Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (83)

Search Parameters:
Keywords = trust fault

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 5563 KB  
Review
Beyond the Sensor: A Systematic Review of AI’s Role in Next-Generation Machine Health Monitoring
by Fahim Sufi
Appl. Sci. 2025, 15(19), 10494; https://doi.org/10.3390/app151910494 - 28 Sep 2025
Abstract
This systematic literature review addresses the critical challenge of ensuring robustness and adaptability in AI-based machine health monitoring (MHM) systems. While the field has seen a surge in research, a significant gap exists in understanding how to effectively manage data scarcity, unknown fault [...] Read more.
This systematic literature review addresses the critical challenge of ensuring robustness and adaptability in AI-based machine health monitoring (MHM) systems. While the field has seen a surge in research, a significant gap exists in understanding how to effectively manage data scarcity, unknown fault types, and the integration of diverse data streams for real-world industrial applications. The problem is magnified by the rarity of failure events, which leads to imbalanced datasets and hampers the generalizability of predictive models. To synthesize the current state of research and identify key solutions, we followed a rigorous, modified PRISMA methodology. A comprehensive search across Scopus, IEEE Xplore, Web of Science, and Litmaps initially yielded 3235 records. After a multi-stage screening process, a final corpus of 85 peer-reviewed studies was selected. Data were extracted and synthesized based on a thematic framework of 13 core research questions. A bibliometric analysis was also conducted to quantify publication trends and research focus areas. The analysis reveals a rapid increase in research, with publications growing from 1 in 2018 to 35 in 2025. Key findings highlight the adoption of transfer learning and generative AI to combat data scarcity, with multimodal data fusion emerging as a crucial strategy for enhancing diagnostic accuracy. The most active research themes were found to be Predictive Maintenance and Edge Computing, with 12 and 10 references, respectively, while critical areas like standardization remain under-explored. Overall, this review shows that AI benefits machine health monitoring but still faces challenges in reproducibility, benchmarking, and large-scale validation. Its main limitation is the focus on English peer-reviewed studies, excluding industry reports and non-English work. Future research should develop standardized datasets, energy-efficient edge AI, and socio-technical frameworks for trust and transparency. The study offers a structured overview, a roadmap for future work, and underscores the importance of AI in Industry 4.0. Full article
(This article belongs to the Special Issue AI-Based Machinery Health Monitoring)
Show Figures

Figure 1

24 pages, 4296 KB  
Article
VST-YOLOv8: A Trustworthy and Secure Defect Detection Framework for Industrial Gaskets
by Lei Liang and Junming Chen
Electronics 2025, 14(19), 3760; https://doi.org/10.3390/electronics14193760 - 23 Sep 2025
Viewed by 111
Abstract
The surface quality of industrial gaskets directly impacts sealing performance, operational reliability, and market competitiveness. Inadequate or unreliable defect detection in silicone gaskets can lead to frequent maintenance, undetected faults, and security risks in downstream systems. This paper presents VST-YOLOv8, a trustworthy and [...] Read more.
The surface quality of industrial gaskets directly impacts sealing performance, operational reliability, and market competitiveness. Inadequate or unreliable defect detection in silicone gaskets can lead to frequent maintenance, undetected faults, and security risks in downstream systems. This paper presents VST-YOLOv8, a trustworthy and secure defect detection framework built upon an enhanced YOLOv8 architecture. To address the limitations of C2F feature extraction in the traditional YOLOv8 backbone, we integrate the lightweight Mobile Vision Transformer v2 (ViT v2) to improve global feature representation while maintaining interpretability. For real-time industrial deployment, we incorporate the Gating-Structured Convolution (GSConv) module, which adaptively adjusts convolution kernels to emphasize features of different shapes, ensuring stable detection under varying production conditions. A Slim-neck structure reduces parameter count and computational complexity without sacrificing accuracy, contributing to robustness against performance degradation. Additionally, the Triplet Attention mechanism combines channel, spatial, and fine-grained attention to enhance feature discrimination, improving reliability in challenging visual environments. Experimental results show that VST-YOLOv8 achieves higher accuracy and recall compared to the baseline YOLOv8, while maintaining low latency suitable for edge deployment. When integrated with secure industrial control systems, the proposed framework supports authenticated, tamper-resistant detection pipelines, ensuring both operational efficiency and data integrity in real-world production. These contributions strengthen trust in AI-driven quality inspection, making the system suitable for safety-critical manufacturing processes. Full article
Show Figures

