Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (528)

Search Parameters:
Keywords = trust attack

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 527 KB  
Article
Block-CITE: A Blockchain-Based Crowdsourcing Interactive Trust Evaluation
by Jiaxing Li, Lin Jiang, Haoxian Liang, Tao Peng, Shaowei Wang and Huanchun Wei
AI 2025, 6(10), 245; https://doi.org/10.3390/ai6100245 - 1 Oct 2025
Abstract
Industrial trademark examination enables users to apply for and manage their trademarks efficiently, promoting industrial and commercial economic development. However, there still exist many challenges, e.g., how to customize a blockchain-based crowdsourcing method for interactive trust evaluation, how to decentralize the functionalities of [...] Read more.
Industrial trademark examination enables users to apply for and manage their trademarks efficiently, promoting industrial and commercial economic development. However, there still exist many challenges, e.g., how to customize a blockchain-based crowdsourcing method for interactive trust evaluation, how to decentralize the functionalities of a centralized entity to nodes in a blockchain network instead of removing the entity directly, how to design a protocol for the method and prove its security, etc. In order to overcome these challenges, in this paper, we propose the Blockchain-based Crowdsourcing Interactive Trust Evaluation (Block-CITE for short) method to improve the efficiency and security of the current industrial trademark management schemes. Specifically, Block-CITE adopts a dual-blockchain structure and a crowdsourcing technique to record operations and store relevant data in a decentralized way. Furthermore, Block-CITE customizes a protocol for blockchain-based crowdsourced industrial trademark examination and algorithms of smart contracts to run the protocol automatically. In addition, Block-CITE analyzes the threat model and proves the security of the protocol. Security analysis shows that Block-CITE is able to defend against the malicious entities and attacks in the blockchain network. Experimental analysis shows that Block-CITE has a higher transaction throughput and lower network latency and storage overhead than the baseline methods. Full article
Show Figures

Figure 1

36 pages, 2113 KB  
Article
Self-Sovereign Identities and Content Provenance: VeriTrust—A Blockchain-Based Framework for Fake News Detection
by Maruf Farhan, Usman Butt, Rejwan Bin Sulaiman and Mansour Alraja
Future Internet 2025, 17(10), 448; https://doi.org/10.3390/fi17100448 - 30 Sep 2025
Abstract
The widespread circulation of digital misinformation exposes a critical shortcoming in prevailing detection strategies, namely, the absence of robust mechanisms to confirm the origin and authenticity of online content. This study addresses this by introducing VeriTrust, a conceptual and provenance-centric framework designed to [...] Read more.
The widespread circulation of digital misinformation exposes a critical shortcoming in prevailing detection strategies, namely, the absence of robust mechanisms to confirm the origin and authenticity of online content. This study addresses this by introducing VeriTrust, a conceptual and provenance-centric framework designed to establish content-level trust by integrating Self-Sovereign Identity (SSI), blockchain-based anchoring, and AI-assisted decentralized verification. The proposed system is designed to operate through three key components: (1) issuing Decentralized Identifiers (DIDs) and Verifiable Credentials (VCs) through Hyperledger Aries and Indy; (2) anchoring cryptographic hashes of content metadata to an Ethereum-compatible blockchain using Merkle trees and smart contracts; and (3) enabling a community-led verification model enhanced by federated learning with future extensibility toward zero-knowledge proof techniques. Theoretical projections, derived from established performance benchmarks, suggest the framework offers low latency and high scalability for content anchoring and minimal on-chain transaction fees. It also prioritizes user privacy by ensuring no on-chain exposure of personal data. VeriTrust redefines misinformation mitigation by shifting from reactive content-based classification to proactive provenance-based verification, forming a verifiable link between digital content and its creator. VeriTrust, while currently at the conceptual and theoretical validation stage, holds promise for enhancing transparency, accountability, and resilience against misinformation attacks across journalism, academia, and online platforms. Full article
(This article belongs to the Special Issue AI and Blockchain: Synergies, Challenges, and Innovations)
Show Figures

