Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (246)

Search Parameters:
Keywords = two-electron atom/ion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4033 KB  
Review
Illuminating High-Affinity ATP Binding to the Sodium-Potassium Pump Using Solid-State NMR Spectroscopy
by David A. Middleton
Molecules 2025, 30(17), 3609; https://doi.org/10.3390/molecules30173609 - 3 Sep 2025
Viewed by 1007
Abstract
Proteins that span cellular membranes represent around 30% of the proteome and over 50% of drug targets. A variety of synthetic and naturally-occurring small organic molecules interact with membrane proteins and up- and down-regulate protein function. The atomic details of these regulatory molecules [...] Read more.
Proteins that span cellular membranes represent around 30% of the proteome and over 50% of drug targets. A variety of synthetic and naturally-occurring small organic molecules interact with membrane proteins and up- and down-regulate protein function. The atomic details of these regulatory molecules offer important information about protein function and aid the discovery, refinement and optimization of new drugs. X-ray crystallography and cryo-electron microscopy (cryo-EM) are not always able to resolve the structures of small molecules in their physiological sites on membrane proteins, particularly if the molecules are unstable or are reactive enzyme substrates. Solid-state nuclear magnetic resonance (SSNMR) is a valuable technique for filling in missing details on the conformations, dynamics and binding environments of small molecules regulators of membrane proteins. SSNMR does not require diffracting crystals possessing long-range order and can be performed on proteins within their native membranes and with freeze-trapping to maintain sample stability. Here, work over the last two decades is described, in which SSNMR methods have been developed to report on interactions of the ATP substrate with the Na,K-ATPase (NKA), an ion-transporting enzyme that maintains cellular potential in all animals. It is shown how a combination of SSNMR measurements on membranous NKA preparations in the frozen and fluid states have provided unique information about the molecular conformation and local environment of ATP in the high-affinity nucleotide site. A combination of chemical shift analysis using density functional theory (DFT) calculations, dipolar coupling measurements using REDOR and measurements of the rates of proton spin diffusion is appraised collectively. The work described herein highlights the methods developed and challenges encountered, which have led to a detailed and unrivalled picture of ATP in its high-affinity binding site. Full article
Show Figures

Graphical abstract

12 pages, 1240 KB  
Article
State-Selective Differential Cross Sections for Single-Electron Capture in Slow He+–He Collisions
by Shucheng Cui, Kaizhao Lin, Dadi Xing, Ling Liu, Dongmei Zhao, Dalong Guo, Yong Gao, Shaofeng Zhang, Yong Wu, Chenzhong Dong, Xiaolong Zhu and Xinwen Ma
Atoms 2025, 13(9), 74; https://doi.org/10.3390/atoms13090074 - 28 Aug 2025
Viewed by 350
Abstract
A combined experimental and theoretical study is carried out on the single-electron capture process in He+–He collisions at energies ranging from 0.5 keV/u to 5 keV/u. Using cold target recoil ion momentum spectroscopy, we obtain state-selective cross sections and angular differential [...] Read more.
A combined experimental and theoretical study is carried out on the single-electron capture process in He+–He collisions at energies ranging from 0.5 keV/u to 5 keV/u. Using cold target recoil ion momentum spectroscopy, we obtain state-selective cross sections and angular differential cross sections. Within the entire studied energy range, the dominant channel is the electron captured into the ground-state, and the relative contribution of the dominant channel shows a decreasing trend with increasing energy. The angular differential cross sections of ground-state capture exhibit obvious oscillatory structures. To understand the oscillatory structures of the differential cross sections, we also performed theoretical calculations using the two-center atomic orbital close-coupling method, which well reproduced the oscillatory structures. The results indicate that these structures are strongly correlated to the oscillatory structures of the impact parameter dependence of electron probability. Full article
(This article belongs to the Section Atomic, Molecular and Nuclear Spectroscopy and Collisions)
Show Figures