Figure 1

18 pages, 16080 KB  
Article
Trust Evaluation Framework for Adaptive Load Optimization in Motor Drive System
by Ali Arsalan, Behnaz Papari, Grace Karimi Muriithi, Asif Ahmed Khan, Gokhan Ozkan and Christopher Shannon Edrington
Electronics 2025, 14(18), 3697; https://doi.org/10.3390/electronics14183697 - 18 Sep 2025
Viewed by 238
Abstract
Electric drive systems (EDSs) are vital for automotive and industrial applications but remain highly vulnerable to cyber and physical anomalies (CPAs), such as inverter open-circuit faults, sensor failures, and malicious cyberattacks. Ensuring reliable EDS operation requires the controller to receive accurate and uncompromised [...] Read more.
Electric drive systems (EDSs) are vital for automotive and industrial applications but remain highly vulnerable to cyber and physical anomalies (CPAs), such as inverter open-circuit faults, sensor failures, and malicious cyberattacks. Ensuring reliable EDS operation requires the controller to receive accurate and uncompromised feedback and reference signals continuously. However, many existing data-driven detection and mitigation strategies rely on large training datasets, impose significant computational overhead, and often lose effectiveness under various abnormal operating conditions. To overcome these limitations, this paper introduces a trust evaluation framework that continuously assesses the reliability of all incoming signals to the EDS controller by combining behavioral analysis with historical reliability records. The proposed scheme offers a lightweight and model-independent approach, enabling reliable, adaptive decision-making by leveraging both current and historical signal behavior. To this end, this paper further integrates the resulting trust values into a torque-split optimization algorithm, enabling adaptive load optimization by dynamically reducing the torque contribution of motors operating under abnormal or low-trust conditions, thereby demonstrating clear applicability for automotive drive systems. The framework is validated in a real-time OPAL-RT environment across multiple CPA scenarios, demonstrating accurate anomaly detection and adaptive torque redistribution. Owing to its simplicity and versatility, the proposed method can be readily extended to other safety-critical drive applications. Full article
(This article belongs to the Special Issue Innovations in Intelligent Microgrid Operation and Control)
Show Figures

Figure 1

25 pages, 5313 KB  
Article
An Interpretable Hybrid Fault Prediction Framework Using XGBoost and a Probabilistic Graphical Model for Predictive Maintenance: A Case Study in Textile Manufacturing
by Fernando Velasco-Loera, Mildreth Alcaraz-Mejia and Jose L. Chavez-Hurtado
Appl. Sci. 2025, 15(18), 10164; https://doi.org/10.3390/app151810164 - 18 Sep 2025
Cited by 1 | Viewed by 358
Abstract
This paper proposes a hybrid predictive maintenance framework that combines the discriminative power of XGBoost with the interpretability of a Bayesian Network automatically learned from sensor data. Targeted at textile manufacturing equipment operating under Industry 4.0 conditions, the system addresses the trade-off between [...] Read more.
This paper proposes a hybrid predictive maintenance framework that combines the discriminative power of XGBoost with the interpretability of a Bayesian Network automatically learned from sensor data. Targeted at textile manufacturing equipment operating under Industry 4.0 conditions, the system addresses the trade-off between early fault detection and decision transparency. Sensor data, including vibration, temperature, and electric current, were collected from a multi-needle quilting machine using a custom IoT-based platform. A degradation-aware labeling scheme was implemented using historical maintenance logs to assign semantic labels to sensor readings. A Bayesian Network structure was learned from this data via a Hill Climbing algorithm optimized with the Bayesian Information Criterion, capturing interpretable causal dependencies. In parallel, an XGBoost model was trained to improve classification accuracy for incipient faults. Experimental results demonstrate that XGBoost achieved an F1-score of 0.967 on the high-degradation class, outperforming the Bayesian model in raw accuracy. However, the Bayesian Network provided transparent probabilistic reasoning and root cause explanation capabilities—essential for operator trust and human-in-the-loop diagnostics. The integration of both models yields a robust and interpretable solution for predictive maintenance, enabling early alerts, visual diagnostics, and scalable deployment. The proposed architecture is validated in a real production line and demonstrates the practical value of hybrid AI systems in bridging performance and interpretability for predictive maintenance in Industry 4.0 environments. Full article
Show Figures

