Occluded Carbon in Forest Soils of Eastern China
by Bing Wang, Na Zhao, Qiuliang Zhang and Xin Zhang
Forests 2025, 16(6), 887; https://doi.org/10.3390/f16060887 - 24 May 2025
Viewed by 225
Abstract
Phytolith carbon sequestration has been recognized as an important mechanism for long-term carbon sequestration in forest ecosystems. Conducting relevant research in cold temperate regions that are sensitive to climate change can reveal their unique mechanisms as a stable and long-term carbon pool, fill [...] Read more.
Phytolith carbon sequestration has been recognized as an important mechanism for long-term carbon sequestration in forest ecosystems. Conducting relevant research in cold temperate regions that are sensitive to climate change can reveal their unique mechanisms as a stable and long-term carbon pool, fill key blind spots in global carbon cycling models, and provide necessary scientific support for developing climate-resilient ecological strategies and carbon neutrality pathways. In this study, we focused on the Larix gmelinii forest ecosystem and investigated the latitudinal spatial characteristics of soil phytolith and phytolith-occluded carbon (phytOC) in Eastern China. We analyzed the factors that influenced their accumulation and assessed their storage potential across different climatic zones. Our findings revealed an exponential increase in soil phytolith content with increasing latitude in Eastern China. Additionally, the content of soil phytoliths in tropical and subtropical forests was significantly lower than in the cold temperate forests. It was also found that soil phytOC content increased linearly with latitude and was significantly higher in cold temperate zones than in the other climatic zones. The order of soil phytOC storage was tropical (0.23 t ha−1) < middle temperate (0.24 t ha−1) < subtropical (0.27 t ha−1) < cold temperate (1.20 t ha−1). Soil phytolith and phytOC content were significantly negatively correlated with temperature and precipitation. pH, organic matter, and nutrients of soil significantly influenced the formation and accumulation of soil phytoliths. It can provide a scientific basis for the quantitative evaluation of forest soil carbon pool. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

20 pages, 733 KiB  
Article
Energy Optimization in Hotels: Strategies for Efficiency in Hot Water Systems
by Yarelis Valdivia Nodal, Luis Angel Iturralde Carrera, Araceli Zapatero-Gutiérrez, Mario Antonio Álvarez Guerra Plasencia, Royd Reyes Calvo, José M. Álvarez-Alvarado and Juvenal Rodríguez-Reséndiz
Algorithms 2025, 18(6), 301; https://doi.org/10.3390/a18060301 - 22 May 2025
Viewed by 260
Abstract
This paper presents a procedure for the energy optimization of domestic hot water (DHW) systems in hotels located in tropical climates that use centralized air conditioning systems. The study aims to maximize heat recovery from chillers and reduce the fuel consumption of auxiliary [...] Read more.
This paper presents a procedure for the energy optimization of domestic hot water (DHW) systems in hotels located in tropical climates that use centralized air conditioning systems. The study aims to maximize heat recovery from chillers and reduce the fuel consumption of auxiliary heaters by optimizing operational variables such as water mass flow in the primary and secondary DHW circuits and outlet temperature of the backup system. The optimization is implemented using genetic algorithms (GA), which enable the identification of the most efficient flow configurations under variable thermal demand conditions. The proposed methodology integrates a thermoenergetic model validated with real operational data and considers the dynamic behavior of hotel occupancy and water demand. The results show that the optimized strategy reduces auxiliary heating use by up to 75%, achieving annual energy savings of 8244 kWh, equivalent to 2.3 tons of fuel, and preventing the emission of 10.5 tons of CO2. This study contributes to the design of sustainable energy systems in the hospitality sector and provides replicable strategies for similar climatic and operational contexts. Full article
(This article belongs to the Section Combinatorial Optimization, Graph, and Network Algorithms)
Show Figures