Figure 1

17 pages, 1985 KB  
Article
Game-Theoretic Secure Socket Transmission with a Zero Trust Model
by Evangelos D. Spyrou, Vassilios Kappatos and Chrysostomos Stylios
Appl. Sci. 2025, 15(19), 10535; https://doi.org/10.3390/app151910535 - 29 Sep 2025
Abstract
A significant problem in cybersecurity is to accurately detect malicious network activities in real-time by analyzing patterns in socket-level packet transmissions. This challenge involves distinguishing between legitimate and adversarial behaviors while optimizing detection strategies to minimize false alarms and resource costs under intelligent, [...] Read more.
A significant problem in cybersecurity is to accurately detect malicious network activities in real-time by analyzing patterns in socket-level packet transmissions. This challenge involves distinguishing between legitimate and adversarial behaviors while optimizing detection strategies to minimize false alarms and resource costs under intelligent, adaptive attacks. This paper presents a comprehensive framework for network security by modeling socket-level packet transmissions and extracting key features for temporal analysis. A long short-term memory (LSTM)-based anomaly detection system predicts normal traffic behavior and identifies significant deviations as potential cyber threats. Integrating this with a zero trust signaling game, the model updates beliefs about agent legitimacy based on observed signals and anomaly scores. The interaction between defender and attacker is formulated as a Stackelberg game, where the defender optimizes detection strategies anticipating attacker responses. This unified approach combines machine learning and game theory to enable robust, adaptive cybersecurity policies that effectively balance detection performance and resource costs in adversarial environments. Two baselines are considered for comparison. The static baseline applies fixed transmission and defense policies, ignoring anomalies and environmental feedback, and thus serves as a control case of non-reactive behavior. In contrast, the adaptive non-strategic baseline introduces simple threshold-based heuristics that adjust to anomaly scores, allowing limited adaptability without strategic reasoning. The proposed fully adaptive Stackelberg strategy outperforms both partial and discrete adaptive baselines, achieving higher robustness across trust thresholds, superior attacker–defender utility trade-offs, and more effective anomaly mitigation under varying strategic conditions. Full article
(This article belongs to the Special Issue Wireless Networking: Application and Development)
Show Figures

Figure 1

21 pages, 2310 KB  
Article
Development of a Model for Detecting Spectrum Sensing Data Falsification Attack in Mobile Cognitive Radio Networks Integrating Artificial Intelligence Techniques
by Lina María Yara Cifuentes, Ernesto Cadena Muñoz and Rafael Cubillos Sánchez
Algorithms 2025, 18(10), 596; https://doi.org/10.3390/a18100596 - 24 Sep 2025
Viewed by 117
Abstract
Mobile Cognitive Radio Networks (MCRNs) have emerged as a promising solution to address spectrum scarcity by enabling dynamic access to underutilized frequency bands assigned to Primary or Licensed Users (PUs). These networks rely on Cooperative Spectrum Sensing (CSS) to identify available spectrum, but [...] Read more.
Mobile Cognitive Radio Networks (MCRNs) have emerged as a promising solution to address spectrum scarcity by enabling dynamic access to underutilized frequency bands assigned to Primary or Licensed Users (PUs). These networks rely on Cooperative Spectrum Sensing (CSS) to identify available spectrum, but this collaborative approach also introduces vulnerabilities to security threats—most notably, Spectrum Sensing Data Falsification (SSDF) attacks. In such attacks, malicious nodes deliberately report false sensing information, undermining the reliability and performance of the network. This paper investigates the application of machine learning techniques to detect and mitigate SSDF attacks in MCRNs, particularly considering the additional challenges introduced by node mobility. We propose a hybrid detection framework that integrates a reputation-based weighting mechanism with Support Vector Machine (SVM) and K-Nearest Neighbors (KNN) classifiers to improve detection accuracy and reduce the influence of falsified data. Experimental results on software defined radio (SDR) demonstrate that the proposed method significantly enhances the system’s ability to identify malicious behavior, achieving high detection accuracy, reduces the rate of data falsification by approximately 5–20%, increases the probability of attack detection, and supports the dynamic creation of a blacklist to isolate malicious nodes. These results underscore the potential of combining machine learning with trust-based mechanisms to strengthen the security and reliability of mobile cognitive radio networks. Full article
Show Figures