Figure 1

15 pages, 2964 KB  
Article
Electrochemical Sensors Based on Track-Etched Membranes for Rare Earth Metal Ion Detection
by Nurdaulet Zhumanazar, Arman B. Yeszhanov, Galina B. Melnikova, Ainash T. Zhumazhanova, Sergei A. Chizhik and Ilya V. Korolkov
ChemEngineering 2025, 9(4), 88; https://doi.org/10.3390/chemengineering9040088 - 15 Aug 2025
Viewed by 449
Abstract
Electrochemical sensors have been developed based on polyethylene terephthalate track-etched membranes (PET TeMs) modified by photograft copolymerization of N-vinylformamide (N-VFA) and trimethylolpropane trimethacrylate (TMPTMA). The modification, structure and properties of the modified PET TeMs were thoroughly characterized using scanning electron microscopy (SEM) and [...] Read more.
Electrochemical sensors have been developed based on polyethylene terephthalate track-etched membranes (PET TeMs) modified by photograft copolymerization of N-vinylformamide (N-VFA) and trimethylolpropane trimethacrylate (TMPTMA). The modification, structure and properties of the modified PET TeMs were thoroughly characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM), thermogravimetric analysis (TGA), Fourier-transform infrared (FTIR) spectroscopy, gas permeability measurements and contact angle analysis. Optimal membrane modification was achieved using C = 10% (N-VFA), 60 min of UV irradiation and a UV lamp distance of 10 cm. Furthermore, the modified membranes were implemented in a two-electrode configuration for the determination of Eu3+, Gd3+, La3+ and Ce3+ ions via square-wave anodic stripping voltammetry (SW-ASV). The sensors exhibited a linear detection range from 10−7 M to 10−3 M, with limits of detection of 1.0 × 10−6 M (Eu3+), 6.0 × 10−6 M (Gd3+), 2.0 × 10−4 M (La3+) and 2.5 × 10−5 M (Ce3+). The results demonstrated a significant enhancement in electrochemical response due to the grafted PET TeMs-g-N-PVFA-TMPTMA structure, and the sensor showed practical applicability and consistent performance in detecting rare earth ions in tap water. Full article
Show Figures

Figure 1

30 pages, 7897 KB  
Review
Recent Progress of 2D Pt-Group Metallic Electrocatalysts for Energy-Conversion Applications
by Ziyue Chen, Yuerong Wang, Haiyan He and Huajie Huang
Catalysts 2025, 15(8), 716; https://doi.org/10.3390/catal15080716 - 27 Jul 2025
Viewed by 799
Abstract
With the rapid growth of energy demand, the development of efficient energy-conversion technologies (e.g., water splitting, fuel cells, metal-air batteries, etc.) becomes an important way to circumvent the problems of fossil fuel depletion and environmental pollution, which motivates the pursuit of high-performance electrocatalysts [...] Read more.
With the rapid growth of energy demand, the development of efficient energy-conversion technologies (e.g., water splitting, fuel cells, metal-air batteries, etc.) becomes an important way to circumvent the problems of fossil fuel depletion and environmental pollution, which motivates the pursuit of high-performance electrocatalysts with controllable compositions and morphologies. Among them, two-dimensional (2D) Pt-group metallic electrocatalysts show a series of distinctive architectural merits, including a high surface-to-volume ratio, numerous unsaturated metal atoms, an ameliorative electronic structure, and abundant electron/ion transfers channels, thus holding great potential in realizing good selectivity, rapid kinetics, and high efficiency for various energy-conversion devices. Considering that great progress on this topic has been made in recent years, here we present a panoramic review of recent advancements in 2D Pt-group metallic nanocrystals, which covers diverse synthetic methods, structural analysis, and their applications as electrode catalysts for various energy-conversion technologies. At the end, the paper also outlines the research challenges and future opportunities in this emerging area. Full article
Show Figures