Figure 1

16 pages, 6912 KiB  
Article
The Interannual Cyclicity of Precipitation in Xinjiang During the Past 70 Years and Its Contributing Factors
by Wenjie Ma, Xiaokang Liu, Shasha Shang, Zhen Wang, Yuyang Sun, Jian Huang, Mengfei Ma, Meihong Ma and Liangcheng Tan
Atmosphere 2025, 16(5), 629; https://doi.org/10.3390/atmos16050629 - 21 May 2025
Viewed by 147
Abstract
Precipitation cyclicity plays a crucial role in regional water supply and climate predictions. In this study, we used observational data from 34 representative meteorological stations in the Xinjiang region, a major part of inland arid China, to characterize the interannual cyclicity of regional [...] Read more.
Precipitation cyclicity plays a crucial role in regional water supply and climate predictions. In this study, we used observational data from 34 representative meteorological stations in the Xinjiang region, a major part of inland arid China, to characterize the interannual cyclicity of regional precipitation from 1951 to 2021 and analyze its contributing factors. The results indicated that the mean annual precipitation in Xinjiang (MAP_XJ) was dominated by a remarkably increasing trend over the past 70 years, which was superimposed by two bands of interannual cycles of approximately 3 years with explanatory variance of 56.57% (Band I) and 6–7 years with explanatory variance of 23.38% (Band II). This is generally consistent with previous studies on the cyclicity of precipitation in Xinjiang for both seasonal and annual precipitation. We analyzed the North Tropical Atlantic sea-surface temperature (NTASST), El Niño-Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Arctic Oscillation (AO), and Indian Summer Monsoon (ISM) as potential forcing factors that show similar interannual cycles and may contribute to the identified precipitation variability. Two approaches, multivariate linear regression and the Random Forest model, were employed to ascertain the relative significance of each factor influencing Bands I and II, respectively. The multivariate linear regression analysis revealed that the AO index contributed the most to Band I, with a significance score of −0.656, whereas the ENSO index with a one-year lead (ENSO−1yr) played a dominant role in Band II (significance score = 0.457). The Random Forest model also suggested that the AO index exhibited the highest significance score (0.859) for Band I, whereas the AO index with a one-year lead (AO−1yr) had the highest significance score (0.876) for Band II. Overall, our findings highlight the necessity of employing different methods that consider both the linear and non-linear response of climate variability to driving factors crucial for future climate prediction. Full article
(This article belongs to the Special Issue Desert Climate and Environmental Change: From Past to Present)
Show Figures

Figure 1

26 pages, 3068 KiB  
Review
Impact of Climate Change on Schistosomiasis Transmission and Distribution—Scoping Review
by Kwame Kumi Asare, Muhi-Deen Wonwana Mohammed, Yussif Owusu Aboagye, Kathrin Arndts and Manuel Ritter
Int. J. Environ. Res. Public Health 2025, 22(5), 812; https://doi.org/10.3390/ijerph22050812 - 21 May 2025
Viewed by 605
Abstract
Schistosomiasis, a neglected tropical disease caused by parasitic worms of the genus Schistosoma and transmitted through freshwater snails, affects over 200 million people worldwide. Climate change, through rising temperatures, altered rainfall patterns, and extreme weather events, is influencing the distribution and transmission dynamics [...] Read more.
Schistosomiasis, a neglected tropical disease caused by parasitic worms of the genus Schistosoma and transmitted through freshwater snails, affects over 200 million people worldwide. Climate change, through rising temperatures, altered rainfall patterns, and extreme weather events, is influencing the distribution and transmission dynamics of schistosomiasis. This scoping review examines the impact of climate change on schistosomiasis transmission and its implications for disease control. This review aims to synthesize current knowledge on the influence of climate variables (temperature, rainfall, water bodies) on snail populations, transmission dynamics, and the shifting geographic range of schistosomiasis. It also explores the potential effects of climate adaptation policies on disease control. The review follows the Arksey and O’Malley framework and PRISMA-ScR guidelines, including studies published from 2000 to 2024. Eligible studies were selected based on empirical data on climate change, schistosomiasis transmission, and snail dynamics. A two-stage study selection process was followed: title/abstract screening and full-text review. Data were extracted on environmental factors, snail population dynamics, transmission patterns, and climate adaptation strategies. Climate change is expected to increase schistosomiasis transmission in endemic regions like Sub-Saharan Africa, Southeast Asia, and South America, while some areas, such as parts of West Africa, may see reduced risk. Emerging hotspots were identified in regions not currently endemic. Climate adaptation policies, such as improved water management and early warning systems, were found effective in reducing transmission. Integrating climate adaptation strategies into schistosomiasis control programs is critical to mitigating the disease’s spread, particularly in emerging hotspots and shifting endemic areas. Full article
Show Figures

Figure 1

Back to TopTop