Figure 1

39 pages, 2251 KB  
Article
Real-Time Phishing Detection for Brand Protection Using Temporal Convolutional Network-Driven URL Sequence Modeling
by Marie-Laure E. Alorvor and Sajjad Dadkhah
Electronics 2025, 14(18), 3746; https://doi.org/10.3390/electronics14183746 - 22 Sep 2025
Viewed by 216
Abstract
Phishing, especially brand impersonation attacks, is a critical cybersecurity threat that harms user trust and organization security. This paper establishes a lightweight model for real-time detection that relies on URL-only sequences, addressing limitations for multimodal methods that leverage HTML, images, or metadata. This [...] Read more.
Phishing, especially brand impersonation attacks, is a critical cybersecurity threat that harms user trust and organization security. This paper establishes a lightweight model for real-time detection that relies on URL-only sequences, addressing limitations for multimodal methods that leverage HTML, images, or metadata. This approach is based on a Temporal Convolutional Network with Attention (TCNWithAttention) that utilizes character-level URLs to capture both local and long-range dependencies, while providing interpretability with attention visualization and Shapley additive explanations (SHAP). The model was trained and tested on the balanced GramBeddings dataset (800,000 URLs) and validated on the PhiUSIIL dataset of real-world phishing URLs. The model achieved 97.54% accuracy on the GramBeddings dataset, and 81% recall on the PhiUSIIL dataset. The model demonstrated strong generalization, fast inference, and CPU-only deployability. It outperformed CNN, BiLSTM and BERT baselines. Explanations highlighted phishing indicators, such as deceptive subdomains, brand impersonation, and suspicious tokens. It also affirmed real patterns in the legitimate domains. To our knowledge, a Streamlit application to facilitate single and batch URL analysis and log feedback to maintain usability is the first phishing detection framework to integrate TCN, attention, and SHAP, bridging academic innovation with practical cybersecurity techniques. Full article
(This article belongs to the Special Issue Emerging Technologies for Network Security and Anomaly Detection)
Show Figures

Figure 1

19 pages, 5116 KB  
Article
Development and Evaluation of a Novel IoT Testbed for Enhancing Security with Machine Learning-Based Threat Detection
by Waleed Farag, Xin-Wen Wu, Soundararajan Ezekiel, Drew Rado and Jaylee Lassinger
Sensors 2025, 25(18), 5870; https://doi.org/10.3390/s25185870 - 19 Sep 2025
Viewed by 255
Abstract
The Internet of Things (IoT) has revolutionized industries by enabling seamless data exchange between billions of connected devices. However, the rapid proliferation of IoT devices has introduced significant security challenges, as many of these devices lack robust protection against cyber threats such as [...] Read more.
The Internet of Things (IoT) has revolutionized industries by enabling seamless data exchange between billions of connected devices. However, the rapid proliferation of IoT devices has introduced significant security challenges, as many of these devices lack robust protection against cyber threats such as data breaches and denial-of-service attacks. Addressing these vulnerabilities is critical to maintaining the integrity and trust of IoT ecosystems. Traditional cybersecurity solutions often fail in dynamic, heterogeneous IoT environments due to device diversity, limited computational resources, and inconsistent communication protocols, which hinder the deployment of uniform and scalable security mechanisms. Moreover, there is a notable lack of realistic, high-quality datasets for training and evaluating machine learning (ML) models for IoT security, limiting their effectiveness in detecting complex and evolving threats. This paper presents the development and implementation of a novel physical smart office/home testbed designed to evaluate ML algorithms for detecting and mitigating IoT security vulnerabilities. The testbed replicates a real-world office environment, integrating a variety of IoT devices, such as different types of sensors, cameras, smart plugs, and workstations, within a network generating authentic traffic patterns. By simulating diverse attack scenarios including unauthorized access and network intrusions, the testbed provides a controlled platform to train, test, and validate ML-based anomaly detection systems. Experimental results show that the XGBoost model achieved a balanced accuracy of up to 99.977% on testbed-generated data, comparable to 99.985% on the benchmark IoT-23 dataset. Notably, the SVM model achieved up to 96.71% accuracy using our testbed data, outperforming its results on IoT-23, which peaked at 94.572%. The findings demonstrate the testbed’s effectiveness in enabling realistic security evaluations and ability to generate real-world datasets, highlighting its potential as a valuable tool for advancing IoT security research. This work contributes to the development of more resilient and adaptive security frameworks, offering valuable insights for safeguarding critical IoT infrastructures against evolving threats. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

