Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = uORFs-containing mRNAs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 749 KB  
Review
Host-like RNA Elements Regulate Virus Translation
by Debjit Khan and Paul L. Fox
Viruses 2024, 16(3), 468; https://doi.org/10.3390/v16030468 - 20 Mar 2024
Cited by 4 | Viewed by 4476
Abstract
Viruses are obligate, intracellular parasites that co-opt host cell machineries for propagation. Critical among these machineries are those that translate RNA into protein and their mechanisms of control. Most regulatory mechanisms effectuate their activity by targeting sequence or structural features at the RNA [...] Read more.
Viruses are obligate, intracellular parasites that co-opt host cell machineries for propagation. Critical among these machineries are those that translate RNA into protein and their mechanisms of control. Most regulatory mechanisms effectuate their activity by targeting sequence or structural features at the RNA termini, i.e., at the 5′ or 3′ ends, including the untranslated regions (UTRs). Translation of most eukaryotic mRNAs is initiated by 5′ cap-dependent scanning. In contrast, many viruses initiate translation at internal RNA regions at internal ribosome entry sites (IRESs). Eukaryotic mRNAs often contain upstream open reading frames (uORFs) that permit condition-dependent control of downstream major ORFs. To offset genome compression and increase coding capacity, some viruses take advantage of out-of-frame overlapping uORFs (oORFs). Lacking the essential machinery of protein synthesis, for example, ribosomes and other translation factors, all viruses utilize the host apparatus to generate virus protein. In addition, some viruses exhibit RNA elements that bind host regulatory factors that are not essential components of the translation machinery. SARS-CoV-2 is a paradigm example of a virus taking advantage of multiple features of eukaryotic host translation control: the virus mimics the established human GAIT regulatory element and co-opts four host aminoacyl tRNA synthetases to form a stimulatory binding complex. Utilizing discontinuous transcription, the elements are present and identical in all SARS-CoV-2 subgenomic RNAs (and the genomic RNA). Thus, the virus exhibits a post-transcriptional regulon that improves upon analogous eukaryotic regulons, in which a family of functionally related mRNA targets contain elements that are structurally similar but lacking sequence identity. This “thrifty” virus strategy can be exploited against the virus since targeting the element can suppress the expression of all subgenomic RNAs as well as the genomic RNA. Other 3′ end viral elements include 3′-cap-independent translation elements (3′-CITEs) and 3′-tRNA-like structures. Elucidation of virus translation control elements, their binding proteins, and their mechanisms can lead to novel therapeutic approaches to reduce virus replication and pathogenicity. Full article
Show Figures

Figure 1

18 pages, 1165 KB  
Review
The Functional Meaning of 5′UTR in Protein-Coding Genes
by Natalia Ryczek, Aneta Łyś and Izabela Makałowska
Int. J. Mol. Sci. 2023, 24(3), 2976; https://doi.org/10.3390/ijms24032976 - 3 Feb 2023
Cited by 67 | Viewed by 12592
Abstract
As it is well known, messenger RNA has many regulatory regions along its sequence length. One of them is the 5′ untranslated region (5’UTR), which itself contains many regulatory elements such as upstream ORFs (uORFs), internal ribosome entry sites (IRESs), microRNA binding sites, [...] Read more.
As it is well known, messenger RNA has many regulatory regions along its sequence length. One of them is the 5′ untranslated region (5’UTR), which itself contains many regulatory elements such as upstream ORFs (uORFs), internal ribosome entry sites (IRESs), microRNA binding sites, and structural components involved in the regulation of mRNA stability, pre-mRNA splicing, and translation initiation. Activation of the alternative, more upstream transcription start site leads to an extension of 5′UTR. One of the consequences of 5′UTRs extension may be head-to-head gene overlap. This review describes elements in 5′UTR of protein-coding transcripts and the functional significance of protein-coding genes 5′ overlap with implications for transcription, translation, and disease. Full article
(This article belongs to the Special Issue mRNAs in Biology)
Show Figures

Figure 1

19 pages, 2111 KB  
Article
Relocalization of Translation Termination and Ribosome Recycling Factors to Stress Granules Coincides with Elevated Stop-Codon Readthrough and Reinitiation Rates upon Oxidative Stress
by Desislava S. Makeeva, Claire L. Riggs, Anton V. Burakov, Pavel A. Ivanov, Artem S. Kushchenko, Dmitri A. Bykov, Vladimir I. Popenko, Vladimir S. Prassolov, Pavel V. Ivanov and Sergey E. Dmitriev
Cells 2023, 12(2), 259; https://doi.org/10.3390/cells12020259 - 8 Jan 2023
Cited by 11 | Viewed by 4866
Abstract
Upon oxidative stress, mammalian cells rapidly reprogram their translation. This is accompanied by the formation of stress granules (SGs), cytoplasmic ribonucleoprotein condensates containing untranslated mRNA molecules, RNA-binding proteins, 40S ribosomal subunits, and a set of translation initiation factors. Here we show that arsenite-induced [...] Read more.
Upon oxidative stress, mammalian cells rapidly reprogram their translation. This is accompanied by the formation of stress granules (SGs), cytoplasmic ribonucleoprotein condensates containing untranslated mRNA molecules, RNA-binding proteins, 40S ribosomal subunits, and a set of translation initiation factors. Here we show that arsenite-induced stress causes a dramatic increase in the stop-codon readthrough rate and significantly elevates translation reinitiation levels on uORF-containing and bicistronic mRNAs. We also report the recruitment of translation termination factors eRF1 and eRF3, as well as ribosome recycling and translation reinitiation factors ABCE1, eIF2D, MCT-1, and DENR to SGs upon arsenite treatment. Localization of these factors to SGs may contribute to a rapid resumption of mRNA translation after stress relief and SG disassembly. It may also suggest the presence of post-termination, recycling, or reinitiation complexes in SGs. This new layer of translational control under stress conditions, relying on the altered spatial distribution of translation factors between cellular compartments, is discussed. Full article
(This article belongs to the Section Intracellular and Plasma Membranes)
Show Figures