Graphical abstract

14 pages, 5036 KB  
Article
Intermolecular Charge Transfer Induced Sensitization of Yb3+ in β-Diketone Coordination Compounds with Excellent Luminescence Efficiency
by Trofim A. Polikovskiy, Daniil D. Shikin, Vladislav M. Korshunov, Victoria E. Gontcharenko, Mikhail T. Metlin, Nikolay P. Datskevich, Marat M. Islamov, Victor O. Kompanets, Sergey V. Chekalin, Yuriy A. Belousov and Ilya V. Taydakov
Int. J. Mol. Sci. 2025, 26(14), 6814; https://doi.org/10.3390/ijms26146814 - 16 Jul 2025
Viewed by 831
Abstract
Achieving high quantum yields for Yb3+ ion emission in complexes with organic ligands is a challenging task, as most Yb3+ complexes with such ligands typically exhibit efficiencies below 3.5%. Our research demonstrates that the introduction of heavy atom-containing ancillary ligands, such [...] Read more.
Achieving high quantum yields for Yb3+ ion emission in complexes with organic ligands is a challenging task, as most Yb3+ complexes with such ligands typically exhibit efficiencies below 3.5%. Our research demonstrates that the introduction of heavy atom-containing ancillary ligands, such as TPPO or TPAO, along with the careful engineering of the main β-diketone ligand, can increase the luminescence efficiency up to 20-fold by the alteration of the energy migration pathway. It is demonstrated that the combination of two distinct organic ligands leads to the blockage of singlet–triplet intersystem crossing (ISC), alongside electronic energy transfer from β-diketone to Yb3+ ions through charge transfer states. The synthesized complexes exhibit quantum yields of 6.5% and 7.0% in the solid state, which places them at the top globally among this class of materials with simple non-deuterated and non-fluorinated ligands. Full article
Show Figures

Figure 1

25 pages, 4204 KB  
Article
Electrochemical Evaluation of New Ti-Based High-Entropy Alloys in Artificial Saliva with Fluoride: Implications for Dental Implant Applications
by Hanine Slama, Qanita Tayyaba, Mariya Kadiri and Hendra Hermawan
Materials 2025, 18(13), 2973; https://doi.org/10.3390/ma18132973 - 23 Jun 2025
Cited by 1 | Viewed by 651
Abstract
Based on their high mechanical strength, Ti-based high-entropy alloys (HEAs) are of great potential as materials for high-performance reduced-diameter dental implants. Despite previous studies demonstrating their corrosion resistance in various simulated body fluids, their resistance in simulated buccal conditions has yet to be [...] Read more.
Based on their high mechanical strength, Ti-based high-entropy alloys (HEAs) are of great potential as materials for high-performance reduced-diameter dental implants. Despite previous studies demonstrating their corrosion resistance in various simulated body fluids, their resistance in simulated buccal conditions has yet to be confirmed. In this work, the corrosion behavior of two Ti-based HEAs, TiZrHfNb, and TiZrHfNbTa was evaluated in comparison to CP-Ti and Ti-6Al-4V in artificial saliva (AS) solution and in AS with fluoride ion content (ASF). A set of electrochemical tests (electrochemical impedance spectroscopy, cyclic polarization, and Mott–Schottky) was employed and complemented with surface characterization analyses (scanning electron microscopy and atomic force microscopy) to determine dissolution and passivation mechanisms of the alloys. In general, the HEAs exhibited a far superior corrosion resistance compared to CP-Ti and Ti-6Al-4V alloys in both solutions. In the AS solution, the TiZrHfNb exhibited the highest polarization resistance and pitting potential, indicating a high corrosion resistance due to the formation of a robust passive layer. Whilst in the ASF solution, the TiZrHfNbTa showed a greater corrosion resistance due to the synergistic effect of Nb and Ta oxides that enhanced passive film stability. This finding emphasizes the role of Ta in elevating the corrosion resistance of Ti-based HEAs in the presence of fluoride ions and confirms the importance of chemical composition optimization in the development of next-generation dental alloys. Based on its electrochemical corrosion behavior, TiZrHfNbTa HEAs are promising new materials for high-performance reduced-diameter dental implants. Full article
(This article belongs to the Special Issue Novel Dental Materials Design and Application)
Show Figures