49 pages, 3209 KB  
Article
SAFE-MED for Privacy-Preserving Federated Learning in IoMT via Adversarial Neural Cryptography
by Mohammad Zubair Khan, Waseem Abbass, Nasim Abbas, Muhammad Awais Javed, Abdulrahman Alahmadi and Uzma Majeed
Mathematics 2025, 13(18), 2954; https://doi.org/10.3390/math13182954 - 12 Sep 2025
Viewed by 780
Abstract
Federated learning (FL) offers a promising paradigm for distributed model training in Internet of Medical Things (IoMT) systems, where patient data privacy and device heterogeneity are critical concerns. However, conventional FL remains vulnerable to gradient leakage, model poisoning, and adversarial inference, particularly in [...] Read more.
Federated learning (FL) offers a promising paradigm for distributed model training in Internet of Medical Things (IoMT) systems, where patient data privacy and device heterogeneity are critical concerns. However, conventional FL remains vulnerable to gradient leakage, model poisoning, and adversarial inference, particularly in privacy-sensitive and resource-constrained medical environments. To address these challenges, we propose SAFE-MED, a secure and adversarially robust framework for privacy-preserving FL tailored for IoMT deployments. SAFE-MED integrates neural encryption, adversarial co-training, anomaly-aware gradient filtering, and trust-weighted aggregation into a unified learning pipeline. The encryption and decryption components are jointly optimized with a simulated adversary under a minimax objective, ensuring high reconstruction fidelity while suppressing inference risk. To enhance robustness, the system dynamically adjusts client influence based on behavioral trust metrics and detects malicious updates using entropy-based anomaly scores. Comprehensive experiments are conducted on three representative medical datasets: Cleveland Heart Disease (tabular), MIT-BIH Arrhythmia (ECG time series), and PhysioNet Respiratory Signals. SAFE-MED achieves near-baseline accuracy with less than 2% degradation, while reducing gradient leakage by up to 85% compared to vanilla FedAvg and over 66% compared to recent neural cryptographic FL baselines. The framework maintains over 90% model accuracy under 20% poisoning attacks and reduces communication cost by 42% relative to homomorphic encryption-based methods. SAFE-MED demonstrates strong scalability, reliable convergence, and practical runtime efficiency across heterogeneous network conditions. These findings validate its potential as a secure, efficient, and deployable FL solution for next-generation medical AI applications. Full article
Show Figures