Figure 1

23 pages, 1898 KB  
Article
A Container-Native IAM Framework for Secure Green Mobility: A Case Study with Keycloak and Kubernetes
by Alexandre Sousa, Frederico Branco, Arsénio Reis and Manuel J. C. S. Reis
Information 2025, 16(9), 802; https://doi.org/10.3390/info16090802 - 15 Sep 2025
Viewed by 199
Abstract
The rapid adoption of green mobility solutions—such as electric-vehicle sharing and intelligent transportation systems—has accelerated the integration of Internet of Things (IoT) technologies, introducing complex security and performance challenges. While conceptual Identity and Access Management (IAM) frameworks exist, few are empirically validated for [...] Read more.
The rapid adoption of green mobility solutions—such as electric-vehicle sharing and intelligent transportation systems—has accelerated the integration of Internet of Things (IoT) technologies, introducing complex security and performance challenges. While conceptual Identity and Access Management (IAM) frameworks exist, few are empirically validated for the scale, heterogeneity, and real-time demands of modern mobility ecosystems. This work presents a data-backed, container-native reference architecture for secure and resilient Authentication, Authorization, and Accounting (AAA) in green mobility environments. The framework integrates Keycloak within a Kubernetes-orchestrated infrastructure and applies Zero Trust and defense-in-depth principles. Effectiveness is demonstrated through rigorous benchmarking across latency, throughput, memory footprint, and automated fault recovery. Compared to a monolithic baseline, the proposed architecture achieves over 300% higher throughput, 90% faster startup times, and 75% lower idle memory usage while enabling full service restoration in under one minute. This work establishes a validated deployment blueprint for IAM in IoT-driven transportation systems, offering a practical foundation for a secure and scalable mobility infrastructure. Full article
Show Figures

Figure 1

30 pages, 2870 KB  
Article
Hybrid Explainable AI Framework for Predictive Maintenance of Aeration Systems in Wastewater Treatment Plants
by Daniel Voipan, Andreea Elena Voipan and Marian Barbu
Water 2025, 17(17), 2636; https://doi.org/10.3390/w17172636 - 6 Sep 2025
Viewed by 940
Abstract
Aeration systems are among the most energy-intensive components of wastewater treatment plants (WWTPs), consuming up to 75% of total electricity while being prone to performance degradation caused by diffuser fouling and pressure losses. Traditional maintenance strategies are largely reactive or preventive, leading to [...] Read more.
Aeration systems are among the most energy-intensive components of wastewater treatment plants (WWTPs), consuming up to 75% of total electricity while being prone to performance degradation caused by diffuser fouling and pressure losses. Traditional maintenance strategies are largely reactive or preventive, leading to inefficient interventions, higher operational costs, and limited fault anticipation. This study addresses the need for an advanced predictive maintenance framework capable of early detection and differentiation of multiple aeration system faults. Using the Benchmark Simulation Model No. 2 (BSM2), two representative degradation scenarios—acute airflow pressure loss and chronic diffuser fouling—were simulated to generate a labeled dataset. A hybrid machine learning approach was developed, combining Random Forest-based feature selection with Long Short-Term Memory (LSTM) neural networks for temporal, multi-label fault classification. To enhance interpretability and operator trust, SHapley Additive exPlanations (SHAP) were applied to quantify feature contributions and provide transparent model predictions. The results show that the proposed framework achieves over 94% detection accuracy and provides early warnings compared to static threshold-based methods. The integration of explainable AI ensures actionable insights for maintenance planning. This approach supports more energy-efficient, reliable, and sustainable operation of WWTP aeration systems and offers a benchmark methodology for future predictive maintenance research. Full article
(This article belongs to the Special Issue AI, Machine Learning and Digital Twin Applications in Water)
Show Figures