Figure 1

11 pages, 1283 KB  
Article
Band Gaps of Hexagonal ScN and YN Multilayer Materials
by Maciej J. Winiarski
Materials 2025, 18(13), 2938; https://doi.org/10.3390/ma18132938 - 21 Jun 2025
Viewed by 516
Abstract
The structural parameters and electronic structures of Sc- and Y-based nitride semiconductors that adopted hexagonal BN-like atomic sheets were investigated with calculations based on density functional theory (DFT). A hybrid exchange-correlation functional and spin–orbit coupling were employed for studies on the band structures. [...] Read more.
The structural parameters and electronic structures of Sc- and Y-based nitride semiconductors that adopted hexagonal BN-like atomic sheets were investigated with calculations based on density functional theory (DFT). A hybrid exchange-correlation functional and spin–orbit coupling were employed for studies on the band structures. A strong variation in the band gap type, as well as the width, was revealed not only between the monolayer and bulk materials but also between the multilayer systems. An exceptionally wide range of band gaps from 1.39 (bulk) up to 3.59 eV (three layers) was obtained for two-dimensional materials based on ScN. This finding is related to two phenomena: significant contributions of subsurface ions into bands that formed a valence band maximum and pronounced shifts in conduction band positions with respect to the Fermi energy between the multilayer systems. The relatively low values of the work function (below 2.36 eV) predicted for the few-layer YN materials might be considered for applications in electron emission. In spite of the fact that the band gaps of two-dimensional materials predicted with hybrid DFT calculations may be overestimated to some extent, the electronic structure of homo- and heterostructures formed by rare earth nitride semiconductors seems to be an interesting subject for further experimental research. Full article
(This article belongs to the Special Issue Ab Initio Modeling of 2D Semiconductors and Semimetals)
Show Figures

Figure 1

11 pages, 2330 KB  
Article
Separations of Strategic Metals from Spent Electronic Waste Using “Green Methods”
by Urszula Domańska, Anna Wiśniewska and Zbigniew Dąbrowski
Separations 2025, 12(6), 167; https://doi.org/10.3390/separations12060167 - 18 Jun 2025
Viewed by 656
Abstract
Next-generation recycling technologies must be urgently innovated to tackle huge volumes of spent batteries, photovoltaic panels or printed circuit boards (WPCBs). Current e-waste recycling industrial technology is dominated by traditional recycling technologies. Herein, ionic liquids (ILs), deep eutectic solvents (DESs) and promising oxidizing [...] Read more.
Next-generation recycling technologies must be urgently innovated to tackle huge volumes of spent batteries, photovoltaic panels or printed circuit boards (WPCBs). Current e-waste recycling industrial technology is dominated by traditional recycling technologies. Herein, ionic liquids (ILs), deep eutectic solvents (DESs) and promising oxidizing additives that can overcome some traditional recycling methods of metal ions from e-waste, used in our works from last year, are presented. The unique chemical environments of ILs and DESs, with the application of low-temperature extraction procedures, are important environmental aspects known as “Green Methods”. A closed-loop system for recycling zinc and manganese from the “black mass” (BM) of waste, Zn-MnO2 batteries, is presented. The leaching process achieves a high efficiency and distribution ratio using the composition of two solvents (Cyanex 272 + diethyl phosphite (DPh)) for Zn(II) extraction. High extraction efficiency with 100% zinc and manganese recovery is also achieved using DESs (cholinum chloride/lactic acid, 1:2, DES 1, and cholinum chloride/malonic acid, 1:1, DES 2). New, greener recycling approaches to metal extraction from the BM of spent Li-ion batteries are presented with ILs ([N8,8,8,1][Cl], (Aliquat 336), [P6,6,6,14][Cl], [P6,6,6,14][SCN] and [Benzet][TCM]) eight DESs, Cyanex 272 and D2EHPA. A high extraction efficiency of Li(I) (41–92 wt%) and Ni(II) (37–52 wt%) using (Cyanex 272 + DPh) is obtained. The recovery of Ni(II) and Cd(II) from the BM of spent Ni-Cd batteries is also demonstrated. The extraction efficiency of DES 1 and DES 2, contrary to ILs ([P6,6,6,14][Cl] and [P6,6,6,14][SCN]), is at the level of 30 wt% for Ni(II) and 100 wt% for Cd(II). In this mini-review, the option to use ILs, DESs and Cyanex 272 for the recovery of valuable metals from end-of-life WPCBs is presented. Next-generation recycling technologies, in contrast to the extraction of metals from acidic leachate preceded by thermal pre-treatment or from solid material only after thermal pre-treatment, have been developed with ILs and DESs using the ABS method, as well as Cyanex 272 (only after the thermal pre-treatment of WPCBs), with a process efficiency of 60–100 wt%. In this process, four new ILs are used: didecyldimethylammonium propionate, [N10,10,1,1][C2H5COO], didecylmethylammonium hydrogen sulphate, [N10,10,1,H][HSO4], didecyldimethylammonium dihydrogen phosphate, [N10,10,1,1][H2PO4], and tetrabutylphosphonium dihydrogen phosphate, [P4,4,4,4][H2PO4]. The extraction of Cu(II), Ag(I) and other metals such as Al(III), Fe(II) and Zn(II) from solid WPCBs is demonstrated. Various additives are used during the extraction processes. The Analyst 800 atomic absorption spectrometer (FAAS) is used for the determination of metal content in the solid BM. The ICP-OES method is used for metal analysis. The obtained results describe the possible application of ILs and DESs as environmental media for upcycling spent electronic wastes. Full article
(This article belongs to the Section Materials in Separation Science)
Show Figures