Figure 1

20 pages, 596 KB  
Article
Novel Actionable Counterfactual Explanations for Intrusion Detection Using Diffusion Models
by Vinura Galwaduge and Jagath Samarabandu
J. Cybersecur. Priv. 2025, 5(3), 68; https://doi.org/10.3390/jcp5030068 - 5 Sep 2025
Viewed by 466
Abstract
Modern network intrusion detection systems (NIDSs) rely on complex deep learning models. However, the “black-box” nature of deep learning methods hinders transparency and trust in predictions, preventing the timely implementation of countermeasures against intrusion attacks. Although explainable AI (XAI) methods provide a solution [...] Read more.
Modern network intrusion detection systems (NIDSs) rely on complex deep learning models. However, the “black-box” nature of deep learning methods hinders transparency and trust in predictions, preventing the timely implementation of countermeasures against intrusion attacks. Although explainable AI (XAI) methods provide a solution to this problem by providing insights into the reasons behind the predictions, the explanations provided by the majority of them cannot be trivially converted into actionable countermeasures. In this work, we propose a novel tabular diffusion-based counterfactual explanation framework that can provide actionable explanations for network intrusion attacks. We evaluated our proposed algorithm against several other publicly available counterfactual explanation algorithms on three modern network intrusion datasets. To the best of our knowledge, this work also presents the first comparative analysis of the existing counterfactual explanation algorithms within the context of NIDSs. Our proposed method provides plausible and diverse counterfactual explanations more efficiently than the tested counterfactual algorithms, reducing the time required to generate explanations. We also demonstrate how the proposed method can provide actionable explanations for NIDSs by summarizing them into a set of actionable global counterfactual rules, which effectively filter out incoming attack queries. This ability of the rules is crucial for efficient intrusion detection and defense mechanisms. We have made our implementation publicly available on GitHub. Full article
(This article belongs to the Collection Machine Learning and Data Analytics for Cyber Security)
Show Figures

Figure 1

43 pages, 1021 KB  
Review
A Survey of Cross-Layer Security for Resource-Constrained IoT Devices
by Mamyr Altaibek, Aliya Issainova, Tolegen Aidynov, Daniyar Kuttymbek, Gulsipat Abisheva and Assel Nurusheva
Appl. Sci. 2025, 15(17), 9691; https://doi.org/10.3390/app15179691 - 3 Sep 2025
Viewed by 878
Abstract
Low-power microcontrollers, wireless sensors, and embedded gateways form the backbone of many Internet of Things (IoT) deployments. However, their limited memory, constrained energy budgets, and lack of standardized firmware make them attractive targets for diverse attacks, including bootloader backdoors, hardcoded keys, unpatched CVE [...] Read more.
Low-power microcontrollers, wireless sensors, and embedded gateways form the backbone of many Internet of Things (IoT) deployments. However, their limited memory, constrained energy budgets, and lack of standardized firmware make them attractive targets for diverse attacks, including bootloader backdoors, hardcoded keys, unpatched CVE exploits, and code-reuse attacks, while traditional single-layer defenses are insufficient as they often assume abundant resources. This paper presents a Systematic Literature Review (SLR) conducted according to the PRISMA 2020 guidelines, covering 196 peer-reviewed studies on cross-layer security for resource-constrained IoT and Industrial IoT environments, and introduces a four-axis taxonomy—system level, algorithmic paradigm, data granularity, and hardware budget—to structure and compare prior work. At the firmware level, we analyze static analysis, symbolic execution, and machine learning-based binary similarity detection that operate without requiring source code or a full runtime; at the network and behavioral levels, we review lightweight and graph-based intrusion detection systems (IDS), including single-packet authorization, unsupervised anomaly detection, RF spectrum monitoring, and sensor–actuator anomaly analysis bridging cyber-physical security; and at the policy level, we survey identity management, micro-segmentation, and zero-trust enforcement mechanisms supported by blockchain-based authentication and programmable policy enforcement points (PEPs). Our review identifies current strengths, limitations, and open challenges—including scalable firmware reverse engineering, efficient cross-ISA symbolic learning, and practical spectrum anomaly detection under constrained computing environments—and by integrating diverse security layers within a unified taxonomy, this SLR highlights both the state-of-the-art and promising research directions for advancing IoT security. Full article
Show Figures