Figure 1

20 pages, 7778 KB  
Review
The Role and Therapeutic Potential of the Integrated Stress Response in Amyotrophic Lateral Sclerosis
by Elías Marlin, Cristina Viu-Idocin, Montserrat Arrasate and Tomás Aragón
Int. J. Mol. Sci. 2022, 23(14), 7823; https://doi.org/10.3390/ijms23147823 - 15 Jul 2022
Cited by 22 | Viewed by 6004
Abstract
In amyotrophic lateral sclerosis (ALS) patients, loss of cellular homeostasis within cortical and spinal cord motor neurons triggers the activation of the integrated stress response (ISR), an intracellular signaling pathway that remodels translation and promotes a gene expression program aimed at coping with [...] Read more.
In amyotrophic lateral sclerosis (ALS) patients, loss of cellular homeostasis within cortical and spinal cord motor neurons triggers the activation of the integrated stress response (ISR), an intracellular signaling pathway that remodels translation and promotes a gene expression program aimed at coping with stress. Beyond its neuroprotective role, under regimes of chronic or excessive stress, ISR can also promote cell/neuronal death. Given the two-edged sword nature of ISR, many experimental attempts have tried to establish the therapeutic potential of ISR enhancement or inhibition in ALS. This review discusses the complex interplay between ISR and disease progression in different models of ALS, as well as the opportunities and limitations of ISR modulation in the hard quest to find an effective therapy for ALS. Full article
(This article belongs to the Special Issue Neuropharmacology and Neurodegenerative Diseases)
Show Figures

Figure 1

13 pages, 1010 KB  
Review
Polyamines as Quality Control Metabolites Operating at the Post-Transcriptional Level
by Laetitia Poidevin, Dilek Unal, Borja Belda-Palazón and Alejandro Ferrando
Plants 2019, 8(4), 109; https://doi.org/10.3390/plants8040109 - 24 Apr 2019
Cited by 21 | Viewed by 5242
Abstract
Plant polyamines (PAs) have been assigned a large number of physiological functions with unknown molecular mechanisms in many cases. Among the most abundant and studied polyamines, two of them, namely spermidine (Spd) and thermospermine (Tspm), share some molecular functions related to quality control [...] Read more.
Plant polyamines (PAs) have been assigned a large number of physiological functions with unknown molecular mechanisms in many cases. Among the most abundant and studied polyamines, two of them, namely spermidine (Spd) and thermospermine (Tspm), share some molecular functions related to quality control pathways for tightly regulated mRNAs at the level of translation. In this review, we focus on the roles of Tspm and Spd to facilitate the translation of mRNAs containing upstream ORFs (uORFs), premature stop codons, and ribosome stalling sequences that may block translation, thus preventing their degradation by quality control mechanisms such as the nonsense-mediated decay pathway and possible interactions with other mRNA quality surveillance pathways. Full article
(This article belongs to the Special Issue Plant Polyamines)
Show Figures

Figure 1

26 pages, 2084 KB  
Review
Kinases of eIF2a Switch Translation of mRNA Subset during Neuronal Plasticity
by Ekaterina Chesnokova, Natalia Bal and Peter Kolosov
Int. J. Mol. Sci. 2017, 18(10), 2213; https://doi.org/10.3390/ijms18102213 - 22 Oct 2017
Cited by 38 | Viewed by 8756
Abstract
Compared to other types of cells, neurons express the largest number of diverse mRNAs, including neuron-specific ones. This mRNA diversity is required for neuronal function, memory storage, maintenance and retrieval. Regulation of translation in neurons is very complicated and involves various proteins. Some [...] Read more.
Compared to other types of cells, neurons express the largest number of diverse mRNAs, including neuron-specific ones. This mRNA diversity is required for neuronal function, memory storage, maintenance and retrieval. Regulation of translation in neurons is very complicated and involves various proteins. Some proteins, implementing translational control in other cell types, are used by neurons for synaptic plasticity. In this review, we discuss the neuron-specific activity of four kinases: protein kinase R (PKR), PKR-like endoplasmic reticulum kinase (PERK), general control nonderepressible 2 kinase (GCN2), and heme-reguated eIF2α kinase (HRI), the substrate for which is α-subunit of eukaryotic initiation factor 2 (eIF2α). Phosphorylation of eIF2α is necessary for the cell during stress conditions, such as lack of amino acids, energy stress or viral infection. We propose that, during memory formation, neurons use some mechanisms similar to those involved in the cellular stress. The four eIF2α kinases regulate translation of certain mRNAs containing upstream open reading frames (uORFs). These mRNAs encode proteins involved in the processes of long-term potentiation (LTP) or long-term depression (LTD). The review examines some neuronal proteins for which translation regulation by eIF2 was suggested and checked experimentally. Of such proteins, we pay close attention to protein kinase Mζ, which is involved in memory storage and regulated at the translational level. Full article
(This article belongs to the Special Issue Kinase Signal Transduction 2017)
Show Figures

Figure 1

Back to TopTop