Graphical abstract

15 pages, 2443 KB  
Article
Thermally Stable Anilate-Based 3D CPs/MOFs
by Fabio Manna, Noemi Monni, Mariangela Oggianu, Juan Modesto Clemente-Juan, Miguel Clemente-León and Maria Laura Mercuri
Crystals 2025, 15(6), 570; https://doi.org/10.3390/cryst15060570 - 17 Jun 2025
Viewed by 380
Abstract
The synthesis and characterization of two novel redox-active MOFs/CPs based on 3d transition metal ions and 3,6-ditriazolyl-2,5-dihydroxybenzoquinone (trz2An) are reported herein. By combining trz2An with NiII and MnII ions via the hydrothermal method, two phases, formulated as [...] Read more.
The synthesis and characterization of two novel redox-active MOFs/CPs based on 3d transition metal ions and 3,6-ditriazolyl-2,5-dihydroxybenzoquinone (trz2An) are reported herein. By combining trz2An with NiII and MnII ions via the hydrothermal method, two phases, formulated as [Ni2(trz2An)2]·2.5H2O (1) and [Mn(trz2An)(H2O)]·1.5H2O (2), are obtained. Both compounds crystallize as neutral polymeric 3D frameworks, where the metal ions are coordinated through the oxygen atoms of the anilate linkers forming either straight (1) or zig-zag (2) 1D chains. In particular, (1) is a MOF, where these chains are connected through the nitrogen atom at the 4 position of the triazolyl group, which completes the coordination sphere of each metal ion, affording a 3D structure containing a void volume of 28.7% and voids that can be useful for the sorption of small molecules. Interestingly, (1) and (2) show a redox behavior due to the presence of the anilate linker, being reduced electrochemically in the −0.7 to −0.9 V range due to the benzoquinone–semiquinone one-electron reduction and magnetic behavior dominated by antiferromagnetic interactions in the anilate 1D chains. Full article
(This article belongs to the Section Macromolecular Crystals)
Show Figures