Figure 1

24 pages, 1689 KB  
Article
Safeguarding Brand and Platform Credibility Through AI-Based Multi-Model Fake Profile Detection
by Vishwas Chakranarayan, Fadheela Hussain, Fayzeh Abdulkareem Jaber, Redha J. Shaker and Ali Rizwan
Future Internet 2025, 17(9), 391; https://doi.org/10.3390/fi17090391 - 29 Aug 2025
Cited by 1 | Viewed by 559
Abstract
The proliferation of fake profiles on social media presents critical cybersecurity and misinformation challenges, necessitating robust and scalable detection mechanisms. Such profiles weaken consumer trust, reduce user engagement, and ultimately harm brand reputation and platform credibility. As adversarial tactics and synthetic identity generation [...] Read more.
The proliferation of fake profiles on social media presents critical cybersecurity and misinformation challenges, necessitating robust and scalable detection mechanisms. Such profiles weaken consumer trust, reduce user engagement, and ultimately harm brand reputation and platform credibility. As adversarial tactics and synthetic identity generation evolve, traditional rule-based and machine learning approaches struggle to detect evolving and deceptive behavioral patterns embedded in dynamic user-generated content. This study aims to develop an AI-driven, multi-modal deep learning-based detection system for identifying fake profiles that fuses textual, visual, and social network features to enhance detection accuracy. It also seeks to ensure scalability, adversarial robustness, and real-time threat detection capabilities suitable for practical deployment in industrial cybersecurity environments. To achieve these objectives, the current study proposes an integrated AI system that combines the Robustly Optimized BERT Pretraining Approach (RoBERTa) for deep semantic textual analysis, ConvNeXt for high-resolution profile image verification, and Heterogeneous Graph Attention Networks (Hetero-GAT) for modeling complex social interactions. The extracted features from all three modalities are fused through an attention-based late fusion strategy, enhancing interpretability, robustness, and cross-modal learning. Experimental evaluations on large-scale social media datasets demonstrate that the proposed RoBERTa-ConvNeXt-HeteroGAT model significantly outperforms baseline models, including Support Vector Machine (SVM), Random Forest, and Long Short-Term Memory (LSTM). Performance achieves 98.9% accuracy, 98.4% precision, and a 98.6% F1-score, with a per-profile speed of 15.7 milliseconds, enabling real-time applicability. Moreover, the model proves to be resilient against various types of attacks on text, images, and network activity. This study advances the application of AI in cybersecurity by introducing a highly interpretable, multi-modal detection system that strengthens digital trust, supports identity verification, and enhances the security of social media platforms. This alignment of technical robustness with brand trust highlights the system’s value not only in cybersecurity but also in sustaining platform credibility and consumer confidence. This system provides practical value to a wide range of stakeholders, including platform providers, AI researchers, cybersecurity professionals, and public sector regulators, by enabling real-time detection, improving operational efficiency, and safeguarding online ecosystems. Full article
Show Figures

