Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = type III error amplifier

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 9644 KB  
Article
Fourth-Order Quadratic Buck Converter Controller Design
by Gabriela-Madalina Pop, Ioana-Monica Pop-Calimanu and Dan Lascu
Sensors 2024, 24(2), 557; https://doi.org/10.3390/s24020557 - 16 Jan 2024
Cited by 1 | Viewed by 1694
Abstract
This paper aims to outline the process of dimensioning a controller tailored for a fourth-order step-down converter. In order to conduct a thorough small-signal analysis, it is imperative to find the state–space model in matrices form. Given its fourth-order nature, the control-to-output transfer [...] Read more.
This paper aims to outline the process of dimensioning a controller tailored for a fourth-order step-down converter. In order to conduct a thorough small-signal analysis, it is imperative to find the state–space model in matrices form. Given its fourth-order nature, the control-to-output transfer function also aligns with this order, although its degree is ultimately reduced to a second-order using the tfest function. It is remarkable that the design of the type III error amplifier assumes a central position in the overall controller design process. The theoretical analysis was then subjected to rigorous validation via simulation, with particular attention paid to the step response in both input voltage and output resistance. This study developed from the desire to validate the efficacy of reducing the control-to-output transfer function degree using the tfest function, aiming to highlight a fourth-order converter to which controller design theory can be applied, related to that for a second-order converter. Full article
Show Figures

Figure 1

27 pages, 1139 KB  
Article
Hardware-Based Architecture for DNN Wireless Communication Models
by Van Duy Tran, Duc Khai Lam and Thi Hong Tran
Sensors 2023, 23(3), 1302; https://doi.org/10.3390/s23031302 - 23 Jan 2023
Cited by 4 | Viewed by 3508
Abstract
Multiple Input Multiple Output Orthogonal Frequency Division Multiplexing (MIMO OFDM) is a key technology for wireless communication systems. However, because of the problem of a high peak-to-average power ratio (PAPR), OFDM symbols can be distorted at the MIMO OFDM transmitter. It degrades the [...] Read more.
Multiple Input Multiple Output Orthogonal Frequency Division Multiplexing (MIMO OFDM) is a key technology for wireless communication systems. However, because of the problem of a high peak-to-average power ratio (PAPR), OFDM symbols can be distorted at the MIMO OFDM transmitter. It degrades the signal detection and channel estimation performance at the MIMO OFDM receiver. In this paper, three deep neural network (DNN) models are proposed to solve the problem of non-linear distortions introduced by the power amplifier (PA) of the transmitters and replace the conventional digital signal processing (DSP) modules at the receivers in 2 × 2 MIMO OFDM and 4 × 4 MIMO OFDM systems. Proposed model type I uses the DNN model to de-map the signals at the receiver. Proposed model type II uses the DNN model to learn and filter out the channel noises at the receiver. Proposed model type III uses the DNN model to de-map and detect the signals at the receiver. All three model types attempt to solve the non-linear problem. The robust bit error rate (BER) performances of the proposed receivers are achieved through the software and hardware implementation results. In addition, we have also implemented appropriate hardware architectures for the proposed DNN models using special techniques, such as quantization and pipeline to check the feasibility in practice, which recent studies have not done. Our hardware architectures are successfully designed and implemented on the Virtex 7 vc709 FPGA board. Full article
Show Figures

Figure 1

21 pages, 161 KB  
Review
Chitins and Chitosans as Immunoadjuvants and Non-Allergenic Drug Carriers
by Riccardo A. A. Muzzarelli
Mar. Drugs 2010, 8(2), 292-312; https://doi.org/10.3390/md8020292 - 21 Feb 2010
Cited by 382 | Viewed by 24727
Abstract
Due to the fact that some individuals are allergic to crustaceans, the presumed relationship between allergy and the presence of chitin in crustaceans has been investigated. In vivo, chitin is part of complex structures with other organic and inorganic compounds: in arthropods [...] Read more.
Due to the fact that some individuals are allergic to crustaceans, the presumed relationship between allergy and the presence of chitin in crustaceans has been investigated. In vivo, chitin is part of complex structures with other organic and inorganic compounds: in arthropods chitin is covalently linked to proteins and tanned by quinones, in fungi it is covalently linked to glucans, while in bacteria chitin is diversely combined according to Gram(+/-) classification. On the other hand, isolated, purified chitin is a plain polysaccharide that, at the nano level, presents itself as a highly associated structure, recently refined in terms of regularity, nature of bonds, crystallinity degree and unusual colloidal behavior. Chitins and modified chitins exert a number of beneficial actions, i.e., (i) they stimulate macrophages by interacting with receptors on the macrophage surface that mediate the internalization of chitin particles to be degraded by lysozyme and N-acetyl-β-glucosaminidase (such as Nod-like, Toll-like, lectin, Dectin-1, leukotriene 134 and mannose receptors); (ii) the macrophages produce cytokines and other compounds that confer non-specific host resistance against bacterial and viral infections, and anti-tumor activity; (iii) chitin is a strong Th1 adjuvant that up-regulates Th1 immunity induced by heat-killed Mycobacterium bovis, while down- regulating Th2 immunity induced by mycobacterial protein; (iv) direct intranasal application of chitin microparticles into the lung was also able to significantly down-regulate allergic response to Dermatophagoids pteronyssinus and Aspergillus fumigatus in a murine model of allergy; (v) chitin microparticles had a beneficial effect in preventing and treating histopathologic changes in the airways of asthmatic mice; (vi) authors support the fact that chitin depresses the development of adaptive type 2 allergic responses. Since the expression of chitinases, chitrotriosidase and chitinase-like proteins is greatly amplified during many infections and diseases, the common feature of chitinase-like proteins and chitinase activity in all organisms appears to be the biochemical defense of the host. Unfortunately, conceptual and methodological errors are present in certain recent articles dealing with chitin and allergy, i.e., (1) omitted consideration of mammalian chitinase and/or chitotriosidase secretion, accompanied by inactive chitinase-like proteins, as an ancestral defensive means against invasion, capable to prevent the insurgence of allergy; (2) omitted consideration of the fact that the mammalian organism recognizes more promptly the secreted water soluble chitinase produced by a pathogen, rather than the insoluble and well protected chitin within the pathogen itself; (3) superficial and incomplete reports and investigations on chitin as an allergen, without mentioning the potent allergen from crustacean flesh, tropomyosine; (4) limited perception of the importance of the chemical/biochemical characteristics of the isolated chitin or chitosan for the replication of experiments and optimization of results; and (5) lack of interdisciplinarity. There is quite a large body of knowledge today on the use of chitosans as biomaterials, and more specifically as drug carriers for a variety of applications: the delivery routes being the same as those adopted for the immunological studies. Said articles, that devote attention to the safety and biocompatibility aspects, never reported intolerance or allergy in individuals and animals, even when the quantities of chitosan used in single experiments were quite large. Therefore, it is concluded that crab, shrimp, prawn and lobster chitins, as well as chitosans of all grades, once purified, should not be considered as "crustacean derivatives", because the isolation procedures have removed proteins, fats and other contaminants to such an extent as to allow them to be classified as chemicals regardless of their origin. Full article
(This article belongs to the Special Issue Marine Chitin and Chitosan)
Back to TopTop