Figure 1

28 pages, 3751 KB  
Article
Quantum Mechanics MP2 and CASSCF Study of Coordinate Quasi-Double Bonds in Cobalt(II) Complexes as Single Molecule Magnets
by Yuemin Liu, Salah S. Massoud, Oleg N. Starovoytov, Tariq Altalhi, Yunxiang Gao and Boris I. Yakobson
Nanomaterials 2025, 15(12), 938; https://doi.org/10.3390/nano15120938 - 17 Jun 2025
Viewed by 1777
Abstract
Co(II) complexes have shown promising applications as single-molecule magnets (SMMs) in quantum computing and structural biology. Deciphering the Co(II) complexes may facilitate the development of SMM materials. Structural optimizations and calculations of chemical and magnetic properties were performed for Co(II) complexes with a [...] Read more.
Co(II) complexes have shown promising applications as single-molecule magnets (SMMs) in quantum computing and structural biology. Deciphering the Co(II) complexes may facilitate the development of SMM materials. Structural optimizations and calculations of chemical and magnetic properties were performed for Co(II) complexes with a tripodal tetradentate phenolate-amine ligand using MP2/aug-cc-pvdz, MP2/Def2svp, and CASSCF/Def2svp methods. The Second Order Perturbation Theory Analysis of Fock Matrix in NBO Basis unravels that Co(II) ions form unusual coordinate quasi-double bonds with ligand oxygen donor atoms, and the bond strengths range from 142.01 kcal/mol to 167.36 kcal/mol but lack further spectrometric evidence. The average 151.70 kcal/mol of the Co(II-O coordinates quasi-double bonds are formed mainly by two lone pairs of electrons from the ligand phenolate donor oxygen atoms. Dispersion forces contribute 24%, 28%, 27%, and 31% to the Co(II)-ligand interaction. Theoretical results of ZFS D, transversal ZFS E, and g-factor agree well with the experimental values. Magnetic susceptibility parameters calculated based on 5 doublet roots account for 85% of results computed 40 doublet roots are specified. These insights may aid in the rational design of SMM materials and Co(II) porphyrin fullerene conjugate for CO2 electroreduction with superior magnetic properties. Full article
Show Figures

Figure 1

15 pages, 1256 KB  
Article
Negative Ion Formation by the Thermal Surface Ionization of Oxygen-Bearing Gases (O2, CO2, CO, NO, and NO2)
by Patryk Gontarz and Andrzej Pelc
Molecules 2025, 30(11), 2420; https://doi.org/10.3390/molecules30112420 - 31 May 2025
Viewed by 728
Abstract
The formation of the oxygen negative ion O from simple molecules such as O2, CO2, CO, NO, and NO2 is of fundamental importance in environmental, atmospheric, and biological processes. This study investigates the mechanisms of O [...] Read more.
The formation of the oxygen negative ion O from simple molecules such as O2, CO2, CO, NO, and NO2 is of fundamental importance in environmental, atmospheric, and biological processes. This study investigates the mechanisms of O ion generation from these gases by analyzing the dependence of O ion current intensity on filament temperature. Optimum temperatures for O formation were identified for each gas, ranging from 1548 to 1721 °C. A comparison with the calculated thermal decomposition temperatures of the respective compounds indicates that distinct ion formation pathways are involved. For NO2, the process likely involves a two-step dissociation mechanism, with molecular oxygen (O2) formed in the first step, subsequently dissociating into O and O atoms. In contrast, for CO, O formation predominantly occurs through electron capture followed by molecular dissociation. These findings underscore the complex nature of negative surface ionization, which includes contributions from the capture of emitted from the cathode electrons by molecules. Full article
Show Figures

Figure 1

15 pages, 2624 KB  
Article
Vermiculite Modified with Glycidyl Methacrylate, Acrylonitrile, and Phosphoric Acid for the Adsorption of Molybdenum and Rhenium Ions from Aqueous Solutions
by Nesipkhan Bektenov, Kanat Sadykov, Ainash Baidullayeva, Nurzhan Chinibayeva, Tulegen Chalov, Gulim Koszhanova and Elmira Kambarova
Processes 2025, 13(5), 1584; https://doi.org/10.3390/pr13051584 - 20 May 2025
Viewed by 717
Abstract
This study focuses on the synthesis and characterization of a cationic ion-exchange sorbent derived from vermiculite and epoxy acrylate copolymers, designed to address freshwater scarcity by removing toxic metal ions from aqueous environments. The sorbent was engineered to preserve the chemical integrity of [...] Read more.
This study focuses on the synthesis and characterization of a cationic ion-exchange sorbent derived from vermiculite and epoxy acrylate copolymers, designed to address freshwater scarcity by removing toxic metal ions from aqueous environments. The sorbent was engineered to preserve the chemical integrity of freshwater while adhering to environmental safety standards. Vermiculite served as the base material, modified with glycidyl methacrylate (GMA), acrylonitrile (ACN), and orthophosphoric acid (H3PO4) in a mass ratio of 1:0.35:0.15:3. Optimization experiments explored varying H3PO4 proportions (two- and threefold increases) to refine the synthesis conditions. The materials underwent microwave irradiation at 300 W for 10 min. Infrared (IR) spectroscopy confirmed the presence of functional groups (P=O, P−O−C), enhancing sorption capacity, while scanning electron microscopy (SEM) revealed a porous structure crucial for adsorption. Sorption properties, assessed via atomic emission spectroscopy, demonstrated capacities of 39.80 mg/g for MoO42− and 39.06 mg/g for ReO4, with extraction efficiencies of 79% and 78%, respectively. Chemical stability tests indicated the sorbent retained up to 90% of its functionality in aggressive environments, highlighting its robustness. The developed sorbent offers a high-performance, cost-effective solution for heavy metal removal from wastewater, advancing sustainable water purification technologies. Full article
(This article belongs to the Special Issue Chemical Engineering Towards Sustainable Development Goals)
Show Figures