Figure 1

7 pages, 182 KB  
Proceeding Paper
Evaluation of AI Models for Phishing Detection Using Open Datasets
by Nur Aniyansyah, Rina Rina, Sarah Puspitasari and Adhitia Erfina
Eng. Proc. 2025, 107(1), 37; https://doi.org/10.3390/engproc2025107037 - 28 Aug 2025
Viewed by 446
Abstract
Phishing is a form of cyber-attack that aims to steal sensitive information by impersonating a trusted entity. To overcome this threat, various artificial intelligence (AI) methods have been developed to improve the effectiveness of phishing detection. This study evaluates three machine learning models, [...] Read more.
Phishing is a form of cyber-attack that aims to steal sensitive information by impersonating a trusted entity. To overcome this threat, various artificial intelligence (AI) methods have been developed to improve the effectiveness of phishing detection. This study evaluates three machine learning models, namely Decision Tree (DT), Random Forest (RF), and Support Vector Machine (SVM), using an open dataset containing phishing and non-phishing URLs. The research process includes data preprocessing stages such as cleaning, normalization, categorical feature encoding, feature selection, and dividing the dataset into training and test data. The trained models are then evaluated using accuracy, precision, recall, F1-score, and comparison score metrics to determine the best model in phishing classification. The evaluation results show that the Random Forest model has the best performance with higher accuracy and generalization of 98.64% compared to Decision Tree which is only 98.37% and SVM 92.67%. Decision Tree has advantages in speed and interpretability but is susceptible to overfitting. SVM shows good performance on high-dimensional datasets but is less efficient in computing time. Based on the research results, Random Forest is recommended as the most optimal model for machine learning-based phishing detection. Full article
37 pages, 1347 KB  
Systematic Review
Threat Modeling and Attacks on Digital Twins of Vehicles: A Systematic Literature Review
by Uzair Muzamil Shah, Daud Mustafa Minhas, Kashif Kifayat, Khizar Ali Shah and Georg Frey
Smart Cities 2025, 8(5), 142; https://doi.org/10.3390/smartcities8050142 - 28 Aug 2025
Viewed by 493
Abstract
This systematic literature review pioneers the synthesis of cybersecurity challenges for automotive digital twins (DTs), a critical yet underexplored frontier in connected vehicle security. The notion of digital twins, which act as simulated counterparts to real-world systems, is revolutionizing secure system design within [...] Read more.
This systematic literature review pioneers the synthesis of cybersecurity challenges for automotive digital twins (DTs), a critical yet underexplored frontier in connected vehicle security. The notion of digital twins, which act as simulated counterparts to real-world systems, is revolutionizing secure system design within the automotive sector. As contemporary vehicles become more dependent on interconnected electronic systems, the likelihood of cyber threats is escalating. This comprehensive literature review seeks to analyze existing research on threat modeling and security testing in automotive digital twins, aiming to pinpoint emerging patterns, evaluate current approaches, and identify future research avenues. Guided by the PRISMA framework, we rigorously analyze 23 studies from 882 publications to address three research questions: (1) How are threats to automotive DTs identified and assessed? (2) What methodologies drive threat modeling? Lastly, (3) what techniques validate threat models and simulate attacks? The novelty of this study lies in its structured classification of digital twin types (physics based, data driven, hybrid), its inclusion of a groundbreaking threat taxonomy across architectural layers (e.g., ECU tampering, CAN-Bus spoofing), the integration of the 5C taxonomy with layered architectures for DT security testing, and its analysis of domain-specific tools such as VehicleLang and embedded intrusion detection systems. The findings expose significant deficiencies in the strength and validation of threat models, highlighting the necessity for more adaptable and comprehensive testing methods. By exposing gaps in scalability, trust, and safety, and proposing actionable solutions aligned with UNECE R155, this SLR delivers a robust framework to advance secure DT development, empowering researchers and industry to fortify vehicle resilience against evolving cyber threats. Full article
35 pages, 1263 KB  
Review
Blockchain for Security in Digital Twins
by Rahanatu Suleiman, Akshita Maradapu Vera Venkata Sai, Wei Yu and Chenyu Wang
Future Internet 2025, 17(9), 385; https://doi.org/10.3390/fi17090385 - 27 Aug 2025
Viewed by 778
Abstract
Digital Twins (DTs) have become essential tools for improving efficiency, security, and decision-making across various industries. DTs enable deeper insight and more informed decision-making through the creation of virtual replicas of physical entities. However, they face privacy and security risks due to their [...] Read more.
Digital Twins (DTs) have become essential tools for improving efficiency, security, and decision-making across various industries. DTs enable deeper insight and more informed decision-making through the creation of virtual replicas of physical entities. However, they face privacy and security risks due to their real-time connectivity, making them vulnerable to cyber attacks. These attacks can lead to data breaches, disrupt operations, and cause communication delays, undermining system reliability. To address these risks, integrating advanced security frameworks such as blockchain technology offers a promising solution. Blockchains’ decentralized, tamper-resistant architecture enhances data integrity, transparency, and trust in DT environments. This paper examines security vulnerabilities associated with DTs and explores blockchain-based solutions to mitigate these challenges. A case study is presented involving how blockchain-based DTs can facilitate secure, decentralized data sharing between autonomous connected vehicles and traffic infrastructure. This integration supports real-time vehicle tracking, collision avoidance, and optimized traffic flow through secure data exchange between the DTs of vehicles and traffic lights. The study also reviews performance metrics for evaluating blockchain and DT systems and outlines future research directions. By highlighting the collaboration between blockchain and DTs, the paper proposes a pathway towards building more resilient, secure, and intelligent digital ecosystems for critical applications. Full article
Show Figures