Figure 1

44 pages, 4243 KB  
Review
AI-Powered Building Ecosystems: A Narrative Mapping Review on the Integration of Digital Twins and LLMs for Proactive Comfort, IEQ, and Energy Management
by Bibars Amangeldy, Nurdaulet Tasmurzayev, Timur Imankulov, Zhanel Baigarayeva, Nurdaulet Izmailov, Tolebi Riza, Abdulaziz Abdukarimov, Miras Mukazhan and Bakdaulet Zhumagulov
Sensors 2025, 25(17), 5265; https://doi.org/10.3390/s25175265 - 24 Aug 2025
Cited by 1 | Viewed by 1861
Abstract
Artificial intelligence (AI) is now the computational core of smart building automation, acting across the entire cyber–physical stack. This review surveys peer-reviewed work on the integration of AI with indoor environmental quality (IEQ) and energy performance, distinguishing itself by presenting a holistic synthesis [...] Read more.
Artificial intelligence (AI) is now the computational core of smart building automation, acting across the entire cyber–physical stack. This review surveys peer-reviewed work on the integration of AI with indoor environmental quality (IEQ) and energy performance, distinguishing itself by presenting a holistic synthesis of the complete technological evolution from IoT sensors to generative AI. We uniquely frame this progression within a human-centric architecture that integrates digital twins of both the building (DT-B) and its occupants (DT-H), providing a forward-looking perspective on occupant comfort and energy management. We find that deep reinforcement learning (DRL) agents, often developed within physics-calibrated digital twins, reduce annual HVAC demand by 10–35% while maintaining an operative temperature within ±0.5 °C and CO2 below 800 ppm. These comfort and IAQ targets are consistent with ASHRAE Standard 55 (thermal environmental conditions) and ASHRAE Standard 62.1 (ventilation for acceptable indoor air quality); keeping the operative temperature within ±0.5 °C of the setpoint and indoor CO2 near or below ~800 ppm reflects commonly adopted control tolerances and per-person outdoor air supply objectives. Regarding energy impacts, simulation studies commonly report higher double-digit reductions, whereas real building deployments typically achieve single- to low-double-digit savings; we therefore report simulation and field results separately. Supervised learners, including gradient boosting and various neural networks, achieve 87–97% accuracy for short-term load, comfort, and fault forecasting. Furthermore, unsupervised models successfully mine large-scale telemetry for anomalies and occupancy patterns, enabling adaptive ventilation that can cut sick building complaints by 40%. Despite these gains, deployment is hindered by fragmented datasets, interoperability issues between legacy BAS and modern IoT devices, and the computer energy and privacy–security costs of large models. The key research priorities include (1) open, high-fidelity IEQ benchmarks; (2) energy-aware, on-device learning architectures; (3) privacy-preserving federated frameworks; (4) hybrid, physics-informed models to win operator trust. Addressing these challenges is pivotal for scaling AI from isolated pilots to trustworthy, human-centric building ecosystems. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

29 pages, 1620 KB  
Article
A Multi-Layer Quantum-Resilient IoT Security Architecture Integrating Uncertainty Reasoning, Relativistic Blockchain, and Decentralised Storage
by Gerardo Iovane
Appl. Sci. 2025, 15(16), 9218; https://doi.org/10.3390/app15169218 - 21 Aug 2025
Viewed by 641
Abstract
The rapid development of the Internet of Things (IoT) has enabled the implementation of interconnected intelligent systems in extremely dynamic contexts with limited resources. However, traditional paradigms, such as those using ECC-based heuristics and centralised decision-making frameworks, cannot be modernised to ensure resilience, [...] Read more.
The rapid development of the Internet of Things (IoT) has enabled the implementation of interconnected intelligent systems in extremely dynamic contexts with limited resources. However, traditional paradigms, such as those using ECC-based heuristics and centralised decision-making frameworks, cannot be modernised to ensure resilience, scalability and security while taking quantum threats into account. In this case, we propose a modular architecture that integrates quantum-inspired cryptography (QI), epistemic uncertainty reasoning, the multiscale blockchain MuReQua, and the quantum-inspired decentralised storage engine (DeSSE) with fragmented entropy storage. Each component addresses specific cybersecurity weaknesses of IoT devices: quantum-resistant communication on epistemic agents that facilitate cognitive decision-making under uncertainty, lightweight adaptive consensus provided by MuReQua, and fragmented entropy storage provided by DeSSE. Tested through simulations and use case analyses in industrial, healthcare and automotive networks, the architecture shows exceptional latency, decision accuracy and fault tolerance compared to conventional solutions. Furthermore, its modular nature allows for incremental integration and domain-specific customisation. By adding reasoning, trust and quantum security, it is possible to design intelligent decentralised architectures for resilient IoT ecosystems, thereby strengthening system defences alongside architectures. In turn, this work offers a specific architectural response and a broader perspective on secure decentralised computing, even for the imminent advent of quantum computers. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