Figure 1

20 pages, 13076 KB  
Article
Enhancement of a Magnetically Controlled Cathodic Arc Source for the Deposition of Multi-Component Hard Nitride Coatings
by Van-Tien Tang, Yin-Yu Chang and Yi-Ru Chen
Materials 2025, 18(10), 2276; https://doi.org/10.3390/ma18102276 - 14 May 2025
Cited by 1 | Viewed by 788
Abstract
The creation of coatings by the cathodic arc evaporation method has outstanding advantages: these coatings are highly durable and wear-resistant, especially since the method has an intense ionization process and the atoms can penetrate deep into the surface substrates, resulting in excellent adhesion. [...] Read more.
The creation of coatings by the cathodic arc evaporation method has outstanding advantages: these coatings are highly durable and wear-resistant, especially since the method has an intense ionization process and the atoms can penetrate deep into the surface substrates, resulting in excellent adhesion. Furthermore, this approach provides precise control over the chemical composition and thickness of the coating, ensuring consistent quality across the entire surface. However, uneven evaporation and ejection of molten metal droplets from the cathode during cathode arc deposition produce particles and droplets, resulting in an uneven coating surface. This study presents a new design for a magnetically controlled cathode arc source to effectively reduce particles and droplets during the cathodic arc deposition of multi-component alloy targets for nitride-based hard coatings. The study compares the performance of a new source with a conventional magnetic-controlled arc source for depositing TiAlNbSiN and AlCrSiN films. In the conventional source, the magnetic field is generated by a permanent magnet (PM), whereas in the new source, it is generated and controlled using an electromagnet (EM). Both films are produced using multi-component alloy targets (TiAlNbSi and AlCrSi) with identical composition ratios. The plasma characteristics of the two different arc sources are investigated using an optical emission spectrometer (OES), and the surface morphology, structural characteristics, deposition rate, uniformity, and surface roughness (Sa) are examined using scanning electron microscopy (SEM). When the EM was applied to have high plasma density, the hardness of the TiAlNbSiN film deposited with the novel arc source measured 31.2 ± 1.9 GPa, which is higher than that of the PM arc source (28.3 ± 1.4 GPa). In contrast, the AlCrSiN film created using a typical arc source exhibited a hardness of only 25.5 ± 0.6 GPa. This lower hardness may be due to insufficient ion kinetic energy to enhance stress blocking and increase hardness, or the presence of the h-AlN phase in the film, which was not detected by XRD. The electromagnet arc source, with its adequate ion bombardment velocity, facilitated a complementary effect between grain growth and stress blocking, leading to a remarkable hardness of 32.6 ± 0.5 GPa. Full article
(This article belongs to the Special Issue Advancements in Thin Film Deposition Technologies)
Show Figures