Figure 1

24 pages, 4012 KB  
Article
Copyright Protection and Trusted Transactions for 3D Models Based on Smart Contracts and Zero-Watermarking
by Ruigang Nan, Liming Zhang, Jianing Xie, Yan Jin, Tao Tan, Shuaikang Liu and Haoran Wang
ISPRS Int. J. Geo-Inf. 2025, 14(8), 317; https://doi.org/10.3390/ijgi14080317 - 20 Aug 2025
Viewed by 584
Abstract
With the widespread application of 3D models derived from oblique photography, the need for copyright protection and trusted transactions has risen significantly. Traditional transactions often depend on third parties, making it difficult to balance copyright protection with transaction credibility and to safeguard the [...] Read more.
With the widespread application of 3D models derived from oblique photography, the need for copyright protection and trusted transactions has risen significantly. Traditional transactions often depend on third parties, making it difficult to balance copyright protection with transaction credibility and to safeguard the rights and interests of both parties. To address these challenges, this paper proposes a novel trusted-transaction scheme that integrates smart contracts with zero-watermarking technology. Firstly, the skewness of the oblique-photography 3D model data is employed to construct a zero-watermark identifier, which is stored in the InterPlanetary File System (IPFS) alongside encrypted data for trading. Secondly, smart contracts are designed and deployed. Lightweight information, such as IPFS data addresses, is uploaded to the blockchain by invoking these contracts, and transactions are conducted accordingly. Finally, the blockchain system automatically records the transaction process and results on-chain, providing verifiable transaction evidence. The experimental results show that the proposed zero-watermarking algorithm resists common attacks. The trusted-transaction framework not only ensures the traceability and trustworthiness of the entire transaction process but also safeguards the rights of both parties. This approach effectively protects copyright while ensuring the reliability of the transactions. Full article
Show Figures

Figure 1

29 pages, 1386 KB  
Article
A Hybrid Zero Trust Deployment Model for Securing O-RAN Architecture in 6G Networks
by Max Hashem Eiza, Brian Akwirry, Alessandro Raschella, Michael Mackay and Mukesh Kumar Maheshwari
Future Internet 2025, 17(8), 372; https://doi.org/10.3390/fi17080372 - 18 Aug 2025
Viewed by 570
Abstract
The evolution toward sixth generation (6G) wireless networks promises higher performance, greater flexibility, and enhanced intelligence. However, it also introduces a substantially enlarged attack surface driven by open, disaggregated, and multi-vendor Open RAN (O-RAN) architectures that will be utilised in 6G networks. This [...] Read more.
The evolution toward sixth generation (6G) wireless networks promises higher performance, greater flexibility, and enhanced intelligence. However, it also introduces a substantially enlarged attack surface driven by open, disaggregated, and multi-vendor Open RAN (O-RAN) architectures that will be utilised in 6G networks. This paper addresses the urgent need for a practical Zero Trust (ZT) deployment model tailored to O-RAN specification. To do so, we introduce a novel hybrid ZT deployment model that establishes the trusted foundation for AI/ML-driven security in O-RAN, integrating macro-level enclave segmentation with micro-level application sandboxing for xApps/rApps. In our model, the Policy Decision Point (PDP) centrally manages dynamic policies, while distributed Policy Enforcement Points (PEPs) reside in logical enclaves, agents, and gateways to enable per-session, least-privilege access control across all O-RAN interfaces. We demonstrate feasibility via a Proof of Concept (PoC) implemented with Kubernetes and Istio and based on the NIST Policy Machine (PM). The PoC illustrates how pods can represent enclaves and sidecar proxies can embody combined agent/gateway functions. Performance discussion indicates that enclave-based deployment adds 1–10 ms of additional per-connection latency while CPU/memory overhead from running a sidecar proxy per enclave is approximately 5–10% extra utilisation, with each proxy consuming roughly 100–200 MB of RAM. Full article
(This article belongs to the Special Issue Secure and Trustworthy Next Generation O-RAN Optimisation)
Show Figures

Figure 1

Back to TopTop