15 pages, 1020 KB  
Article
On-Chain/Off-Chain Adaptive Low-Latency Network Communication Technology with High Security and Regulatory Compliance
by Yu Jin, Daming Huang and Chen Tian
Appl. Sci. 2025, 15(16), 8880; https://doi.org/10.3390/app15168880 - 12 Aug 2025
Viewed by 624
Abstract
The rapid advancement of blockchain technology has introduced a new paradigm for constructing trusted digital economic infrastructure. However, its large-scale adoption remains constrained by dual challenges: on-chain and off-chain communication efficiency and security assurance. This paper addresses the universal demands of blockchain in [...] Read more.
The rapid advancement of blockchain technology has introduced a new paradigm for constructing trusted digital economic infrastructure. However, its large-scale adoption remains constrained by dual challenges: on-chain and off-chain communication efficiency and security assurance. This paper addresses the universal demands of blockchain in complex application scenarios by proposing a low-latency, high-security, adaptive, and regulatory-compliant network communication technology bridging on-chain and off-chain systems. A hierarchical “device–edge–chain” communication architecture based on edge gateways is designed to address the critical challenge of achieving one-second on-chain processing for tens of millions of data entries. Experimental validation demonstrates that the system sustains transaction throughput at the scale of at least 10 million while consistently maintaining sub-second latency thresholds. Furthermore, implemented fault tolerance mechanisms ensure reliable operation through dynamic path switching and capacity-aware load redistribution. This architecture systematically resolves the performance–security–regulatory compliance trilemma inherent in conventional blockchain systems deployed within complex real-world environments. Full article
Show Figures

Figure 1

27 pages, 2276 KB  
Review
Fault Detection of Li–Ion Batteries in Electric Vehicles: A Comprehensive Review
by Heng Li, Hamza Shaukat, Ren Zhu, Muaaz Bin Kaleem and Yue Wu
Sustainability 2025, 17(14), 6322; https://doi.org/10.3390/su17146322 - 10 Jul 2025
Viewed by 1958
Abstract
Lithium–ion (Li–ion) batteries are fundamental for advancing intelligent and sustainable transportation, particularly in electric vehicles, due to their long lifespan, high energy density, and strong power efficiency. Ensuring the safety and reliability of EV batteries remains a critical challenge, as undetected faults can [...] Read more.
Lithium–ion (Li–ion) batteries are fundamental for advancing intelligent and sustainable transportation, particularly in electric vehicles, due to their long lifespan, high energy density, and strong power efficiency. Ensuring the safety and reliability of EV batteries remains a critical challenge, as undetected faults can lead to hazardous failures or gradual performance degradation. While numerous studies have addressed battery fault detection, most existing reviews adopt isolated perspectives, often overlooking interdisciplinary and intelligent approaches. This paper presents a comprehensive review of advanced battery fault detection using modern machine learning, deep learning, and hybrid methods. It also discusses the pressing challenges in the field, including limited fault data, real-time processing constraints, model adaptability across battery types, and the need for explainable AI. Furthermore, emerging AI approaches such as transformers, graph neural networks, physics-informed models, edge computing, and large language models present new opportunities for intelligent and scalable battery fault detection. Looking ahead, these frameworks, combined with AI-driven strategies, can enhance diagnostic precision, extend battery life, and strengthen safety while enabling proactive fault prevention and building trust in EV systems. Full article
Show Figures