Figure 1

18 pages, 4602 KB  
Article
Effect of the Peri-Annulated Dichalcogenide Bridge on the Bipolar Character of Naphthalimide Derivatives Used as Organic Electrode Materials
by Delyana Marinova, Lyuben Borislavov, Silva Stanchovska, Konstantin Konstantinov, Monika Mutovska, Stanimir Stoyanov, Yulian Zagranyarski, Yanislav Danchovski, Hristo Rasheev, Alia Tadjer and Radostina Stoyanova
Materials 2025, 18(9), 2066; https://doi.org/10.3390/ma18092066 - 30 Apr 2025
Viewed by 831
Abstract
In recent years, bipolar organic electrode materials have gained recognition as competitive alternatives to inorganic materials due to their unique multielectron redox mechanism for energy storage. In this study, we examined the mechanism of redox reactions in naphthalimide (NI) derivatives when used as [...] Read more.
In recent years, bipolar organic electrode materials have gained recognition as competitive alternatives to inorganic materials due to their unique multielectron redox mechanism for energy storage. In this study, we examined the mechanism of redox reactions in naphthalimide (NI) derivatives when used as electrodes in lithium half-cells with ionic liquid electrolytes. The NI derivatives consist of three building fragments: an aromatic naphthalene core, N-alkylated imide unit, and a peri-dichalcogenide bridge. The integration of electrochemical and microscopic methods with DFT calculations facilitates the delineation of the role of each fragment in the oxidation and reduction reactions of NI derivatives. It is found that the peri-dichalcogenide bridge is mainly involved in the oxidation of NI derivatives above 3.9 V, the charge compensation being achieved by electrolyte TFSI counter-ions. The reduction of NI derivatives with two Li+ ions is mainly due to the participation of the chalcogenide bridge, while after interaction with the next two Li+ ions, the imide fragment and the naphthalene moiety contribute equally to the reduction. Based on the leading role of the peri-dichalcogenide bridge, the redox properties of NI derivatives are effectively controlled by the gradual replacement of S with Se and Te atoms in the bridge. To improve the electronic conductivity of NIs, composites with rGO are also synthesized by a simple procedure of mechanical mixing in a centrifugal mixer. The composites rGO/NIs display a good storage performance, the best being the Se-containing analogue. Full article
Show Figures

Graphical abstract

10 pages, 4390 KB  
Article
The Laboratory Measurement of the Line Ratios in X-Ray Emission Resulting from the Charge Exchange Between Mg11+ and Helium
by Kebao Shu, Caojie Shao, Shuo Zhang, Ruitian Zhang, Cheng Qian, Yingli Xue, Mingwu Zhang, Jinlei Tian, Zhenqiang Wang, Xiaolong Zhu, Liangting Sun, Junxia Ran and Deyang Yu
Atoms 2025, 13(4), 34; https://doi.org/10.3390/atoms13040034 - 14 Apr 2025
Viewed by 664
Abstract
The line ratios in X-ray emission resulting from charge exchange between highly charged ions (HCIs) and neutral atoms are not only crucial for accurately modeling astrophysical X-ray emissions but also offer a unique perspective on the charge exchange processes happening during collisions. The [...] Read more.
The line ratios in X-ray emission resulting from charge exchange between highly charged ions (HCIs) and neutral atoms are not only crucial for accurately modeling astrophysical X-ray emissions but also offer a unique perspective on the charge exchange processes happening during collisions. The K X-ray spectra following charge exchange between Mg11+ and He are presented for a collision velocity of 1489 km/s (11.5 keV/amu). The spectra were measured by two Silicon Drift Detectors capable of resolving the Mg10+ Kα, Kβ, Kγ, and Kδ+ lines. The line intensity ratios of Kβ, Kγ, and Kδ+ relative to the Kα line, as well as the hardness ratio, were obtained. The experimental results were compared with the theoretical results from a cascade model that utilizes the state cross-sections produced by multichannel Landau–Zener (MCLZ) calculation. It was discovered that the K X-ray spectrum features can be reproduced well by MCLZ theory when the contributions of both single electron capture (SEC) and autoionizing double capture (ADC) processes are included. This finding implies that the ADC feeding mechanism is significant and should be taken into account for the X-ray emission during charge exchange between highly charged ions and multielectron atoms. Full article
(This article belongs to the Special Issue X-Ray Spectroscopy in Astrophysics)
Show Figures

Figure 1

Back to TopTop