Figure 1

23 pages, 2708 KB  
Article
Strategizing Artificial Intelligence Transformation in Smart Ports: Lessons from Busan’s Resilient AI Governance Model
by Jeong-min Lee, Min-seop Sim, Yul-seong Kim, Ha-ram Lim and Chang-hee Lee
J. Mar. Sci. Eng. 2025, 13(7), 1276; https://doi.org/10.3390/jmse13071276 - 30 Jun 2025
Cited by 1 | Viewed by 1836
Abstract
The global port and maritime industry is experiencing a new paradigm shift known as the artificial intelligence transformation (AX). Thus, domestic container-terminal companies should focus beyond mere automation to a paradigm shift in AI that encompasses operational strategy, organizational structure, system, and human [...] Read more.
The global port and maritime industry is experiencing a new paradigm shift known as the artificial intelligence transformation (AX). Thus, domestic container-terminal companies should focus beyond mere automation to a paradigm shift in AI that encompasses operational strategy, organizational structure, system, and human resource management. This study proposes a resilience-based AX strategy and implementation system that allows domestic container-terminal companies to proactively respond to the upcoming changes in the global supply chain, thus securing sustainable competitiveness. In particular, we aim to design an AI-based governance model to establish a trust-based logistics supply chain (trust value chain). As a research method, the core risk factors of AX processes were scientifically identified via text-mining and fault-tree analysis, and a step-by-step execution strategy was established by applying a backcasting technique based on scenario planning. Additionally, by integrating social control theory with new governance theory, we designed a flexible, adaptable, and resilience-oriented AI governance system. The results of this study suggest that the AI paradigm shift should be promoted by enhancing the risk resilience, trust, and recovery of organizations. By suggesting AX strategies and policy as well as institutional improvement directions that embed resilience to secure the sustainable competitiveness of AI-based smart ports in Korea, this study serves as a basis for establishing strategies for the domestic container-terminal industry and for constructing a global leading model. Full article
(This article belongs to the Special Issue Advanced Studies in Marine Data Analysis)
Show Figures

Figure 1

22 pages, 969 KB  
Article
A Spectral Interpretable Bearing Fault Diagnosis Framework Powered by Large Language Models
by Panfeng Bao, Wenjun Yi, Yue Zhu, Yufeng Shen and Haotian Peng
Sensors 2025, 25(12), 3822; https://doi.org/10.3390/s25123822 - 19 Jun 2025
Viewed by 1491
Abstract
Most existing fault diagnosis methods, although capable of extracting interpretable features such as attention-weighted fault-related frequencies, remain essentially black-box models that provide only classification results without transparent reasoning or diagnostic justification, limiting users’ ability to understand and trust diagnostic outcomes. In this work, [...] Read more.
Most existing fault diagnosis methods, although capable of extracting interpretable features such as attention-weighted fault-related frequencies, remain essentially black-box models that provide only classification results without transparent reasoning or diagnostic justification, limiting users’ ability to understand and trust diagnostic outcomes. In this work, we present a novel, interpretable fault diagnosis framework that integrates spectral feature extraction with large language models (LLMs). Vibration signals are first transformed into spectral representations using Hilbert- and Fourier-based encoders to highlight key frequencies and amplitudes. A channel attention-augmented convolutional neural network provides an initial fault type prediction. Subsequently, structured information—including operating conditions, spectral features, and CNN outputs—is fed into a fine-tuned enhanced LLM, which delivers both an accurate diagnosis and a transparent reasoning process. Experiments demonstrate that our framework achieves high diagnostic performance while substantially improving interpretability, making advanced fault diagnosis accessible to non-expert users in industrial settings. Full article
Show Figures

Figure 1

27 pages, 2292 KB  
Article
Security First, Safety Next: The Next-Generation Embedded Sensors for Autonomous Vehicles
by Luís Cunha, João Sousa, José Azevedo, Sandro Pinto and Tiago Gomes
Electronics 2025, 14(11), 2172; https://doi.org/10.3390/electronics14112172 - 27 May 2025
Viewed by 2003
Abstract
The automotive industry is fully shifting towards autonomous connected vehicles. By advancing vehicles’ intelligence and connectivity, the industry has enabled innovative functions such as advanced driver assistance systems (ADAS) in the direction of driverless cars. Such functions are often referred to as cyber-physical [...] Read more.
The automotive industry is fully shifting towards autonomous connected vehicles. By advancing vehicles’ intelligence and connectivity, the industry has enabled innovative functions such as advanced driver assistance systems (ADAS) in the direction of driverless cars. Such functions are often referred to as cyber-physical features, since almost all of them require collecting data from the physical environment to make automotive operation decisions and properly actuate in the physical world. However, increased functionalities result in increased complexity, which causes serious security vulnerabilities that are typically a result of mushrooming functionality and hence complexity. In a world where we keep seeing traditional mechanical systems shifting to x-by-wire solutions, the number of connected sensors, processing systems, and communication buses inside the car exponentially increases, raising several safety and security concerns. Because there is no safety without security, car manufacturers start struggling in making lightweight sensor and processing systems while keeping the security aspects a major priority. This article surveys the current technological challenges in securing autonomous vehicles and contributes a cross-layer analysis bridging hardware security primitives, real-world side-channel threats, and redundancy-based fault tolerance in automotive electronic control units (ECUs). It combines architectural insights with an evaluation of commercial support for TrustZone, trusted platform modules (TPMs), and lockstep platforms, offering both academic and industry audiences a grounded perspective on gaps in current hardware capabilities. Finally, it outlines future directions and presents a forward-looking vision for securing sensors and processing systems in the path toward fully safe and connected autonomous vehicles. Full article
Show Figures

Figure 1

22 pages, 1639 KB  
Article
A Trusted Sharing Strategy for Electricity in Multi-Virtual Power Plants Based on Dual-Chain Blockchain
by Wei Huang, Chao Zheng, Xuehao He, Xiaojie Liu, Suwei Zhai, Guobiao Lin, Shi Su, Chenyang Zhao and Qian Ai
Energies 2025, 18(11), 2741; https://doi.org/10.3390/en18112741 - 25 May 2025
Viewed by 521
Abstract
Distributed power trading is becoming the future development trend of electric energy trading, and virtual power plant (VPP), as a kind of aggregated optimization scheme to enhance energy utilization efficiency, has received more and more attention for studying distributed trading among multiple VPPs. [...] Read more.
Distributed power trading is becoming the future development trend of electric energy trading, and virtual power plant (VPP), as a kind of aggregated optimization scheme to enhance energy utilization efficiency, has received more and more attention for studying distributed trading among multiple VPPs. However, how to guarantee the economy, credibility, security, and efficiency of distributed transactions is still a key issue to be overcome. To this end, a multi-VPP power sharing trusted transaction strategy based on dual-chain blockchain is proposed. First, a dual-chain blockchain electric energy transaction architecture is proposed. Then, the VPP-independent operation cost model is constructed, based on which, the decision model of multi-VPP electric energy sharing transaction based on Nash negotiation theory is constructed. Again, an improved-Practical Byzantine Fault Tolerant (I-PBFT) consensus algorithm combining the schnorr protocol with the Diffie–Hellman key exchange algorithm and a smart contract for multi-VPP electricity trading are designed to realize trusted, secure, and efficient distributed transactions. Finally, the example results verify the effectiveness of the strategy proposed in this paper. Full article
Show Figures

Figure 1

30 pages, 418 KB  
Article
Verifiable Threshold Multi-Party Fully Homomorphic Encryption from Share Resharing
by Yuqi Xie, Ruwei Huang and Junbin Qiu
Appl. Sci. 2025, 15(9), 4745; https://doi.org/10.3390/app15094745 - 24 Apr 2025
Viewed by 811
Abstract
Threshold multi-party fully homomorphic encryption (TMFHE) schemes enable efficient computation to be performed on sensitive data while maintaining privacy. These schemes allow a subset of parties to perform threshold decryption of evaluation results via a distributed protocol without the need for a trusted [...] Read more.
Threshold multi-party fully homomorphic encryption (TMFHE) schemes enable efficient computation to be performed on sensitive data while maintaining privacy. These schemes allow a subset of parties to perform threshold decryption of evaluation results via a distributed protocol without the need for a trusted dealer, and provide a degree of fault tolerance against a set of corrupted parties. However, existing TMFHE schemes can only provide correctness and security against honest-but-curious parties. We construct a compact TMFHE scheme based on the Learning with Errors (LWE) problem. The scheme applies Shamir secret sharing and share resharing to support an arbitrary t-out-of-N threshold access structure, and enables non-interactive reconstruction of secret key shares using additive shares derived from the current set of online participants. Furthermore, the scheme implements commitment and non-interactive zero-knowledge (NIZK) proof techniques to verify the TMFHE operations. Finally, our experiments demonstrate that the proposed scheme achieves active security against malicious adversaries. It overcomes the limitation of existing TMFHE schemes that can only guarantee correct computation under passive semi-honest adversaries. Full article
Back to TopTop